
GQL Scope and Features

(incl. GQL Process Update)

Stefan Plantikow for the Neo4j Query Languages Team, LDBC TUC Meeting, Amsterdam, Netherlands, 2019

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

Information technology — Database languages — GQL

● Next Generation Query Language for Property Graphs by
ISO/IEC JTC 1/SC 32/WG 3 (Convenor: Keith Hare)

● Goal: ISO Standard
● Status: Ballot Proposal for New Work Item Proposal (NWIP) started (until: Sep 2019)

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

Motivation

① Lead and consolidate existing demand for such a language

② Address the specific needs of graph use cases

③ Increase the utility of property graph querying

④ Drive adoption of graph database systems

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

GQL Early Working Draft

● Currently being written
○ Sharing foundational aspects with SQL
○ Using same conventions as SQL and tooling developed by

Jim Melton and other SQL editors

● Available to standards process participants only
at this time

● Starting point that will see many changes
● Based on

○ GQL Scope and Features (this talk)
○ Other WG3 contributions

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

From Cypher, PGQL, GSQL, SQL/PGQ to GQL

All aligned with basic data types, infrastructure, and expressions of the SQL database
Support for basic tabular manipulation (projection, sorting, grouping etc)

More features are discussed (Indexing)

http://tiny.cc/gql-scope-and-features

http://tiny.cc/gql-scope-and-features

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: GQL Scope and Features

① Introduction
Inputs, motivation, orientation

② References
Related material, incl. designs from openCypher

③ Discussion
Overarching design principles, language overview

④ Proposal
Project scope, definitions, language features

⑤ Grammar
Sketch of proposed syntax - to show structure

Publically available at http://tiny.cc/gql-scope-and-features

http://tiny.cc/gql-scope-and-features

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: GQL Design Principles and Scope [3.9, 4.1]
① New and independent property graph query language

Follow the tradition of existing languages like Cypher, PGQL and SQL/PGQ
Support both standalone implementation or extension of existing SQL-based systems

② Declarative language
Emphasize what over how (in particular by using pattern matching) to support different implementation strategies

③ Composable language
Compose procedures from nested sub-procedures and statement sequences in a language closed under graphs and tables

④ Compatible language
Ensure compatibility with established and widely used features of SQL and avoid idle variation to existing syntax

⑤ Modern language
Introduce next-generation language features using established designs from existing languages where available

⑥ Intuitive language
Follow consistent, "whiteboard-friendly", visual syntax (in particular by using "ascii-art" patterns)

Covering the full spectrum of features of an industry-grade database query language!

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: Example query [3.1]
// from graph or view "friends" in the catalog

FROM friends

// match persons a and b that travelled together

MATCH (a IS Person)-[IS TRAVELLED_TOGETHER]-(b IS Person)

WHERE a.age = b.age AND a.country = $country AND b.country = $country

// from view parameterized by country

FROM census($country)

// find out if a and b at some point moved to or where born in a place p

MATCH SHORTEST (a) (()-[IS BORN_IN|MOVED_TO]->())* (p)

 (()<-[IS BORN_IN|MOVED_TO]-())* (b)

// that is located in a city c

MATCH (p)-[IS LOCATED_IN]->(c IS City)

// aggregate number of such pairs per city and age cohort

RETURN a.age AS age, c.name AS city, count(*) AS pairs GROUP BY age

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: Topics

⓵ Graphs & Pattern matching

⓶ Tables & Expressions

⓷ Type system & Schema

⓸ Modifying and Projecting graphs

⓹ Query composition & Views

⓺ Schema & Catalog

⓻ Interoperability

⓼ Error handling model

⓽ Security model

⓾ User defined procedures &
functions

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: Graphs & Pattern matching [3.4, 4.6]

① Property graph model
② Nodes, Edges, and Paths [4.4.3]
③ Patterns [ERF-035, BNE-034]
④ Match and path modifiers [4.6.1-4.6.4]
⑤ Working with paths [4.6.5]

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: Intrinsic Identity

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023:
Graph
Patterns

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

FROM twitter

MATCH SIMPLE (a) (()-[IS Knows]->())* (b),

 TRAIL (a)-[IS Lives_At]->()

 (()-[IS Bus|Train|Plane]->())*

 ()<-[IS Lives_At]-(b)

BNE-023: Pattern matching modifiers
<path modifiers> for controlling
path matching semantics

[ALL] SHORTEST - for shortest path patterns
[ALL] CHEAPEST - for cheapest path patterns
(both with TOP <k>, MAX <k>qualifiers, and
supporting WITH TIES)

REACHES - unique end nodes with >=1 matching path
ALL - all paths

SIMPLE - may not contain repeated nodes
TRAIL - may not contain repeated edges
ACYCLIC - may not repeat nodes,
except allowing the first and last node to be the same

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

FROM twitter

MATCH (a)-[IS Follows]->(b)

OPTIONAL MATCH (

 (b)-[p IS Posted]->(m)

 WHERE p.date > three_days_ago

)

BNE-023: Pattern matching structure
[FROM <graph>]

MATCH <pattern> {<comma> <pattern> ...}

+ optional modifiers to MATCH
for controlling pattern matching behaviour

OPTIONAL MATCH - outer join, binds nulls if nothing matches
MANDATORY MATCH - query fails if nothing matches

MATCH ...

● DIFFERENT (VERTICES|NODES) - vertex isomorphism
● DIFFERENT (EDGES|RELATIONSHIPS) - edge isomorphism
● UNCONSTRAINED - homomorphism

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: Tables & Expressions [4.5, 4.9]

① Basic table operations (selection, projection, ordering, filtering, slicing) [4.9]
② Aggregation and grouping [4.5]
③ Tabular set operations (UNION [ALL]) [4.9]
④ Graph element expressions [4.5]
⑤ Collection and dictionary expressions [4.5]
⑥ Relationship to SQL

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: Why tabular operations in GQL?

(A) Pattern matching => (Multi) set of bindings (=> Table)
=> Tabular result transformation useful to avoid client-side processing

(B) Bindings main input into graph modifying operations (DML)
=> Supported by tabular result transformation and combination

(C) Bindings main input into graph construction operators
=> Supported by tabular result transformation and combination

Not needed: Features focussed on tables as a base data model like e.g. referential
integrity via foreign key constraints

ISO/IEC JTC1/SC32/WG3:BNE-041, Neo4j Query Languages Team, WG3 Meeting, Brisbane, Australia, 2019

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: Linear statement composition [3.10.3, 4.3.4.3]

● Top-Down flow
● Combined using lateral join
● Statements are update horizons

Benefits
● Natural, linear order used in programming
● Allows query-aggregate-query without (named) nested subqueries
● Allows mixing reading and writing (e.g. returning modified data)
● Solvable using subquery unnesting (maps on "apply" operator)
● RETURN has been very positively received by PGM users

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: Graph element expressions and functions

● Element access: n.prop, labels(n), properties(n), handle(n)
● Dynamic label tests
● Element operators: allDifferent(<elts>), =, <>
● Element functions: source(e), target(e), (in|out)degree(v)
● Path functions: nodes(p), edges(p), concatenation

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: Collection and dictionary expressions

● Collection literals: [a, b, c, ...]
● Dictionary literals: { alpha: some(a), beta: b+c, ... }
● Indexing and lookup: coll[1], dict[‘alpha’]
● Map comprehensions
● List comprehension
● Functions

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: Type system & Schema [3.3, 4.4]

① Selected scalar data types from SQL [4.4.1]
② Nested data and collections [4.4.2]
③ Graph-related data types [4.4.3]

○ Nodes and Edges - with intrinsic identity
○ Paths
○ Graphs

④ Advanced type system features [3.3, 4.4.4]
⑤ Static and dynamic typing [4.4.5]

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: Advanced types
Heterogeneous types
MATCH (n) RETURN n.status may give conflicting types (esp. in a large schema)
Possible type system extension: Union types, e.g. A | B | NULL

Complex object types
Support the typing of complex objects like graphs and documents
Possible type system extension: Graph types, structural types, recursive document type

Incomplete type information
Data access (e.g in a big data file system) with runtime metadata discovery
Possible type system extension: Gradual type for "value of unknown type" ?

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: Modifying and Projecting graphs
① Modifying graphs using patterns [3.5, 4.7]
② Graph projection [4.8]
③ Element sharing [4.8]
④ Graph combinators (UNION, INTERSECTION, ...) [4.8]

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: Graph projection

● Deriving identical elements in the projected graph ("sharing")
● Deriving new elements in the projecte graph
● Shared edges always point to the same (shared) endpoints in the projected graph

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: Graph Projection is inverse pattern matching

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: Query composition & Views

① Composable graph procedures [4.3.3-4.3.5]
② Parameters and results [4.3.2, 4.3.4.1]
③ Linear statement composition [3.10.3, 4.3.4.3]
④ Graph views model [3.7]
⑤ Updatable views and graph augmentation
⑥ Provenance tracking

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: Queries are procedures [4.3]

26

● Use the output of one query as input to another to enable abstraction and views
● Both for queries with tabular output and graph output
● Nested queries and procedures [4.10]
● Simple linear composition of tabular output of one query as input to another

[3.10.3]

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: Views [3.7, 4.12]

● Graph elements in views are derived from other graphs (which may again be views)
● Graph elements are "owned" by their base graph or introducing views
● Derivation graph must form a DAG
● Updates reverse transformation

ISO/IEC JTC1/SC32/WG3:BNE-041, Neo4j Query Languages Team, WG3 Meeting, Brisbane, Australia, 2019

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

CREATE QUERY foaf($input SocialGraph) AS {

 FROM $input

 MATCH (a)-[IS FRIEND]-()-[IS FRIEND]-(b)

 CONSTRUCT (a)-[IS FOAF]-(b)

}

FROM foaf(facebook) MATCH ...

FROM foaf(twitter) MATCH ...

BNE-023: Views [3.7, 4.12]

● A (graph) view is a query† that returns a graph
○ GQL could also support tabular views

● A view can be used as if it was a graph
○ a tabular view can be used as if it was a table

● Queries (incl. views) can be parameterized
○ allowing the application of the same

transformation over compatible graphs

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

Views behave as if conceptually computed on the fly, including shared graph elements but
what if one wants to explicitly express persistently shared graph elements?

Graph augmentation: Allow explicit persistent layered graphs with derived graph elements

Many open questions (e.g. deletion semantics, security model implications)

BNE-023: Graph Augmentation

"GQL Scope and Features (incl. GQL Update)", S. Plantikow for Neo4j Query Languages @ LDBC TUC Meeting Amsterdam, 2019

BNE-023: GQL Scope and Features

A new and independent

Declarative,

Composable,

Compatible,

Modern,

Intuitive

Property Graph Query Language

http://tiny.cc/gql-scope-and-features
http://tiny.cc/gql-scope-digest

http://tiny.cc/gql-scope-and-features
http://tiny.cc/gql-scope-digest

