
Modern	Graph	Analytic	Support	
in	GSQL,	TigerGraphs’s	GQL	

Alin	Deutsch	
TigerGraph	Chief	Scientist	
Professor,	UC	San	Diego	

The	Age	of	the	Graph	Is	Upon	Us	(Again)	

•  Early-mid-90s:	semi-	or	un-structured	data	research	was	all	the	rage	
–  data	logically	viewed	as	graph	
–  initially	motivated	by	modeling	WWW	(page=vertex,	link=edge)	
–  query	languages	expressing	constrained	reachability	in	graph	

•  Late	90s-late	2000s:	special	case	XML	(graph	restricted	to	tree	shape)	
–  Mature:	W3C	standard	ecosystem	for	modeling	and	querying	(XQuery,	

XPath,	XLink,	XSLT,	XML	Schema,	…)	

•  Since	mid	2000s:	JSON	and	friends	(also	restricted	to	tree	shape)	
–  Mongodb,	Couchbase,	SparkSQL,	GraphQL,	AsterixDB,	…	

•  Present:	back	to	unrestricted	graphs	
–  Initially	motivated	by	analytic	tasks	in	social	networks		
–  Now	universal	use	(most	interesting	data	is	linked,	after	all)	

The	Traditional	Graph	Data	Model	
•  Nodes	correspond	to	entities	

•  Edges	correspond	to	binary	relationships	

•  Edges	may	be	directed	or	undirected	
(asymmetric,	resp.	symmetric	relationships)	

•  Nodes	and	edges	may	be	labeled/typed	

•  Nodes	and	edges	annotated	with	data	
–  both	have	sets	of	attributes	(key-value	pairs)	

Example:	Customers	Buy	Products	

customer	 product	
bought	

discount	 quantity	 price	name	

Key	Traditional	Language	Ingredients		

•  Pioneered	by	academic	work	on	relational	
query	extensions	for	graphs	(since	‘87)	

– Path	expressions	(PEs)	for	navigation	
– Variables	for	referring	to	and	manipulating	data	
found	during	navigation	

– Stitching	multiple	PEs	into	complex	navigation	
patterns			à	conjunctive	path	queries	

– Constructors	for	new	nodes	and	edges	

Path	Expressions	

•  Express	reachability	via	constrained	paths		

•  Early	graph-specific	extension	over	conjunctive	queries	

•  Introduced	initially	in	academic	prototypes	in	early	90s	
–  StruQL				(AT&T	Research	-	Fernandez,	Halevy,	Suciu)	
– WebSQL		(U	Toronto	-	Mendelzon,	Mihaila,	Milo)	
–  Lorel								(Stanford	-	Widom	et	al)	

•  Supported	by	modern	languages	
–  SparQL,	Cypher,	Gremlin,	GSQL	

Path	Expression	Examples	(1)	

•  Pairs	of	customer	and	product	they	bought:	

	-Bought->	

•  Pairs	of	customer	and	product	they	were	involved	with	(bought	
or	reviewed)	

	-Bought|Reviewed->	

•  Pairs	of	customers	who	bought	same	product		
					(lists	customers	with	themselves)	

	-Bought->.<-Bought-	

Path	Expression	Examples	(2)		

•  Pairs	of	customers	involved	with	same	product	(like-
minded)	

	-Bought|Reviewed->.<-Bought|Reviewed-	

•  Pairs	of	customers	connected	via	a	chain	of	like-minded	
customer	pairs	

	(-Bought|Reviewed->.<-Bought|Reviewed-)*	

Conjunctive	Regular	Path	Queries	

•  Path	expressions	as	atomic	building	blocks	

•  Explicitly	introduce	variables	binding	to	source	
and	target	nodes	of	path	expressions.		

•  Variables	can	be	used	to	stitch	multiple	path	
expression	atoms	into	complex	patterns.	

CRPQ	Examples	

•  Pairs	of	customers	who	have	bought	same	
product	(do	not	list	a	customer	with	herself):	

					Q1(c1,c2)	:-	c1	–Bought->.<-Bought-	c2,	c1	!=	c2	

•  Customers	who	have	bought	a	product	and	also	
reviewed	it:	

					Q2(c)	:-	c	–Bought->	p,	c	–Reviewed->	p	

Key	Language	Ingredients	Needed	in	
Modern	Applications	

– All	primitives	inherited	from	past		
•  path	expressions	+	variables	+	conjunctive	patterns	+	
node/edge	construction	

&	

– Support	for	large-scale	graph	analytics	
•  Aggregation	of	data	encountered	during	navigation	
			à	requires	bag	semantics	for	pattern	matches		
•  Control	flow	support	for	class	of	iterative	algorithms	
that	converge	in	multiple	steps		

–  (e.g.	PageRank-class,	recommender	systems,	shortest	paths,	
etc.)		

	

Aggregation	

Aggregation	in	Modern	Graph	QLs	

	
•  PGQL,	Gremlin	and	SparQL	use	an	SQL-style	GROUP	BY	
clause	

•  Cypher’s	RETURN	clause	uses	similar	syntax	as	
aggregation-extended	CQs		

•  GSQL	uses	aggregating	containers	called	
“accumulators”		
–  (soon	to	add	above	solutions	as	syntactic	sugar,	but	
accumulators	remain	strictly	more	versatile)	

GSQL	Accumulators	

•  GSQL	traversals	collect	and	aggregate	data	by	writing	it	into	
accumulators	

•  Accumulators	are	containers	(data	types)	that	
–  hold	a	data	value		
–  accept	inputs	
–  aggregate	inputs	into	the	data	value	using	a	binary	operator	

•  May	be	built-in	(sum,	max,	min,	etc.)	or	user-defined	

•  May	be		
–  global	(a	single	container)	
–  Vertex-attached	(one	container	per	vertex)	

Vertex-Attached	Accumulator	Example:	
Revenue	per	Customer	and	per	Product	

customer	 product	
bought	

discount	 quantity	 price	

@cSales	 @pSales	

thisSaleRevenue	

Vertex-Attached	Accumulator	Example:	
Revenue	per	Customer	and	per	Product	

@cSales	

@cSales	

@pSales	

@pSales	

@pSales	

+	
+	

Vertex-Attached	Accumulator	Example:	
Revenue	per	Customer	and	per	Product	
	
	
SumAccum<float>	@cSales,	@pSales;	
	
SELECT					c	
FROM						Customer	:c	–(Bought	:b)->	Product	:p	
ACCUM			thisSaleRevenue	=	b.quantity*(1-b.discount)*p.price,	
																	c.@cSales	+=	thisSaleRevenue,	
																	p.@pSales	+=	thisSaleRevenue;	

accumulator	declaration	

groups	are	distributed,	each	node	
accumulates	its	own	group	

same	sale	revenue	contributes	
to	two	aggregations,	each	by	
distinct	grouping	criteria	

Recommended	Toys	Ranked	by		
Log-Cosine	Similarity	

SumAccum<float> @rank, @lc;
SumAccum<int> @inCommon;
	
Me = {Customer.1};

	SELECT 	 					p INTO	ToysILike, o INTO	OthersWhoLikeThem
	FROM 	 					Me:c	-(Likes)->	Product:p <-(Likes)-	Customer:o
	WHERE 	 					p.category	== “Toys” and o != c
	ACCUM 	 					o.@inCommon +=	1
	POST-ACCUM o.@lc = log	(1 + o.@inCommon);

ToysTheyLike = SELECT				t
	 	 			 						FROM 			OthersWhoLikeThem:o –(Likes)->	Product:t
	 	 				 						WHERE 		t.category == "toy"
	 	 			 						ACCUM 	t.@rank	+= o.@lc;	
	 	 	 		

RecommendedToys	= ToysTheyLike – ToysILike;	

Control	Flow	Primitives	

Loops	Are	Essential	

•  Loops	(until	condition	is	satisfied)	

– Necessary	to	program	iterative	algorithms,	e.g.	
PageRank,	recommender	systems,	shortest-path,	etc.		

–  They	synergize	with	accumulators.	This	GSQL-unique	
combination	concisely	expresses	sophisticated	graph	
analytics	

–  Can	be	used	to	program	unbounded-length	path	
traversal	under	various	semantics	

PageRank	in	GSQL	

CREATE	QUERY	pageRank	(float	maxChange,	int	maxIteration,	float	dampingFactor)	{	
	
		MaxAccum<float>	@@maxDifference	=	9999;		//	max	score	change	in	an	iteration	
		SumAccum<float>	@received_score	=	0;											//	sum	of	scores	received	from	neighbors	
		SumAccum<float>	@score	=	1;																													//	initial	score	for	every	vertex	is	1.	
	
		AllV	=	{Page.*};																																																									//	start	with	all	vertices	of	type	Page	
		WHILE	@@maxDifference	>	maxChange	LIMIT	maxIteration	DO	
				@@maxDifference	=	0;	
	
					S=	SELECT														s	
										FROM																AllV:s	-(Linkto)->	:t	
										ACCUM													t.@received_score	+=	s.@score/s.outdegree()	
										POST-ACCUM		s.@score	=	1-dampingFactor	+	dampingFactor	*	s.@received_score,	
																																					s.@received_score	=	0,	
																																					@@maxDifference	+=			abs(s.@score	-	s.@score');	
		END;	
}	

Takeaway	

	
Serendipitous	synergy	of	
		
	 	flexible	aggregation	+	loops	

	
from	point	of	view	of	both	
	
	 	expressive	power	(conciseness,	naturalness)	
	 	performance	

