
Property Graph Schema
Working Group

Juan Sequeda (data.world) on behalf of the entire
Working Group

Background
● LDBC Graph Query Language Taskforce
● Industry and Academic unite: G-CORE (SIGMOD2018)
● GQL Manifesto
● Property Graphs need a schema (Position Statement at W3C Graph Data

Workshop)

(In)formal Property Graph Schema Working Group
● Started Q4 2018
● Informal group, following the Existing Languages Group
● Imagine if you get a group of smart folks from industry and academia to work

together and come up with an ideal schema for property graphs?

● Goal: Provide a recommendation to the GQL standards committee on what
a core property graph schema should be: GS-CORE

● We are NOT making a standard.

What have we done up to now?
● Q4 2018 - Q1 2019

○ Academic Survey
○ Industry Survey
○ Use Case and Requirements

● Position statement presented at the W3C Graph Workshop March 2019
● F2F meeting in Berlin March 2019

○ Came up with the first list of requirements that should be considered to be part of gs-core
○ Discussed the UC&R

● Q2 2019
○ Discussion on defining the property graph model
○ Multiple graphs

F2F Meeting Yesterday (July 4)
Came to an agreement of the list of the type of features that should be in gs-core!

GS-CORE:

● Defining Nodes and Edges with Labels and Types, and Properties
● Mandatory Properties
● Local Key Constraints for Vertices
● Local Key Constraints for Edges
● Inheritance
● Property Types

The Property Graph Model

Overlapping graphs within a database

Provisional formalisation of the Berlin model

Amsterdam Face-to-Face Meeting

2 / 18

The Property Graph Model

Overlapping graphs within a database

Provisional formalisation of the Berlin model

Amsterdam Face-to-Face Meeting

3 / 18

Agreed Basic features of the Property Graph model

I Discussion on Basecamp 3
I Main decisions:

I Properties are identified by their name.
I Elements can have zero or more labels.
I No meta-properties.
I No edges between edges or properties.
I Undirected edges.

4 / 18

Postulated sets for Property Graphs

I A countably infinite set L of element labels.

I A countably infinite set K of property names.

I A countably infinite set V of property values.

I Note: We explicitly allow that the sets L, K and V overlap.

I A countably infinite set of abstract identifiers I partitioned
into vertex identifiers Iv and edge identifiers Ie.

5 / 18

Property graphs

Definition (Property graph)

A property graph is defined as (V ,E ,�, ⇢,⇡) where

I V ✓ Iv is a set of vertex identifiers,

I E ✓ Ie is a set of edge identifiers partitioned into a set of
directed-edge identifiers Ed and undirected-edge identifiers Eu,

I � : (V [E) ! 2L is a total function that maps all vertex
identifiers and edge identifiers to a finite set of labels,

I ⇢ is the union of ⇢d and ⇢u where
I ⇢d : E d ! (V ⇥ V) is a total function that maps directed-edge

identifiers to a pair of vertex identifiers and
I ⇢u : E u ! (

�V
2

�
[
�V
1

�
) is a total function that maps

undirected-edge identifiers to a set of one or two vertex
identifiers,

I ⇡ : (V [E) ! (K 7! V), a total function that maps
edge/vertex identifiers to a finite partial function that maps
property names to property values.

6 / 18

The Property Graph Model

Overlapping graphs within a database

Provisional formalisation of the Berlin model

Amsterdam Face-to-Face Meeting

7 / 18

The discussion concerning overlap

I Central question:
I Can element identifiers appear in multiple graphs within the

same database?

I Subquestions:
I What does this mean for the user?

I The same business entity? A derived business entity?

I How does this come about?

I Views? Updates? Transformations? Versions?

I Which consistency rules?

I Edge identifiers must in all graphs have same associated head

and tail?

I Element identifiers must in all graphs have the same

properties? Or only be consistent?

Unresolved

8 / 18

The Property Graph Model

Overlapping graphs within a database

Provisional formalisation of the Berlin model

Amsterdam Face-to-Face Meeting

9 / 18

Additional postulated sets for graph schemas

I A set Tp of property type names.

I For each property type name ⌧ 2 Tp there is a set [[⌧]] ✓ V
containing all primitive values of type ⌧ .

10 / 18

Core graph schemas

Definition (Core schema)

We define a core schema as (Ls, ⇢s,⇡s) where

I Ls ✓ L is a finite set of labels that is partitioned into L
v
s , the

set of vertex labels, Lds , the set of directed-edge labels and L
u
s ,

the set of undirected-edge labels;
I ⇢s is the union of ⇢ds and ⇢us where

I ⇢ds : L
d
s ! (Lvs ⇥ L

v
s) is a total function that maps all

directed-edge labels to an ordered pair of vertex labels, and
I ⇢us : L

u
s ! (

�Lv
s
1

�
[
�Lv

s
2

�
) is a total function that maps all

undirected-edge labels to a set of one or two vertex labels,

I ⇡s : Ls ! (K 7! Tp) is a total function that maps element
labels to a finite partial function that maps property names to
property types.

11 / 18

The semantics of core graph schemas
Introduction

I We define the semantics by defining when a property graph
satisfies a core schema.

I We distinguish a weaker and a stronger notion of satisfaction
that correspond to the schema being open and closed:
I Weak satisfaction: All elements and properties must satisfy

the typing requirements that follow from their labels and
names, but it is allowed that
(1) some vertices and edges are without labels,

(2) the graph uses labels that are not mentioned by the schema

and

(3) some elements have properties that are not justified by any of

their labels.

I Strong satisfaction Here (1), (2) and (3) are not allowed to
occur.

12 / 18

The semantics of core graph schemas
Weak satisfaction

Notation: For an ordered pair y we let y .1 and y .2 denote the
first and second component of y .

Definition (Weak satisfaction)

We say that a property graph G = (V ,E ,�, ⇢,⇡) weakly satisfies

core schema S = (Ls, ⇢s,⇡s) if all the following hold.

1. For every element a 2 V [E , label ` 2 �(a), pair
(p,w) 2 ⇡(a) and pair (p, ⌧) 2 ⇡s(`), it holds that w 2 [[⌧]].

2. For every edge e 2 E and label ` 2 �(e) such that ` 2 L
d
s ,

I e 2 E
d and

I ⇢ds (`).1 2 �(⇢d(e).1) and ⇢ds (`).2 2 �(⇢d(e).2).

3. For every edge e 2 E and label ` 2 �(e) such that ` 2 L
u
s ,

I e 2 E
u and

I ⇢us (`) ✓ �(v) for all v 2 ⇢u(e).

13 / 18

The semantics of core graph schemas
Strong satisfaction

Definition (Strong satisfaction)

We say that a property graph G = (V ,E ,�, ⇢,⇡) strongly satisfies

a core schema S = (Ls, ⇢s,⇡s) if all the following hold.

1. The graph G weakly satisfies the schema S .

2. For every element a 2 V [E it holds that �(a) 6= ; and
�(a) ✓ Ls.

3. For every element a 2 V [E and pair (p,w) 2 ⇡(a) there is a
pair (p, ⌧) 2 ⇡s(`) for some label ` 2 �(a).

14 / 18

The Property Graph Model

Overlapping graphs within a database

Provisional formalisation of the Berlin model

Amsterdam Face-to-Face Meeting

15 / 18

Amsterdam Face-to-Face Meeting

I Current proposal for formal model was presented.
I Plus list of candidate schema constraints

I Votes were taken on which types of constraints should be
considered first.

I It was suggested that schemas should have a graphical
representation.

I Neo’s alternative type-based proposal was presented.
I It addresses a lack in expressive power concerning unlabelled

elements and typing based on properties rather than labels.

I The current proposal will be extended by
I adding type names and allowing them in all places where labels

are expected
I but without explicitly labelling elements with them.

16 / 18

Next steps

I Producing a summary for coming WG3 meeting on Sept. 23.
I Three groups are to be formed for the following topics:

1. Adding type names and defining a graphical representation for
schemas.

2. Mandatory property constraints and key constraints.
3. Inheritance.

Note: property types are assumed to touch all groups.

17 / 18

Thank You

18 / 18

	Outline
	The Property Graph Model
	Overlapping graphs within a database
	Provisional formalisation of the Berlin model
	Amsterdam Face-to-Face Meeting

