EdgeFrame: scalable worst-case optimal joins for graph-pattern matching in Spark

Presented by Per Fuchs

Supervised by Peter Boncz and Bogdan Ghit

Master thesis in Computer Science

Visit <u>https://perfuchs.github.io/master-</u> <u>thesis-presentation/</u> for HTML version with correct layout.

PDF export of my presentation software is experimental!

Cyclic queries in graph-pattern matching pose new challenges to relational engines

triangles(a, b, c) <- R(a, b), S(b, c), T(c, a)

Worst-case optimal joins to the rescue

- proven to be worst-case optimal by AGM bound, e.g. for triangles in $O(N^{3/2})$
- no intermediary results
- Idea: build the join by a *variable-at-a-time* approach
- superiority for graph-pattern matching is well established ^{1, 2, 3}

¹ Join Processing for Graph Patterns: An Old Dog with New Tricks, Dung Nguyen et al, Grades 2015

² From Theory to Practice: Efficient Join Query Evaluation in a Parallel Database System, Shumo Chu et al, Sigmod 2015

³ Distributed Evaluation of Subgraph Queries Using Worstcase Optimal Low-Memory Dataflows, Khaled Ammar et al, VLDB 2018

Our contributions

- 1. designing a scalable WCOJ for Spark
 - Which distribution scheme to use?
 - open-source
 - integrate the WCOJ with Cypher on Apache Spark (stretch goal)
- 2. specializing WCOJ to graph pattern matching
 - former literature indicates that this is the main use case

1st contribution: designing a scalable WCOJ in Spark

Background: Spark

- Spark distributes data over workers
- computation is organized in exchanging steps of local computations and shuffles
- joins work by shuffling the data such that the distribution allows local join algorithms

Hypercube shuffle: optimal distribution for n-ary joins

Idea¹

- organize *p* workers in a hypercube
- one dimension per variable
- configurable k_i size per dimension
- such that $p = \prod_i k_i$
- proven to be communication optimal

¹ Optimizing Joins in a Map-Reduce Environment, Foto Afrati and Jeffrey Ullman, 2010 triangles(a, b, c) <-R(a, b), S(b, c), T(c, a)

Hypercube shuffle: optimal distribution for n-ary joins

triangles(a, b, c) <- R(a, b), S(b, c), T(c, a)

а	b	b	С	С	а
1	2	1	2	1	2
2	3	2	3	2	3
2	4	2	4	2	4
3	1	3	1	3	1

(2, 0, *) (*, 0, 1) (2, *, 1)

Hypercube shuffle converges to full replication for larger queries

- analysis by theoretic estimation and simulation
- a lot of duplicated work
- not scalable in query size
- although being optimal

Our Solution: replicated EdgeFrame

- DataFrame specialized for edge relationship
- replicated on all workers
- shuffle free worst case optimal join operation
- uses compressed sparse row representation
- easily integrable into existing Spark projects
- open source
- *logically partitioned* (open research)

Parallelization via logical partitionings

- parallelization via logical partitioning: full dataset is on each worker but each worker only considers parts of it
- partition on the first attribute to bind by the WCOJ
 - fight skew with Intel's adaptive query execution¹

¹ Spark SQL Adaptive Execution at 100 TB, Carson Wang, 2018

2nd contribution: specializing WCOJ's to graph-pattern matching

Specializing WCOJ's to graph-pattern matching: idea

- backing data structure: compressed sparse row (CSR)
- code specialization
 - self-joins only
 - two attributes only
- logical optimizations

Specializing WCOJ's to graph-pattern matching: results

Where to find my work?

https://github.com/PerFuchs

Also, I'm looking for PhD opportunities or challenging positions in industry. Passionate about distributed systems and graphs!

Take aways

- optimal distribution scheme does not scale
- therefore, replicate
- WCOJ should be specialized to graphs
- open source

List of datasets

Name	Variant	Vertices	Edges
Social Network Benchmark ¹	scale factor 1	10,278	453,032
Amazon co- purchase ²	2nd March	262,111	1,234,877
Twitter ²	social- circles	81,306	2,420,766
Amazon co- purchase ²	1st June	403,394	3,387,388

¹ The LDBC Social Network Benchmark: Interactive Workload, Orri Erling et al, 2015

² SNAP Datasets: Stanford Large Network Dataset Collection, Jure Leskovec and Andrej Krevl, 2014

Why are cyclic patterns important?

¹ Real-time twitter recommendation: online motif
detection in large dynamic graphs, Pankaj Gupta et al,
2014

² Fraud detection: Discovering connections with graph databases, Gorka Sadowski and Philip Rathle, 2015, Whitepaper

Do graphs fit into main memory?

¹ SNAP Datasets: Stanford Large Network Dataset Collection, Jure Leskovec and Andrej Krevl, 2014

² The WebGraph Framework I: Compression Techniques, Paolo Boldi and Sebastiano Vigna, 2004