

Semantic Publishing Benchmark

London November 19th, 2013

Motivation

 Use semantic technology to automate several steps in the publication pipeline

Semantical annotation of content

 Media sectors using semantic technologies : news, finance, scientific publications

Use-case

- Scenario involves a media organization that maintains a catalogue of meta-data for its :
 - Journalistic assets (articles, photos, videos, papers, books, etc.)
- A piece of meta-data is called Creative Work
- Semantic Publishing Benchmark simulates :
 - Consumption of RDF metadata (Creative Works)
 - Management of RDF metadata (Creative Works)

Benchmark Design - Requirements

Storing and processing RDF data

 Loading data in RDF serialization formats : Turtle, N-Quads

Storing and isolating data in separate RDF graphs

Benchmark Design – Requirements 2

- Supporting following SPARQL standards : SPARQL 1.1 Query, SPARQL 1.1 Update, SPARQL 1.1 Protocol
- Support for RDFS, in order to return correct results
- Support for the RL profile of Web Ontology Language (OWL2 RL) in order to pass the conformance test suite

Benchmark Design – operational phases

- Initial loading of Ontologies and reference datasets
- Generation of Creative Works
- Loading of Creative Works
- Warm-up
- Ben<mark>chm</mark>ark
- Conformance tests (OWL2 RL)

Benchmark Configuration

- Number of editorial / aggregation agents
- Size of generated dataset (triples)
- Location of SPARQL endpoint i.e. URI
- Time length of Warm-up and Benchmark phases
- Each operational phase can be enabled or disabled

Benchmark Configuration 2

- Query-mix
 - Distribution of editorial operations
 - Distribution of aggregate operations
- Data Generator
 - Allocation of about / mentions tags
 - Popularity of an entity

Input Data - Ontologies

• Ontologies – provided by the BBC

- Core ontologies : e.g. core concepts (things, places, events), persons, provenance, creative work, etc.
- Domain ontologies : e.g. sports, news
- Conformance ontologies : a part of the conformance test

Input Data – Reference Datasets

 Collection of entities describing various domains

- Sports domain : football teams, formula1 teams
- Politics : persons
- Geonames : geo-locations

Data Generation – The Creative Work

- The meta-data about entities from reference data sets
- Has properties :
 - Title, short title, description, thumbnail
 - Creation date / modification date
 - Primary topic
 - Audience type
 - About / Mentions

The Workloads

 Simultaneous execution of editorial and aggregation agents

- Editorial agents simulate editorial work performed by journalists :
 - Insert
 - Update
 - Delete

The Workloads 2

- Aggregation agents simulate retrieval operations performed by end-users by executing :
 - Aggregation queries
 - Search queries
 - Geo-spatial, Full-text search queries
 - Drill-down queries (geo-locations, time-range)

Results Metrics

- Operations rate
 - Editorial operations per second
 - Aggregate operations per second
- Verbose mode
 - MIN, MAX, AVG execution time for each query
- All executed queries and results a saved to log files

Experimental Results

- Used different dataset sizes : 10M, 50M, 100M triples
- Benchmarked: OWLIM 5.4, Virtuoso7 OpenSrc
- Attempts to benchmark StarDog and BigData are in progress
- Benchmark configuration :
 - editorial agents : 2, aggregation agents : 14
 - warm-up : 60 s, benchmark : 300 s

Experimental Results Sample

Seconds run : 300 Editorial:

2 agents

1965 inserts (avg : 215 ms, min : 79 ms, max : 1462 ms)258 updates(avg : 437 ms, min : 248 ms, max : 1370 ms)242 deletes (avg : 234 ms, min : 95 ms, max : 1420 ms)

2465 operations (1965 CW Inserts (0 failed), 258 CW Updates (0 failed), 242 CW Deletions (0 failed))

8.2167 average operations per second

Experimental Results Sample

Aggregation:

14 agents

<mark>235</mark> 1	Q1	queries (avg : 700	m
<mark>240</mark> 0	Q2	queries (avg : 7	m
<mark>2358</mark>	Q3	queries (avg : 252	m
2357	Q4	queries (avg : 101	m
2292	Q 5	queries (avg : 57	m
2381	Q6	queries (avg : 38	m
2341	Q7	queries (avg : 601	m

ms, min : 5 ms, min : 3 ms, min : 5 ms, min : 2 ms, min : 3 ms, min : 19 ms, min : 5

ms, max : 2778	ms, 0 failed)
ms, max : 1065	ms, 0 failed)
ms, max : 1618	ms, 0 failed)
ms, max : 1436	ms, 0 failed)
ms, max : 1345	ms, 0 failed)
ms, max : 1260	m <mark>s, 0 failed</mark>)
ms, max : 2626	ms <mark>, 0 failed</mark>)

16480 total retrieval queries (0 failed) 54.9333 average queries per second

Experimental Results Summary

 Results for OWLIM and Virtuoso (reduced query-mix)

Dataset Size	OWLIM 5.4		Virtuoso 7 OpenSource	
	Ed. ops	Aggr. ops	Ed. ops	Aggr. ops
10 M	9.1	68.8	142.7	? 2.9
5 <mark>0 M</mark>	8.1	52.9	140.7	17.8
100 <mark>M</mark>	5.8	39.2	? 3.55	? 0.5

- Disclaimers: initial results before calibration
 - Virtuoso's geo-spatial indices not used when measuring the results above

Future Work

 Further fine-tuning of aggregate query-mix is necessary

Validation of results

 Data generation – finding a balance between the amount of generated creative works and the reference data size

Questions

