## Geographica: Benchmarking Geospatial RDF Stores

#### Kostis Kyzirakos

Database Architectures group, CWI

#### Joint work with George Garbis and Manolis Koubarakis



University of Athens School of Science Faculty of Informatics and Telecommunications

LDBC TUC, London November 19, 2013

## Linked Open Data Cloud



## Linked Open Data Cloud



| System                             | Language                | Index                                 | Geometries           | CRS support | Geospatial<br>Function<br>Support                                  |  |
|------------------------------------|-------------------------|---------------------------------------|----------------------|-------------|--------------------------------------------------------------------|--|
| Strabon                            | stSPARQL/<br>GeoSPARQL* | R-tree-over-<br>GiST                  | WKT / GML<br>support | Yes         | <ul><li>OGC-SFA</li><li>Egenhofer</li><li>RCC-8</li></ul>          |  |
| Parliament                         | GeoSPARQL*              | R-Tree                                | WKT / GML<br>support | Yes         | •OGC-SFA<br>•Egenhofer<br>•RCC-8                                   |  |
| Oracle 12c                         | GeoSPARQL               | R-Tree,<br>Quadtree                   | WKT / GML<br>support | Yes         | •OGC-SFA<br>•Egenhofer<br>•RCC-8                                   |  |
| Brodt et al.<br>(RDF-3X extension) | SPARQL                  | R-Tree                                | WKT support          | No          | OGC-SFA                                                            |  |
| Perry                              | SPARQL-ST               | R-Tree                                | GeoRSS GML           | Yes         | RCC-8                                                              |  |
| AllegroGraph                       | Extended<br>SPARQL      | Distribution<br>sweeping<br>technique | 2D point geometries  | Partial     | <ul><li>Buffer</li><li>Bounding Box</li><li>Distance</li></ul>     |  |
| OWLIM                              | Extended<br>SPARQL      | Custom                                | 2D point geometries  | No          | <ul><li>Point-in-polygon</li><li>Buffer</li><li>Distance</li></ul> |  |
| Virtuoso                           | SPARQL                  | R-Tree                                | 2D point geometries  | Yes         | SQL/MM (subset)                                                    |  |
| uSeekM                             | GeoSPARQL               | R-tree-over<br>GiST                   | WKT support          | No          | OGC-SFA                                                            |  |

## **The Benchmark Geographica**

Aim: measure the performance of today's geospatial RDF stores

 Γεωγραφικά: 17-volume geographical encyclopedia by Στράβων (AD 17)



& diagentia, ese etian veterenn codicum, emendinit, se Communicum dialtzani, Xi ferensia curi securalari exormatic qua mane printum prodesti. Administrati etta (1911) Al 1912 ANDRI e degaltari Letres Actes 7 ma bleveri : Produktor engenes. Attestes 7 ma bleveri : Produktor prezi to anales Gregophan Obramanad.

Luterin Panfiorum, Typis Regiis, M. DCXX CPM PAINTAZOTO REGIS CHRESTIANISSING

# Basic GIS Concepts and terminology

**Theme**: the information corresponding to a particular domain that we want to model. A *theme* is a set of geographic features.

**Example**: the countries of Europe



# Basic GIS Concepts and terminology (cont'd)

**Geographic feature** or **geographic object**: a domain entity that can have various **attributes** that describe **spatial** and **non-spatial** characteristics.

**Example**: the country Greece with attributes

- Population
- Capital
- Geographical area
- Coastline
- Bordering countries



## The Benchmark Geographica

- Organized around two workloads:
  - Real-world workload:
    - Based on existing linked geospatial datasets and known application scenarios
  - Synthetic workload:
    - Measure performance in a controlled environment where we can play around with properties of the data and the queries.

## **Real-World Workload**

- Datasets: Real-world datasets for the geographic area of Greece playing an important role in the LOD cloud or having complex geometries
  - LinkedGeoData (LGD) for rivers and roads in Greece
  - GeoNames for Greece
  - DBpedia for Greece
  - Greek Administrative Geography (GAG)
  - CORINE land cover (CLC) for Greece
  - Hotspots

#### Real-World Workload Datasets

| Datasets           | Size  | Triples | # of<br>Points | # of Lines<br>(max/min/avg<br>points/line) | # of Polygons<br>(max/min/avg<br>points/polygon) |
|--------------------|-------|---------|----------------|--------------------------------------------|--------------------------------------------------|
| GAG                | 33MB  | 4K      | -              | -                                          | 325<br>(15K/4/400)                               |
| CLC                | 401MB | 630K    | -              | -                                          | 45K<br>(5K/4/140)                                |
| LGD<br>(only ways) | 29MB  | 150K    | -              | 12K (1.6K/2/21)                            | -                                                |
| GeoNames           | 45MB  | 400K    | 22K            | -                                          | -                                                |
| DBpedia            | 89MB  | 430K    | 8K             | -                                          | -                                                |
| Hotspots           | 90MB  | 450K    | -              | -                                          | 37K<br>(4/4/4)                                   |

### Real-World Workload Parts

- For this workload, Geographica has two parts:
  - Micro part: Tests primitive spatial functions offered by geospatial RDF stores
  - Macro part: Simulates some typical application scenarios

#### Real-World Workload Micro Benchmark (1/2)

- 29 queries that consist of one or two triple patterns and a spatial function.
- Functions included:
  - Spatial analysis: boundary, envelope, convex hull, buffer, area
  - Topological: equals, intersects, overlaps, crosses, within, distance, disjoint
    - As used in spatial selections and spatial joins
  - Spatial aggregates: extent, union
- Functions are applied to many representative types of geometries.

#### **Example – spatial selection**

Find all points in Geonames that are contained in a given polygon.

```
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
```

```
SELECT ?s1 ?o1
WHERE {
GRAPH <http://geographica.di.uoa.gr/dataset/geonames>
{ ?s1 <http://www.geonames.org/ontology#asWKT> ?o1 }
```

```
FILTER(geof:sfWithin(?o1,"POLYGON((...))"^^geo:wktLiteral>)).
}
```

#### Example – spatial join

Find all pairs of GAG polygons that overlap

PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

```
SELECT ?s1 ?s2
WHERE {
GRAPH <http://geographica.di.uoa.gr/dataset/gag>
{?s1 <http://geo.linkedopendata.gr/gag/ontology/asWKT> ?o1}
```

```
GRAPH <http://geographica.di.uoa.gr/dataset/clc>
{?s2 <http://geo.linkedopendata.gr/corine/ontology#asWKT> ?o2}
```

```
FILTER( geof:sfOverlaps(?o1, ?o2) )
}
```

#### Real-World Workload Macro part

- Reverse Geocoding: Attribute a street address and place to a given point.
  - Queries:
    - Find the closest populated place (from GeoNames)
    - Find the closest street (from LGD)



#### Real-World Workload Macro part

#### Web Map Search and Browsing

- Queries:
  - Find the co-ordinates of a given POI based on thematic criteria (from GeoNames)
  - Find roads in a given bounding box around these coordinates (from LGD)
  - Find other POI in a given bounding box around these co-ordinates (from LGD)



#### Real-World Workload Macro part

Rapid Mapping for Fire Monitoring: representative of typical rapid mapping tasks carried out by space agencies in the case of an emergency



## Synthetic Workload

Goal: Evaluate performance in a controlled environment with great precision over the thematic and spatial selectivity of queries.

- Thematic selectivity: the fraction of the total features of a dataset that satisfy the non-spatial part of the query
- Spatial selectivity: the fraction of the total features of a dataset for which the tested topological relation holds

## Synthetic Workload

Generator: As in VESPA the produced datasets model features on a map:

- States in a country  $\left(\left(\frac{n}{3}\right)^2\right)$
- Land ownership (n<sup>2</sup>)
- Roads (n)
- POI (*n*<sup>2</sup>)



#### Synthetic Workload Ontology

- Based roughly on the ontology of OpenStreetMap and the GeoSPARQL vocabulary
- Tagging each feature with a key enables us to select a known fraction of features in a uniform



#### Synthetic Workload Query templates (1/2)

```
    Ouery template for spatial selections
SELECT ?s
WHERE {
?s ns:hasGeometry ?g .
?s c:hasTag ?tag .
?g ns:asWKT ?wkt .
?tag ns:hasKey "THEMA" .
```

```
FILTER(FUNCTION(?wkt, "GEOM"))
```

- Parameters:
  - ns: specifies the kind of feature (and geometry type) examined
  - THEMA: defines the thematic selectivity of the query using another parameter k
  - FUNCTION: specifies the topological function examined
  - GEOM: specifies a rectangle that controls the spatial selectivity of the query

#### Synthetic Workload Query templates (2/2)

 Query template for spatial joins SELECT ?s1 ?s2 WHERE {
 ?s1 ns1:hasGeometry ?g1.
 ?s1 c:hasTag ?tag1 .
 ?g1 ns:asWKT ?wkt1 .
 ?tag1 ns:hasKey "THEMA" .

```
?s2 ns2:hasGeometry ?g2.
?s2 c:hasTag ?tag2 .
?g2 ns2:asWKT ?wkt2 .
?tag2 ns2:hasKey "THEMA!"
```

FILTER(FUNCTION(?wkt1, ?wkt2))

### Findings

#### Current implementations:

- Always start by evaluating the spatial predicate
- Always evaluate spatial predicate at the end
- Take into account both the spatial and thematic selectivity of a query

#### **Results** Synthetic Workload (Spatial Selections)



#### **Future Work**

- Produce a larger dataset for the real-world workload.
- More real-world scenarios can be added.
- Extend the synthetic generator to produce **non-uniform** datasets.
- Extend the benchmark to include
  - Directional queries
  - Nearest neighbour and reverse nearest neighbour queries
  - Multi-way spatial joins
  - Contribute to standardization efforts.
    - Develop different profiles of a geospatial benchmark, e.g., point profile.
- Next target: spatiotemporal RDF stores





## **Questions?**

رتي. http://geographica.di.uoa.gr