Modern Graph Analytic Support

in GSQL, TigerGraphs’s GQL

Alin Deutsch
TigerGraph Chief Scientist
Professor, UC San Diego

The Age of the Graph Is Upon Us (Again)

Early-mid-90s: semi- or un-structured data research was all the rage
— data logically viewed as graph
— initially motivated by modeling WWW (page=vertex, link=edge)
— query languages expressing constrained reachability in graph

Late 90s-late 2000s: special case XML (graph restricted to tree shape)

— Mature: W3C standard ecosystem for modeling and querying (XQuery,
XPath, XLink, XSLT, XML Schema, ...)

Since mid 2000s: JSON and friends (also restricted to tree shape)
— Mongodb, Couchbase, SparkSQL, GraphQL, AsterixDB, ...

Present: back to unrestricted graphs
— Initially motivated by analytic tasks in social networks
— Now universal use (most interesting data is linked, after all)

The Traditional Graph Data Model

* Nodes correspond to entities
* Edges correspond to binary relationships

* Edges may be directed or undirected
(asymmetric, resp. symmetric relationships)

* Nodes and edges may be labeled/typed

* Nodes and edges annotated with data
— both have sets of attributes (key-value pairs)

Example: Customers Buy Products

customer product

discount quantity

Key Traditional Language Ingredients

* Pioneered by academic work on relational
query extensions for graphs (since ‘87)

— Path expressions (PEs) for navigation

— Variables for referring to and manipulating data
found during navigation

— Stitching multiple PEs into complex navigation
patterns -2 conjunctive path queries

— Constructors for new nodes and edges

Path Expressions

e Express reachability via constrained paths

* Early graph-specific extension over conjunctive queries

* |ntroduced initially in academic prototypes in early 90s
— StruQL (AT&T Research - Fernandez, Halevy, Suciu)
— WebSQL (U Toronto - Mendelzon, Mihaila, Milo)
— Lorel (Stanford - Widom et al)

Supported by modern languages
— SparQL, Cypher, Gremlin, GSQL

Path Expression Examples (1)

* Pairs of customer and product they bought:
-Bought->

* Pairs of customer and product they were involved with (bought
or reviewed)

-Bought [Reviewed->

* Pairs of customers who bought same product
(lists customers with themselves)

-Bought->.<-Bought-

Path Expression Examples (2)

Pairs of customers involved with same product (like-
minded)

-Bought[Reviewed->.<-Bought [Reviewed-

Pairs of customers connected via a chain of like-minded
customer pairs

(-Bought | Reviewed->.<-Bought | Reviewed-)*

Conjunctive Regular Path Queries

* Path expressions as atomic building blocks

* Explicitly introduce variables binding to source
and target nodes of path expressions.

e Variables can be used to stitch multiple path
expression atoms into complex patterns.

CRPQ Examples

* Pairs of customers who have bought same
product (do not list a customer with herself):

Q1(c1,c2) :- c1 -Bought->.<-Bought- c2, c1 I= c2

* Customers who have bought a product and also
reviewed it:

Q2(c) :- c -Bought-> p, c -Reviewed-> p

Key Language Ingredients Needed in

Modern Applications

— All primitives inherited from past

* path expressions + variables + conjunctive patterns +
node/edge construction

&

— Support for large-scale graph analytics
* Aggregation of data encountered during navigation
—> requires bag semantics for pattern matches

* Control flow support for class of iterative algorithms
that converge in multiple steps

— (e.g. PageRank-class, recommender systems, shortest paths,
etc.)

Aggregation

Aggregation in Modern Graph QLs

 PGQL, Gremlin and SparQL use an SQL-style GROUP BY
clause

 Cypher’s RETURN clause uses similar syntax as
aggregation-extended CQs

* GSQL uses aggregating containers called
“accumulators”

— (soon to add above solutions as syntactic sugar, but
accumulators remain strictly more versatile)

GSQL Accumulators

 GSQL traversals collect and aggregate data by writing it into
accumulators

 Accumulators are containers (data types) that
— hold a data value
— accept inputs
— aggregate inputs into the data value using a binary operator

* May be built-in (sum, max, min, etc.) or user-defined

 May be
— global (a single container)
— Vertex-attached (one container per vertex)

Vertex-Attached Accumulator Example:

Revenue per Customer and per Product

customer product

discount quantity

thisSaleRevenue

Vertex-Attached Accumulator Example:
Revenue per Customer and per Product

Vertex-Attached Accumulator Example:

Revenue per Customer and per Product

SumAccum<float> @cSales, @pSales;

SELECT

FROM Customer :c -(Bought :b)-> Product :p
ACCUM thisSaleRevenue = b.quantity*(1-b.discount)*p.price,
c.@cSales += thisSaleRevenue,

p.@pSales += thisSaleRevenue; \

same sale revenue contributes

groups are distributed, each node to two aggregations, each by
accumulates its own group distinct grouping criteria

Recommended Toys Ranked by

Log-Cosine Similarity

SumAccumc<float> @rank, @Ic;
SumAccum<int> @inCommon;

Me = {Customer.1};

SELECT p INTO ToyslLike, o INTO OthersWholLikeThem
FROM Me:c -(Likes)-> Product:p <-(Likes)- Customer:o
WHERE p.category ==“Toys” and o != ¢

ACCUM 0.@inCommon +=1

POST-ACCUM o.@Ilc=log (1+ o.@inCommon);

ToysTheylLike= SELECT t

FROM OthersWholLikeThem:o -(Likes)-> Product:t
WHERE t.category== "toy’
ACCUM t.@rank += 0. @lc;

RecommendedToys = ToysTheyLike - ToyslLike;

Control Flow Primitives

Loops Are Essential

* Loops (until condition is satisfied)

— Necessary to program iterative algorithms, e.g.
PageRank, recommender systems, shortest-path, etc.

— They synergize with accumulators. This GSQL-unique
combination concisely expresses sophisticated graph
analytics

— Can be used to program unbounded-length path
traversal under various semantics

C

}

PageRank in GSQL

REATE QUERY pageRank (float maxChange, int maxIteration, float dampingFactor) {

MaxAccum<float> @ @maxDifference = 9999; // max score change in an iteration

SumAccum<float> @received_score = 0; // sum of scores received from neighbors
SumAccum<float> @score = 1; // initial score for every vertex is 1.
AllV = {Page.*}; // start with all vertices of type Page

WHILE @ @maxDifference > maxChange LIMIT maxIteration DO
@ @maxDifference = 0;

S= SELECT S
FROM AllV:s -(Linkto)-> :t
ACCUM t.@received_score +=s.@score/s.outdegree()

POST-ACCUM s.@score = 1-dampingFactor + dampingFactor * s.@received_score,

s.@received_score =0,
@ @maxDifference += abs(s.@score - s.@score');

END;

Takeaway

Serendipitous synergy of
flexible aggregation + loops
from point of view of both

expressive power (conciseness, naturalness)
performance

