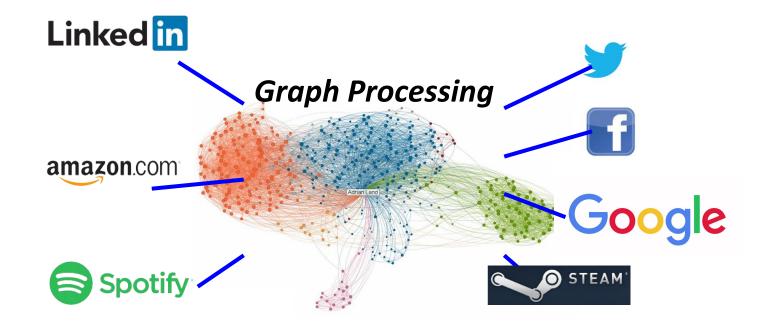


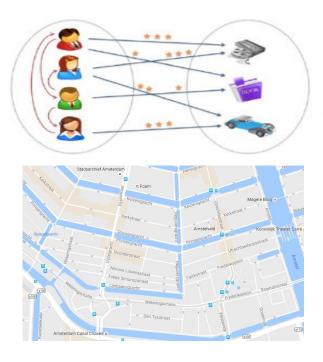
Graphalytics team, including Ahmed Musaafir, Tim Hegeman, Alexandru Uta, Alexandru Iosup

AtLarge Massivizing Computer Systems research group, Vrije Universiteit Amsterdam, the Netherlands

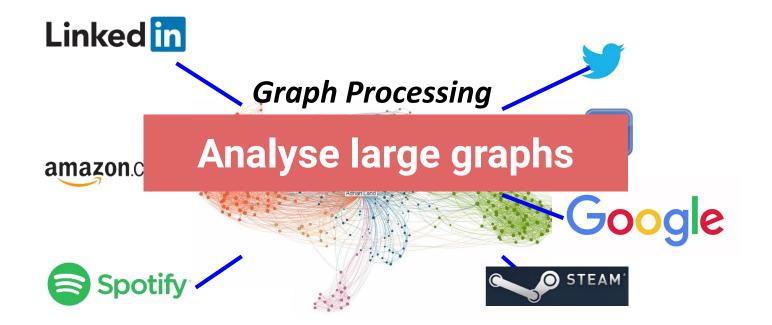

https://graphalytics.org - https://atlarge-research.com

Graphs, Many Graph-Processing Platforms

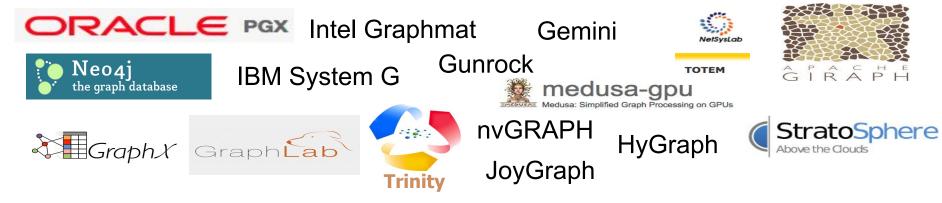
The Data Deluge: Large-scale Graphs



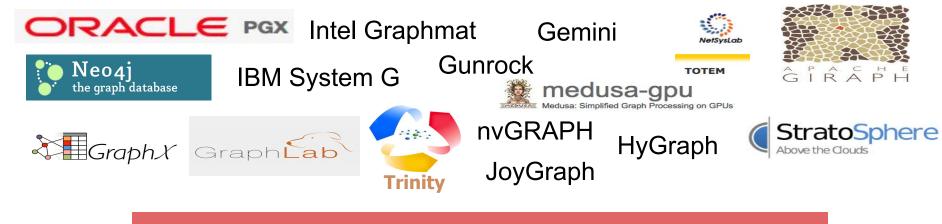
The Data Deluge: Large-scale Graphs


Predicting or recommending new relationships (friends-of-friends, product recommendations).

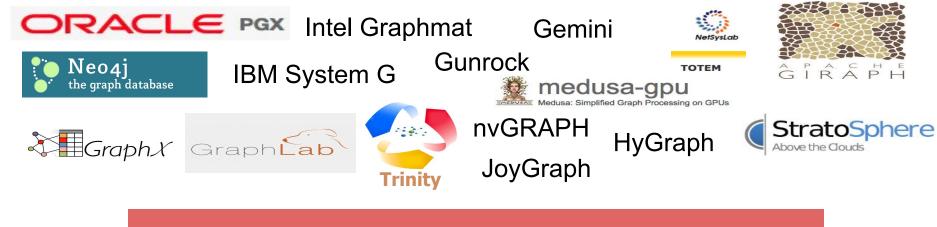
Navigation systems



The Data Deluge: Large-scale Graphs



Graph Processing Platforms


Graph Processing Platforms

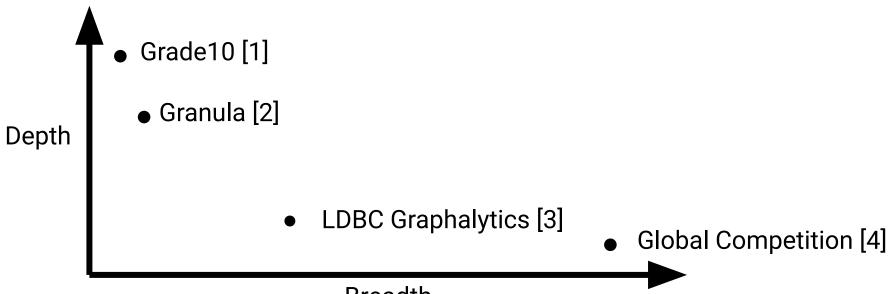
Which platforms perform well?

Graph Processing Platforms

Which platforms perform well?

Why? How can they be improved?

Understanding graph processing performance

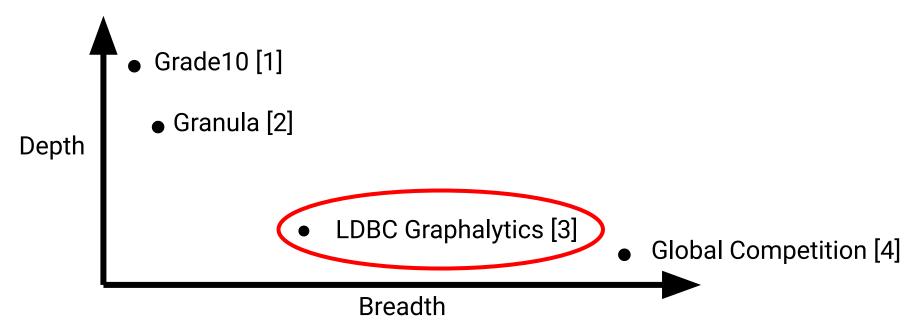

Two dimensions for understanding performance:

- **Breadth:** comparison across diverse platforms, algorithms, datasets. *Answers Q1: which platforms performs well?*
- **Depth:** performance analysis of individual jobs. *Answers Q2: why?*

The Graphalytics Ecosystem

Graphalytics ecosystem: set of complementary components for understanding graph processing performance.

Breadth



Hegeman, Iosup. Experimental Performance Analysis of Graph Analytics Frameworks. MA thesis. TU Delft, 2018.
Ngai et al., Toward Fine-grained Performance Analysis of Large-scale Graph Processing Platforms. GRADES@SIGMOD/PODS 2017: 8:1-6
Iosup, et al., LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis on Parallel and Distributed Platforms. PVLDB 9(13): 1317-1328, 2016)
Specification of different Graphalytics Competitions https://graphalytics.org/assets/spec-graphalytics-competitions.pdf, 2018

10

The Graphalytics Ecosystem

Graphalytics ecosystem: set of complementary components for understanding graph processing performance.

Hegeman, Iosup. Experimental Performance Analysis of Graph Analytics Frameworks. MA thesis. TU Delft, 2018.
Ngai et al., Toward Fine-grained Performance Analysis of Large-scale Graph Processing Platforms. GRADES@SIGMOD/PODS 2017: 8:1-6
Iosup, et al., LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis on Parallel and Distributed Platforms. PVLDB 9(13): 1317-1328, 2016)
Specification of different Graphalytics Competitions https://graphalytics.org/assets/spec-graphalytics-competitions.pdf, 2018

11

Comparing Graph Processing Platforms

How to Compare the Performance of Graph Processing Platforms?

Typical approaches:

- Platform-centric comparative studies
 - Prove the superiority of a given system, limited set of metrics
- Benchmarks (Graph500, GreenGraph500, GraphBench, XGDBench, ...)
 - · Issues with representativeness, systems covered, metrics, ...

Comparing Graph Processing Platforms

How to Compare the Performance of Graph Processing Platforms?

LDBC Graphalytics:

A comprehensive benchmark suite for graph processing across many platforms.

Graphalytics, in a Nutshell:

- An LDBC benchmark.
- Advanced benchmarking harness.
- Many classes of **algorithms** used in practice.
- Diverse real and synthetic datasets.
- Diverse set of experiments representative for practice.
- **Renewal process** to keep the workload relevant.
- Enables comparison of many platforms, community-driven and industrial.

Main finding:

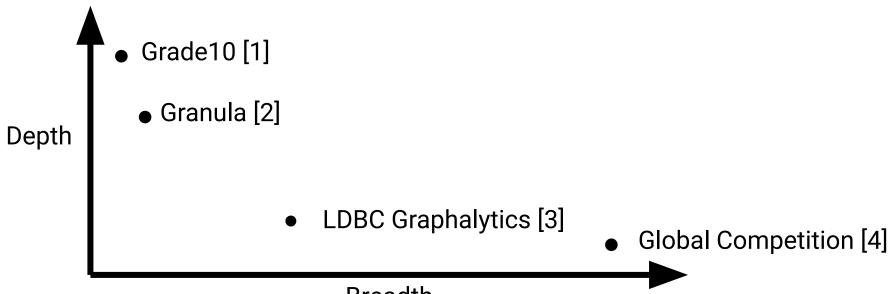
Performance of graph processing is a non-trivial function of the PAD Triangle:

(Platform, Algorithm, Dataset)

+

Hardware, if configurable separately from the Platform

Software available at: https://graphalytics.org


- Benchmark core
- Platform drivers (11)
- Data sets (36); S, L, M, XL, 2XL
- Installer
- Documentation

Platform	BFS	CDLP	LCC	PR	SSSP	WCC
Giraph	\oslash	\oslash	\oslash	\oslash	\oslash	\oslash
GraphX	\oslash	\oslash	\oslash	\oslash	\oslash	\oslash
PowerGraph	\oslash	\oslash	\oslash	\oslash	\oslash	\oslash
OpenG	\oslash	\oslash	\oslash	\oslash	\oslash	\oslash
GraphMat	\oslash	\oslash	\oslash	\oslash	\oslash	\oslash
nvGRAPH	\oslash	\otimes	\otimes	0	\oslash	\otimes
Gelly	\oslash	\oslash	\oslash	\oslash	\oslash	\oslash
GraphBLAS	\oslash	0	\oslash	D	\oslash	\oslash
GraphLab	\oslash	\oslash	\oslash	\otimes	\otimes	\otimes
Neo4j	\oslash	0	U	D	\oslash	\oslash
Gunrock	\oslash	\otimes	\otimes	?	(?)	\otimes

The Graphalytics Ecosystem

Graphalytics ecosystem: set of complementary components for understanding graph processing performance.

Breadth

Hegeman, Iosup. Experimental Performance Analysis of Graph Analytics Frameworks. MA thesis. TU Delft, 2018.
Ngai et al., Toward Fine-grained Performance Analysis of Large-scale Graph Processing Platforms. GRADES@SIGMOD/PODS 2017: 8:1-6
Iosup, et al., LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis on Parallel and Distributed Platforms. PVLDB 9(13): 1317-1328, 2016)
Specification of different Graphalytics Competitions https://graphalytics.org/assets/spec-graphalytics-competitions.pdf, 2018

17

The Graphalytics Ecosystem

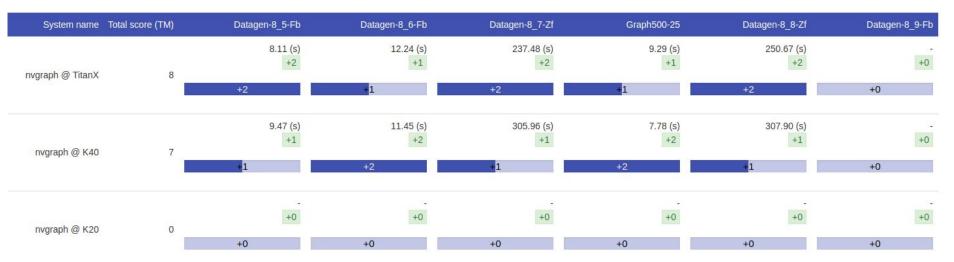
Graphalytics ecosystem: set of complementary components for understanding graph processing performance.

Breadth

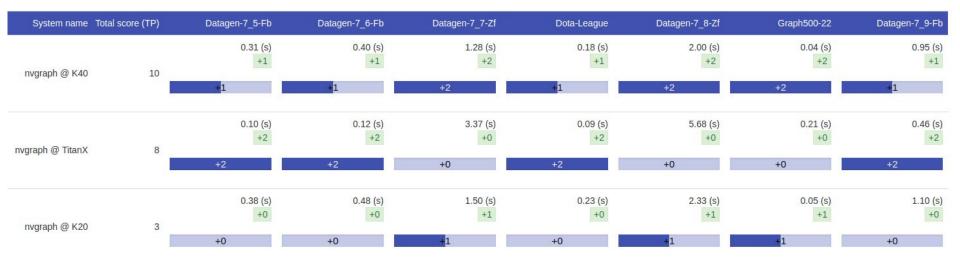
Hegeman, Iosup. Experimental Performance Analysis of Graph Analytics Frameworks. MA thesis. TU Delft, 2018.
Ngai et al., Toward Fine-grained Performance Analysis of Large-scale Graph Processing Platforms. GRADES@SIGMOD/PODS 2017: 8:1-6
Iosup, et al., LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis on Parallel and Distributed Platforms. PVLDB 9(13): 1317-1328, 2016)
Specification of different Graphalytics Competitions https://graphalytics.org/assets/spec-graphalytics-competitions.pdf, 2018

18

- Online archive for sharing results
 - https://graphalytics.org/competition
 - Submissions are reviewed by the Graphalytics team
- Systematic and periodic comparison
- Different evaluation metrics
 - Edges and Vertices Per Second (EVPS)
 - Loading Time (TL)
 - Processing Time (PT)
 - Makespan (TM)
- Examples of recent competitions:
 - Google Cloud vs DAS-5
 - CPU vs GPU platforms
 - Various GPUs; GPU platform only competition
- Different scoring methods

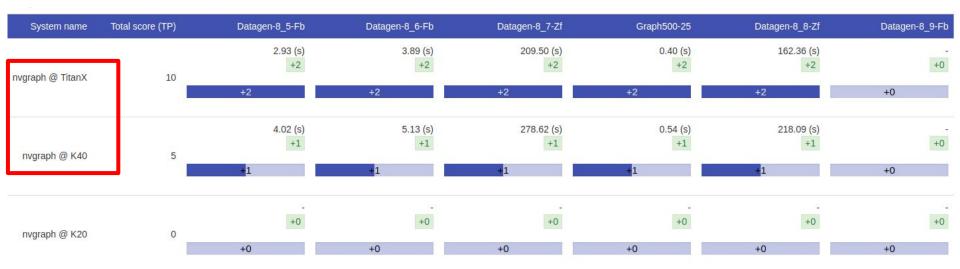


System name	Total score (TM)	Datagen-7_5-Fb			
nvgraph @ TitanX 14	14	0.26 (s) +2			
		+2			
nvgraph @ K20	6	1.29 (s) +1			
		+1			
nvgraph @ K40	1	1.72 (s) +0			
	1	+0			


System name	Total score (TM)	Datagen-7_5-Fb			
nvgraph @ TitanX	14	0.26 (s) +2			
ingidan e maint		+2			
		1.29 (s) +1			
nvgraph @ K20	6	+1			
nvgraph @ K40	1	1.72 (s) +0			
		+0			

System name	Total score (TM)	Datagen-7_5-Fb			
nvgraph @ TitanX 14	14	0.26 (s) +2			
		+2			
nvgraph @ K20	6	1.29 (s) +1	1.31 (s) +1		
		+1	1		
nvgraph @ K40	1	1.72 (s) +0	1.94 (s) +0		
		+0	+0		

System name	Total score (TM)	Datagen-7_5-Fb	Datagen-7_6-Fb	Datagen-7_7-Zf	Dota-League	Graph500-22	Datagen-7_9-Fb
nvgraph @ TitanX	14	0.26 (s) +2 +2	0.30 (s) +2 +2	3.64 (s) +2 +2	0.34 (s) +2 +2	0.55 (s) +2 +2	1.37 (s) +2 +2
nvgraph @ K20	6	1.29 (s) +1 +1	1.31 (s) +1 +1	6.45 (s) +1 +1	1.10 (s) +1 +1	1.34 (s) +1 +1	2.50 (s) +1 +1
nvgraph @ K40	1	1.72 (s) +0 +0	1.94 (s) +0 +0	7.18 (s) +0 +0	1.80 (s) +0 +0	1.75 (s) +0 +0	2.62 (s) +0 +0



System name	Total score (TM)	Datagen-8_5-Fb	Datagen-8_6-Fb	Datagen-8_7-Zf	Graph500-25	Datagen-8_8-Zf	Datagen-8_9-Fb
nvgraph @ TitanX	8	8.11 (s) +2	12.24 (s) +1	237.48 (s) +2	9.29 (s) +1	250.67 (s) +2	+0
		+2	+1	+2	+1	+2	+0
austrach @ K40	7	9.47 (s) +1	11.45 (s) +2	305.96 (s) +1	7.78 (s) +2	307.90 (s) +1	+0
nvgraph @ K40	1	+1	+2	*1	+2	* 1	+0
nvgraph @ K20		+0	+0	+0	+0	+0	+0
	0	+0	+0	+0	+0	+0	+0

System name Total	score (TP)	Datagen-7_5-Fb	Datagen-7_6-Fb	Datagen-7_7-Zf	Dota-League	Datagen-7_8-Zf	Graph500-22	Datagen-7_9-Fb
nvgraph @ K40	10	0.31 (s) +1	0.40 (s) +1	1.28 (s) +2	0.18 (s) +1	2.00 (s) +2	0.04 (s) +2	0.95 (s) +1
5-4- C		+1	+1	+2	+1	+2	+2	+1
		0.10 (s) +2	0.12 (s) +2	3.37 (s) +0	0.09 (s) +2	5.68 (s) +0	0.21 (s) +0	0.46 (s) +2
nvgraph @ TitanX	8	+2	+2	+0	+2	+0	+0	+2
		0.38 (s) +0	0.48 (s)	1.50 (s) +1	0.23 (s)	2.33 (s)	0.05 (s) +1	1.10 (s) +0
nvgraph @ K20	3	+0	+0	+1	+0	+1	+1	+0

System name	Total score (TP)	Datagen-8_5-Fb	Datagen-8_6-Fb	Datagen-8_7-Zf	Graph500-25	Datagen-8_8-Zf	Datagen-8_9-Fb
nvgraph @ TitanX	10	2.93 (s) +2	3.89 (s) +2	209.50 (s) +2	0.40 (s) +2	162.36 (s) +2	+0
		+2	+2	+2	+2	+2	+0
		4.02 (s) +1	5.13 (s) +1	278.62 (s) +1	0.54 (s) +1	218.09 (s) +1	+0
nvgraph @ K40	5	+1	+1	+1	+1	+1	+0
		+0	+0	+0	+0	+0	+0
nvgraph @ K20	0	+0	+0	+0	+0	+0	+0

System name	Total score (TP)	Datagen-8_5-Fb	Datagen-8_6-Fb	Datagen-8_7-Zf	Graph500-25	Datagen-8_8-Zf	Datagen-8_9-Fb
nvgraph @ TitanX	10	2.93 (s) +2	3.89 (s) +2	209.50 (s) +2	0.40 (s) +2	162.36 (s) +2	+0
ingiapi C		+2	+2	+2	+2	+2	+0
nvgraph @ K40	5	4.02 (s) +1	5.13 (s) +1	278.62 (s) +1	0.54 (s) +1	218.09 (s) +1	+0
		+1	+1	+1	+1	+1	+0
nvgraph @ K20	0	+0	+0	+0	+0	+0	+0
nvgraph @ K20	0	+0	+0	+0	+0	+0	+0

System name	Total score (TP)	Datagen-8_5-Fb	Datagen-8_6-Fb	Datagen-8_7-Zf	Graph500-25	Datagen-8_8-Zf	Datagen-8_9-Fb
nvgraph @ TitanX	12	0.07 (s) +2	0.09 (s) +2	0.45 (s) +2	0.16 (s) +2	0.60 (s) +2	0.20 (s) +2
nigiaph & nanx		+2	+2	+2	+2	+2	+2
nvgraph @ K40	6	0.22 (s) +1	0.31 (s) +1	0.72 (s) +1	0.41 (s) +1	0.92 (s) +1	0.56 (s) +1
nvgraph @ K40		+1	+1		+1	+1	-1
nvgraph @ K20	0	0.28 (s) +0	0.37 (s) +0	+0	0.51 (s) +0	+0	+0
ingraph @ K20	0	+0	+0	+0	+0	+0	+0

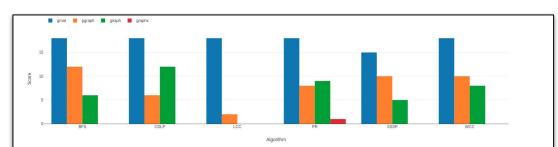
System name	Total score (TP)	Datagen-8_5-Fb	Datagen-8_6-Fb	Datagen-8_7-Zf	Graph500-25	Datagen-8_8-Zf	Datagen-8_9-Fb
nvgraph @ TitanX	12	0.07 (s) +2	0.09 (s) +2	0.45 (s) +2	0.16 (s) +2	0.60 (s) +2	0.20 (s) +2
		+2	+2	+2	+2	+2	+2
nvgraph @ K40	6	0.22 (s) +1	0.31 (s) +1	0.72 (s) +1	0.41 (s) +1	0.92 (s) +1	0.56 (s) +1
		+1	+1	+1	-1	+1	+1
nvgraph @ K20	0	0.28 (s) +0	0.37 (s) +0	+0	0.51 (s) +0	+0	+0
		+0	+0	+0	+0	+0	+0

Full results & competition reports available: <u>https://graphalytics.org/competition</u>

OCTOBER 2018 - G	RAPHALYTICS.ORG			
	1018 GPU vs CPU platforms" (tourna ons or feedback can be e-mailed to			s listed on the Graphalytic
1 OVERVIEW The following table lists	the two competitions that are	described in t	his report:	
	: the two competitions that are Table 1. List of comp			
	•]
	Table 1. List of comp	petitions describ	ed this report.]

The nvGRAPH library is part of the CUDA toolkit developed by NVIDIA and is the first GPU library in the Graphalytics benchmark. Table 2 lists the platforms that are being used in this competition. By default, nvGRAPH implements BFN, SSSP and PR, and provides example code of these algorithms in the nvGRAPH documentation. Furthermore, the results of nvGRAPH 1.PR were removed as it failed to pass the Graphalytics validation test.

Gunrock implements BFS, PR and SSSP. However, only BFS is benchmarked in this competition, as it produced correct (validated) results. PR lacks parameters to set the number of iterations and damping, while SSSP does not support floating point units.


The CPU platforms support all the Graphalytics standard algorithms.

Rationale of single-multi node CPU platforms: Note that the CPU platforms were benchmarked on as single node. For CPU platforms, the results for single- and multi-node benchmark results are added for GraphMat to give a better understanding of how GPU platforms rank. In addition, the benchmark results for PowerGraph (single node) are added as well. Table 2. List of slatforms used in the '2018 GPU vs CPU relationma' connectitions

Platform	Core-Version	Driver-Version	Platform-Version	#Algorithms
nvGRAPH	1.0.0	0.2-SNAPSHOT	Toolkit v10.0.130	2/6
Gunrock	1.0.0	0.2-SNAPSHOT	Commit ea18455	1/6
Giraph	0.9.0/1.0.0	0.2-SNAPSHOT	1.2.0-hadoop2	6/6
GraphMat	0.9.0/1.0.0	0.2-SNAPSHOT	May 2017 (a892c36)	6/6
PowerGraph @ single node	1.0.0	0.2-SNAPSHOT	2.2	6/6
GraphMat @ single node	1.0.0	0.2-SNAPSHOT	May 2017 (a892c36)	6/6

Giraph (CPU)

¹https://graphalytics.org/about

	Rank	System name	Total score	BFS	CDLP	LCC	PR	SSSP	WC
	S No. 1	gmat	105	18	18	18	18	15	1
	S No. 2	pgraph	48	12	6	2	8	10	1
	😨 No. 3	giraph	40	6	12	0	9	5	
	No. 4	graphx	1	0	0	0	1	0	
atagen-8_5-Fb	Datagen-8_	_6-Fb Datagen	-8_7-Zf	Graph500-25	Datagen-8_8-Zf	Datagen-8_9-Fb			
0.07 (s) +3	0.09 (s)	+3 0.45 (s) +3	0.16 (s) +3	0.60 (s) +3	0.20 (s) +3	Graph500-25	Datagen-8 8-Zf	Datagen-8_9-F
+3	+3	+3		+3	+3	+3	0.28 (s) +3	1.26 (s) +3	0.34 (
0.15 (s) +2	0.20 (s)	+2 1.11 (s) +1	0.28 (s) +2	1.26 (s) +1	0.34 (s) +2		+3	+3
+2	+2	+1		+2	+1	+2	6.83 (s) +2	33.82 (s) +2	8.02
0.61 (s) +1	0.80 (s)	+1 0.58 (s) +2	0.95 (s) +1	0.70 (s) +2	1.87 (s) +1		+2	+2
+1	+1	+2		+1	+2	+1	14.12 (s) +1	59.04 (s) +1	18.56
9.38 (s) +0	11.22 (s)	+0 57.39 (s) +0	14.12 (s) +0	59.04 (s) +0	18.56 (s) +0			
+0	+0	+0		+0	+0	+0			

Graphalytics 1.0 (Trusted benchmark)

Graphalytics 2.0 (Trusted benchmark)

- Larger data sets
- Scalability experiments
- Visualization algorithms

Graphalytics 2.0 + Custom Benchmarking

- Own algorithms
- Fault tolerance
- Energy/power usage
- Elasticity
- Queries (+ analytics)
- Workflows
- Scaling graphs, performance variability, etc.

- The **Graphalytics ecosystem** provides **breadth** and **depth** in understanding graph processing performance.
- View & submit benchmark results @ Graphalytics Global Competition

graphalytics.org

Hegeman, Iosup. Experimental Performance Analysis of Graph Analytics Frameworks. MA thesis. TU Delft, 2018.
Ngai et al., Toward Fine-grained Performance Analysis of Large-scale Graph Processing Platforms. GRADES@SIGMOD/PODS 2017: 8:1-6
Iosup, et al., LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis on Parallel and Distributed Platforms. PVLDB 9(13): 1317-1328, 2016)
Specification of different Graphalytics Competitions <u>https://graphalytics.org/assets/spec-graphalytics-competitions.pdf</u>, 2018

