

Semantic Publishing Benchmark Task

Force Report

Coordinator: Barry Bishop

With contributions from: Venelin Kotsev, Vladimir Alexiev, Atanas Kiryakov

Abstract

The Semantic Publishing Benchmark (SPB) is a LDBC benchmark for RDF database engines inspired by the

Media/Publishing industry, particularly by the BBC’s Dynamic Semantic Publishing approach. As of

September 2013 the benchmark has reached the state of draft publication. This report describes progress

made by the Semantic Publishing task-force leading up to the delivery and publication of an LDBC

benchmark. Task-force activities progress in parallel to work package tasks, combining the knowledge,

research results and knowledge gained into tangible benchmark deliverables.

The application scenario behind the benchmark considers a media or a publishing organisation that deals

with large volume of streaming content, namely articles and other “creative works” and “media assets”. This

content is enriched with metadata that describes it and links it to reference knowledge – taxonomies and

databases that include relevant concepts, entities and factual information. This metadata allows publishers to

efficiently retrieve relevant content, according to their various business models.

From a technology standpoint, the benchmark assumes that an RDF database is used to store both the

reference knowledge and the metadata. The main interactions with the repository are (i) updates, that add

new metadata or alter the repository, and (ii) aggregation queries, that retrieve content according to various

criteria. The engine should handle instantly large number of updates in parallel with massive amount of

aggregation queries.

A fully developed benchmark will include: source code, binary software, data-sets, queries, ontologies and

documentation (purpose, choke point descriptions, execution instructions, auditing/disclosure/publishing

rules). The complete set of objectives for a particular benchmark are likely to change over time as new,

relevant problems are uncovered. This report describes not just the current status of the benchmark, but also

justifications for its current/final form, for example when feedback from industry, academia and leading

experts has been taken into account.

The outstanding tasks required to finish the benchmark are enumerated and a practical plan to see them

completed is provided. Finally, this report presents initial results from a “calibration and tuning”

experiments, using the current version of the benchmark against OWLIM and Virtuoso – those allow one to

observe the impact of different reasoning approach and to get feeling about the complexity profile of the

benchmark.

LDBC SPB Task Force Report

 Page 2 of 37

Executive summary

The Semantic Publishing Benchmark (SPB) is a LDBC benchmark for RDF database engines inspired by the

Media/Publishing industry, particularly by the BBC’s Dynamic Semantic Publishing approach. As of

September 2013 the benchmark has reached the state of draft publication.

The application scenario considers a media or a publishing organisation that deals with large volume of

streaming content, namely articles and other “creative works” and “media assets”. This content is enriched

with metadata that describes it and links it to reference knowledge – taxonomies and databases that include

relevant concepts, entities and factual information. This metadata allows publishers to efficiently retrieve

relevant content, according to their various business models. For instance, some, like the BBC, can use it to

maintain rich and interactive web-presence for their content, while others, e.g. news agencies, would be able

to provide better defined content feeds, etc.

From a technology standpoint, the benchmark assumes that an RDF database is used to store both the

reference knowledge (mostly static) and the metadata (that grows constantly, to stay in synch with the inflow

of streaming content). The main interactions with the repository are (i) updates, that add new metadata or

alter the reference knowledge, and (ii) aggregation queries, that retrieve content according to various

criteria. The engine should handle instantly large number of updates in parallel with massive amount of

aggregation queries. Imagine that each request for a topic page on publisher’s website requires several

SPARQL queries to retrieve relevant content. Those queries should all be handled reliably within sub-second

response time. And their results should reflect new content that came through the pipeline (along with its

metadata) just few seconds ago.

The SPB benchmark provides the following business value:

 Media organisations that intend to adopt semantic publishing to foster their business, can use the

benchmark as a simple, off-the-shelf means to evaluate suitable RDF database engines for

integration into their publishing/journalist pipelines and work flows;

 Vendors of RDF data management software will be able to use the benchmark to find the relevant

choke points in their products and provide a research focus for improvement. Vendors will also be

able to use the benchmark results to market their products.

The SPB benchmark includes: ontologies, fixed data-sets, source code and built binary software, data-set

generator, queries and documentation. The benchmark is flexible enough such that work flows can be

tailored for many different use-cases. This allows media organisations to configure the benchmark to suit

their own requirements and so quickly and easily run their own internal evaluation of products.

This Introduction section of the report provides the following information:

 Motivation: describes BBC's Dynamic Semantic Publishing platform that spurred industrial interest

in semantic;

 Relevance to industry: describes other media/publishing organizations that have shown growing

interest in semantic technologies;

 Processes: describes the basic use cases covered by the benchmark;

 Output values: describes the resulting values provided by the benchmark.

The Development section describes the major contributions that media companies (in particular the BBC)

have made to the benchmark formation. It also provides discussion on expected changes of scope: the set of

objectives for the benchmark may change over time as new relevant problems are uncovered. This section

describes possible "variation points" considered by the benchmark's Task Force and justifications for its

current form. Variation points include: Ranking, Full-text search (FTS), Geo-spatial queries, Enterprise

Features, Reasoning, Drill-down queries.

The Formal definition section provides the benchmark specification as follows:

 Requirements: basic requirements that must be fulfilled by a repository attempting to implement

the benchmark;

LDBC SPB Task Force Report

 Page 3 of 37

 Input data: describes the ontologies and reference datasets included in the benchmark.

o Ontologies include core (creative works, company, core concepts, CMS, person, provenance,

tagging); domain (news, sport, educational curriculum); and conformance (used for validation);

o Reference datasets include English, Scottish and International football competitions and teams,

Formula 1 competitions and teams, People in the UK Parliament, and UK Places from

GeoNames.

 Data Generation: describes the processing and configuration parameters of the data generator that

produces the main business data used by the benchmark (creative works).

 Workloads: describes the simulated benchmark workload that comprises simultaneous execution of

editorial and aggregation query streams:

o Editorial agents simulate the editorial work performed by journalists, editors or automated text

annotation engines. This includes insert, and delete operations;

o Aggregation agents simulate the retrieval operations performed by journalists, end-users or

automated search engines by executing a mix of aggregation queries. These queries include

Aggregation, Search, Statistics and Analytical (drill-down).

 Choke Points: details are included in LDBC report D4.4.1;

 Instructions for parametrising, customising and executing the benchmark:

 Operational phases: describes the steps that the benchmark executes in order: loadOntologies,

loadDatasets, generateCreativeWorks, loadCreativeWorks, warmUp, benchmark,

checkConformance, cleanup;

 Configuration: describes over 15 parameters in test.properties and definitions.properties that

drive the benchmark execution;

 Fine-tuning: describes about 10 parameters that modify the characteristics of the generated data

set;

 Requirements and execution of the benchmark: describes the required platform and instructions

for running the benchmark;

 Results gathering: describes the benchmark results (about 5 numbers) and where log files are

written.

 Disclosure items: describes the files and parameters that must be documented together with

benchmark results;

 Auditing rules: the things that an auditor must check before a benchmark can publish its results.

The Current status section describes remaining items: features that were discussed for implementation but

are not yet implemented. This includes Full-Text Search and Faceted Search related query loads. It also

comments unclear behaviours: describes decisions that do not have a strong justification or have a viable

alternative decision. These involve mostly the distribution of various data items, e.g. GeoNames locations

related to the creative works. We have published results of the benchmark on two of the leading RDF

engines - OWLIM and Virtuoso.

LDBC SPB Task Force Report

 Page 4 of 37

Table of Contents

 Introduction .. 7
 Motivation for the benchmark ... 7
 Relevance to industry .. 9
 Processes ... 10
 Result Metrics ... 11

 Development .. 13
 Participation of industry and academia ... 13
 Changes of scope .. 13

 Formal definition .. 16
 Requirements .. 16
 Base level requirements ... 16

 Input data .. 16
 Data generation ... 17
 Workloads ... 19
 Choke points ... 20
 Instructions .. 27
 Description of operational phases .. 27
 Configuration ... 27
 Fine-tuning ... 29
 Requirements to execute the benchmark ... 29
 Execution of the benchmark .. 29
 Results gathering ... 29

 Disclosure items .. 30
 Auditing rules .. 31
 Publication rules .. 31

 Status of the benchmark ... 32
 Remaining items ... 32
 Unclear behaviours and/or risks .. 32
 Future work ... 33
 Implementation plan for addressing remaining items ... 33
 Publication strategy ... 33
 Results ... 33
 Conclusion .. 35

LDBC SPB Task Force Report

 Page 5 of 37

List of figures

Figure 1: BBC Olympics 2012 Aggregation Page about Bulgaria .. 7

Figure 2: BBC Ontology-aware Text Analytics .. 8

Figure 3: BBC Graffitti: Manual Curation of Semantic Annotation ... 8

LDBC SPB Task Force Report

 Page 6 of 37

List of tables

Table 1 : Example of editorial operations rate for various dataset sizes...13

Table 2 : Features of a publishing benchmark..15

Table 3 : Required behaviours/functionalities required from a RDF database...17

Table 4 : Distribution of about and mentions in creative works, analysed from ‘live’ data.............................19

Table 5 : Hardware configuration used for benchmark results...34

Table 6 : Benchmark configuration properties..35

Table 7 : Benchmark results for different dataset sizes..35

Table 8 : Query performances, OWLIM...36

LDBC SPB Task Force Report

 Page 7 of 37

 Introduction

 Motivation for the benchmark

The Semantic Publishing Benchmark simulates the management and consumption of RDF metadata that

describes media assets, or creative works. The scenario involved is a media organization that maintains RDF

descriptions of its catalogue of creative works: journalistic assets (articles, photos, videos), papers, books,

movies, etc. For this benchmark very useful input is being provided by actual media organizations which

make heavy use of RDF (see next section). The benchmark is designed to reflect a scenario where a large

number of aggregation agents provide the heavy query workload, while at the same time a steady stream of

creative work description management operations are in progress. This benchmark targets RDF database

systems, which support at least basic forms of semantic inference.

The inspiration for this benchmark originates in the BBC’s development of the “dynamic semantic

publishing” (DSP) concept. BBC's deployment of DSP for the World Cup 2010 was one of the first large-

scale deployments of semantic technology. This was followed by all of the BBC Sports web site in 2011,

culminating in the London Olympics 2012. The deployment of DSP proved to be a success, and it was

publicised widely including in-depth technical descriptions. This sparked strong interest across the media

and publishing industry worldwide (see next section).

BBC's DSP architecture for the Olympics involved over 10k dynamic aggregations, which are web pages

that aggregate journalistic assets about a particular topic: athletes (>10k), country (>200), discipline (400-

500), venue, team, etc. An example country aggregation page is shown on Figure 1.

Figure 1: BBC Olympics 2012 Aggregation Page about Bulgaria

LDBC SPB Task Force Report

 Page 8 of 37

The semantic tagging of journalistic assets is an effort-intensive process. BBC used a semantic annotation

pipeline that involves both:

 Automatic concept extraction (SPICE) including advanced probabilistic machine learning models to

facilitate disambiguation and increase precision, and dynamic updating of the models based on concepts

stored in the semantic repository. A diagram of the process is shown on Figure 2

Figure 2: BBC Ontology-aware Text Analytics

 Manual editorial processes (Graffiti) that allow a journalist or editor to adjust semantic tags, as shown

on Figure 3.

Figure 3: BBC Graffitti: Manual Curation of Semantic Annotation

LDBC SPB Task Force Report

 Page 9 of 37

 Semantic reasoning to infer more tags from the tags created by semantic annotation. E.g. if the

knowledge base knows the schedule of a particular sports discipline, then tagging with a particular game

occurrence can infer the discipline, countries, potential athletes appearing in the journalistic item.

A lot more technical details about BBC's architecture can be found in [4].

 Relevance to industry

The technique for using semantic technology to annotate, link and consume media assets was originally

pioneered at the British Broadcasting Corporation (BBC) in London. Being a publicly funded organisation,

the BBC disclosed the technologies they used and have made a concerted effort to raise awareness in the

public of their success with this new approach via blogs [1][2], presentations

[3] and conference appearances

[4].

For other media organisations, the application of semantic technology provides several opportunities.

Firstly, as in the BBC use-case, semantic technology can be used to automate many steps in the publication

pipeline, especially in the areas of enrichment, linking and aggregation. The result is a better product that

provides; a richer end-user experience; that is more dynamic and adaptable; that can adopt and deliver new

content almost immediately; and that requires fewer staff (both journalistic and technical) to support.

Secondly, most media organisations have some kind of archive - in some cases stretching back over a

hundred years. The digital revolution has enabled this content to be preserved, e.g. by scanning the photo

archive and indexing it with the date, caption, owner, etc., however, this small number of attributes does not

make the archive easy to use. In fact, it requires a good deal of manual effort using inaccurate keyword

search to find anything useful. The advent of semantic technology, supplemented by some automated or

semi-automated text analytics process, means that the archive can be ‘semantically annotated’, i.e. concepts

can be identified that are relevant to the asset that are described in one or more ontologies. Using semantic

annotations, media organisation can exploit their archives to: automate the process of finding relevant

content; enrich their existing products; develop new product ranges. In essence, semantic annotation and

search enables media organisations to ‘monetise’ their vast archives.

‘Semantic publishing’ is therefore an attractive paradigm for several media sectors, including: news, finance

and scientific publications. In fact, the metadata becomes a valuable asset in itself, i.e. when scientific

content is annotated to a certain level of detail, the metadata can be mined to find trends, associations,

supporting evidence and even proofs - to the point where the actual content may become less important to

the person or system conducting the search, the value of the metadata is what enables discovery.

Here follow a few examples of large/international media organisations that are known to be exploring

semantic publishing:

 The British Broadcasting Corporation (BBC) are a UK based, publicly funded broadcasting and

media organisation tasked. Its main responsibility is to provide impartial public service broadcasting

in the United Kingdom, the Channel Islands, and the Isle of Man. It is the largest broadcaster in the

world by number of employees, with about 23,000 staff. The BBC originally developed the concept

of “dynamic semantic publishing” when creating the World Cup 2010 website. Since then they have

rolled out this model to the whole of their Sports product and the news team are in an R&D phase. In

order to consolidate the consumption of linked data across all of the BBC products, they are building

a dedicated ‘linked data platform’ that supplies both in-house and external linked data from a single

in-house service. This platform requires an RDF database capable of handling the creation and

management of semantic descriptions (annotations) in real-time, 24 hours per day, for all of their

media assets: from news and sport to science and nature - as well as to provide query-answering

performance to power all of their distribution channels simultaneously (website, mobile, iPlayer,

etc.).

 The UK Press Association (PA) is the national news agency for the UK and Ireland and a leading

multi-media content provider across web, mobile, broadcast and print. For the last 145 years PA has

been providing fast, accurate feeds of text, data, photos and video. Today the business is increasingly

focused on the delivery of complete products for both digital and print clients. PA have developed a

LDBC SPB Task Force Report

 Page 10 of 37

semantic publishing pipeline that is used to improve automation across more than one hundred

online products. PA have an enormous archive of audio, video, images and text that with the help of

text analytics and semantic technology, is being suitably annotated for consumption.

 Euromoney is an international business-to-business publisher focusing on international finance,

macroeconomics, IPOs, bond issuance, M&A deals, banking, capital markets, commodities, foreign

exchange, investments, transaction services, and emerging markets. By semantically annotating

content, they are able to deliver better products through improved search tools made available to

their in-house experts.

 Elsevier is the world’s leading provider of science and health information. Elsevier serves more than

30 million scientists, students and health and information professionals worldwide and partners with

a global community of 7,000 journal editors, 70,000 editorial board members, 300,000 reviewers and

600,000 authors to help customers advance science and health by providing world-class information

and innovative tools that help them make critical decisions, enhance productivity and improve

outcomes. Elsevier’s ‘Smart Content Applications’ initiative will offer better discovery through

semantic search and navigation; better understanding through analysis and visualization; and the

discovery of new knowledge through aggregation and synthesis. The ‘Linked Data Repository’ is a

service platform that utilises a variety of technologies and storage components, where the search

function uses a hybrid SPARQL and full-text search (FTS). The requirement of the platform (and the

RDF store) is that several billions of RDF triples can be bulk loaded, with incremental updates of

several millions. The requirements include: scalability, resilience, update performance, full ACID

compliance, reasoning, and the ability to perform deep analysis of the RDF data.

 Wiley is a global publishing company that specializes in academic publishing and markets its

products to professionals and consumers, students and instructors in higher education, and

researchers and practitioners in scientific, technical, medical, and scholarly fields. The company

produces books, journals, and encyclopedias, in print and electronically, as well as online products

and services, training materials, and educational materials for undergraduate, graduate, and

continuing education students. Wiley has started a strong foray in semantic technologies, including

extensive training of its developers.

 Oxford University Press is a department of the University of Oxford and the largest university press

in the world. It has started exploring semantic publishing, and is experimenting with author

identification based on named entity recognition, paper content summarization and keyword

identification, and other semantic techniques.

For all media organisations that intend to adopt semantic publishing to drive their business, the LDBC

publishing benchmark will provide a simple, off-the-shelf means to evaluate suitable RDF databases for

integration into their publishing/journalist pipelines and workflows. The benchmark is flexible enough such

that workflows can be tailored for many different use-cases. This allows media organisations to configure the

benchmark to suit their own requirements and so quickly and easily run their own internal evaluation of

products.

Vendors of RDF data management software will be able to use the default benchmark to find the relevant

choke points in their products and provide a research focus for improvement. Vendors will also be able to

use the benchmark results to market their products.

 Processes

This benchmark simulates the BBC’s model where the majority of content is consumed by the public via the

Website, iPlayer and mobile devices. However, the model is similar for any high-demand, automated media

delivery platform.

Information being consumed is located in an RDF triple store. The core of the publishing system is an RDF

Database Engine – which is used to store data about various entities. All entities stored in the database

provide information and knowledge about various domains, e.g. politics, sports, etc. Entities are additionally

being annotated, which adds another layer of relation between them, or just an additional information about

LDBC SPB Task Force Report

 Page 11 of 37

them. Annotations can be a simple tag about an entity or a definition of relation between one or group of

entities.

People will ask queries about topics or entities stored in the database, create, update, delete annotations about

those entities. Queries are returning aggregate or concrete results about topics people are interested in. A

constant stream of queries and annotations is sent to the database which is generated by different types of

actors in the publishing system e.g. journalists, editors, end users, text analysis engines (semi- or fully-

automated). Those actors have been modelled in the benchmark by two types of ‘Agents’ :

 Aggregation agents - ask queries about some topic or related topics, process result or refine the

search based on returned result.

 Editorial agents - generate new annotations about existing entities, update or delete existing ones.

Aggregation and Editorial agents are modelling the interactions that all fore-mentioned actors are having

with the publishing system.

The queries vary in complexity. There are simple queries which are asked about a concrete topic and produce

a simple result, whereas complex queries produce an aggregate result based on a combination of several

properties or constraints. Also there are so called ‘drill-down’ or analytical queries which dynamically alter

their criteria based on the returned result.

A required editorial operations rate per second is advisable to be constantly sustained during measurement

the aggregation queries rate. Editorial operations rate should be calculated by using formula:

editorialOperationsRate = log10(dataset size) + 1

Following table (Table 1) shows the minimal editorial operations rate which is to be constantly sustained for

various dataset sizes.

Table 1 : Example of editorial operations rate for various dataset sizes

Dataset size Editorial operations rate per second

1M 7

10M 8

50M 8.7

100M 9

500M 9.6

1B 10

A typical description of the process would be: entities stored in the database will be annotated by journalists

or text analysis engines (represented by the editorial agents). Then queried by end-users, journalists or

automated search engines (represented by the aggregation agents). Also annotations are edited by editors or

journalists after being created (represented by the editorial agents).

 Result Metrics

Result metrics produced by the benchmark describe how fast an RDF database can execute queries (by

simultaneously running aggregation agents) while at the same time requiring simultaneous editorial

operations to be performed (by running editorial agents) having a predefined amount of data stored in it and

utilizing a predefined set of ontologies.

LDBC SPB Task Force Report

 Page 12 of 37

The benchmark is self-contained and requires only the input “dataset size” from which the benchmark

generates all extra necessary data.

The result of the benchmark describes the query (or operation) execution rate per second for each of the

agent types. There are two outputs: the ‘update rate’ and the ‘query rate’ i.e. editorial operations and

aggregation operations.

More detailed information is displayed for each executed query by the aggregation agents and each executed

operation by the editorial agents, e.g.

 total number of executed queries (operations) - each aggregation and editorial agent will report back

the status of execution for queries from the aggregation or editorial query mix

 number of failed queries (operations) - each agent will report back the failure to execute a certain

query

LDBC SPB Task Force Report

 Page 13 of 37

 Development

 Participation of industry and academia

As well as being the inspiration for the LDBC publishing benchmark, the BBC have contributed their data,

ontologies and system descriptions, as well as their effort to help develop the benchmark into its current

form. Representatives from the BBC have joined almost all of the regular task force conference calls, both

TUC face-to-face meetings and have also welcomed LDBC personnel to their premises in London on several

occasions.

The Press Association have also been active, having attended the first TUC meeting and commenting on

various aspects of the benchmark as it has evolved.

Ontoba are a systems integration company based in London and have provided consultancy, system architect

and software development services to a number of UK and non-UK media organisations, including the BBC,

the Press Association, Euromoney amongst others.

Nevertheless, the benchmark is very much based upon the BBC use-case, where the BBC have provided:

 core application ontologies that describe their internal data model, content location, tagging

mechanisms, departments and themes

 domain ontologies for sport, government, people, events

 datasets for UK football competitions, formula 1 racing and UK government officials

Full details of the ontologies and datasets are given in deliverable D2.2.2 Data Generator

The LDBC conformance ontology supplements the BBC ontologies with more complex reasoning constructs

for the dual purpose of:

 testing for consistency according to OWL2-RL rule-based (RDF-based) semantics

 testing for correct OWL2-RL inference

This conformance ontology and subsequent data snippets and SPARQL operations were developed between

Ontotext, FORTH and the BBC.

 Changes of scope

There are many possible features of a publishing benchmark that could be implemented and would have

direct relevance to large media/publishing organisations. However, for simplicity and focus, only the most

important features were prioritised. The remaining features that were left out are described in the following

table (Table 2).

LDBC SPB Task Force Report

 Page 14 of 37

Table 2 : Features of a publishing benchmark

Feature Explanation

Ranking Being graph-oriented, RDF databases often reveal some ability to query the structure of a

graph, e.g. by accessing the number of statements made about each resource and using this to

compute an ‘importance’ factor. When these values are made available at query time then they

provide an additional option for ordering query results.

This kind of feature is very useful for ‘sieving’ a large number of query results to bring the

interesting values earlier in the result processing. However, despite its usefulness, the addition

of a ranking element to the benchmark rapidly became overly complex and contrived. It was

considered a distraction from the main thrust of the use-case.

Full-text

search (FTS)

Some RDF database products offer full-text search, hence an aspect of this could be

interesting for a media/publisher that naturally has a large amount of text to store and process.

One benchmarking challenge for such a feature is that the indexing methods (e.g. stemming

algorithms used) as well as the ranking method, while typically sharing common traits is non-

standard, hence not only would the performance of such system tests vary, but also the content

of their answers.

A genuine FTS benchmark further should besides performance also measure precision and

recall against some ground truth. Despite this being a meaningful activity, it was again

considered distracting from the benchmark scenario. However, some small element remains

with the inclusion of one or more ‘aggregation’ queries that use regular expressions to search

text attributes of creative works. Any RDF database that provides a more efficient mechanism

to search text is able to re-write these queries to make use of any feature they offer.

Geo-spatial Despite a standardisation effort for processing geo-spatial data encoded in RDF, this is far

from complete or well-supported. However, there does exist a W3C ontology for encoding

geo-spatial data using the WGS84 ontology and this was utilised in some of the aggregation

queries using geo-spatial constraints that are easy to capture in the SPARQL query language,

i.e. to search for creative works tagged with a geo-location within a box defined by the

latitude and longitude of its corners. The inclusion of this style of query permits them to be re-

written for those RDF databases that have more efficient methods to apply geo-spatial

constraints to SPARQL queries.

Enterprise

Features

All enterprises are concerned with the resilience and robustness of the data storage platform.

If the database is clustered, it should be able to continue functioning in the event of the loss of

one of its nodes. In this state, it should be able to maintain a degraded, but acceptable level of

performance, even when recovery/synchronisation processes are running.

Day-to-day administration activities should also not unduly affect system performance, e.g.

executing an online backup.

Unfortunately, the scope of enterprise environments and range of administration activities

would justify a suite of benchmarks by itself. It was considered a diversion from the main goal

of the publishing benchmark and was discontinued.

LDBC SPB Task Force Report

 Page 15 of 37

Feature Explanation

Reasoning The ontologies and use-case provided by the BBC require fairly simple reasoning that

does not extend past RDFS and a few OWL primitives.

Since both of these standards have reached ‘recommendation’ status, the task force

considered it appropriate to extend the BBC use-case in order to verify the commonly

used inference primitives, i.e. all of the RDF Schema Vocabulary rules, as well as

majority of the OWL2-RL profile (both inference rules and integrity constraints).

In order to achieve this, a further ontology was added to the input data collection, which

makes use of further OWL language features. Also, a separate suite of test cases was

created that test the more complex inferences and verifies that the constraints hold and

prevent any inconsistencies from being entered into the database. This separate suite of

tests is run once as a set of ‘checkbox’ items. Decision for a separate suite was influenced

by the fact that a heavy inferencing during the benchmark would have a heavy impact on

performance results.

Drill-down

queries

The BBC use-case does not currently have any drill-down or faceted search functionality.

However, this is something that they intend to make available in the near future.
The task force decided that such functionality presents an interesting set of problems for

query-optimizers, so several queries were added to the aggregation workload that simulate

user drill-down into creative works.

LDBC SPB Task Force Report

 Page 16 of 37

 Formal definition

 Requirements

 Base level requirements

The following behaviours/functionalities are required from any RDF database engine in order to

properly execute the LDBC publishing benchmark (see Table 3).

Table 3: Required behaviours/functionalities required from a RDF database

Feature Explanation

RDF The database must be capable of storing and processing data in the Resource Description

Format (RDF) W3C (10 February 2004)

RDF

serialisation

The database under test must be capable of loading RDF data in one of the standard or

recommended formats. When this is not possible directly, a separate (manual) step in the

benchmark process is necessary to use the appropriate loading tool. Load time is NOT

measured as part of this benchmark.

The benchmark driver will use Turtle to load ontologies and N-Quads to load the

generated creative works data.

RDF named

graphs

The database must be capable of storing and isolating separate RDF graphs identified by

name (URI), i.e. the database engine must be a ‘quad-store’.

SPARQL The following SPARQL standards must be supported:

SPARQL 1.1 Query (21 March 2013)

SPARQL 1.1 Update (21 March 2013)

SPARQL 1.1 Protocol (21 March 2013)

RDFS The semantics of the RDF Vocabulary Description Language 1.0 (RDF Schema) (10

February 2004) must be fully supported in order to return the correct results from

queries. These semantics are subsumed by the semantics of OWL2-RL.

OWL The semantics of the RL profile of Web Ontology Language (OWL2) must be supported

in order to pass the conformance test suite.

If the database supports further (non-standard) functionality for processing certain kinds of data or

provides custom techniques for accessing this data (via SPARQL) then the test sponsor would be

allowed to modify certain queries to take advantage of these features, providing that the results of the

query remain unaltered. Databases with the following features are likely to benefit from such

modifications.

 Input data

In order to run the benchmark, the database must be initialized with a set of required input data, which is

used as a foundation for achieving a realistic use-case scenario. Input data falls into two categories:

ontologies and reference datasets.

Ontologies used can be further divided into sub-categories:

 Core ontologies - describe essential data objects and their properties e.g. creative works. Following

is a list of core ontologies: creativework 0.9, company 1.4, coreconcepts 0.6, CMS 1.2, person 0.2,

provenance 1.1, tagging 1.0.

LDBC SPB Task Force Report

 Page 17 of 37

 Full details can be found in Deliverable D2.2.2, 2.1 Semantic Publishing: Ontologies [5]

 Domain ontologies - describe concepts or properties related to a specific domain. Following is a list

of domain ontologies:

 cnews-1.2 - describes the basic concepts that journalists can tag annotations with.

 sport 2.3 - describes sports, competitions, events.

 curriculum 4.0 - describes academic entities.

 Conformance ontologies - added by the LDBC for enriching existing ontologies and used to test for

conformance violations - which is a part of the benchmark - ldbc-conformance.0.3.

Reference Datasets are collections of entities describing various domains e.g. sports, politics, that editorial

agents create annotations about and aggregation agents query. They are snapshots of the real datasets

provided by the BBC. Additionally a Geonames reference dataset has been added for further enriching the

annotations with geo-locations data and allows to performing geo-spatial queries. Following is a list of used

reference datasets:

 english-football-competitions-1: contains entities describing the English football competitions, e.g.

“Premier League”, “League One” etc.

 english-football-teams-2: contains entities describing the English football teams, e.g. “Leicester

City”, “Macclesfield Town”;

 formula1-competitions-8: contains entities describing the Formula 1 competitions, e.g. “British

Grand Prix”, “German Grand Prix”

 formula1-teams-3: contains entities describing the Formula 1 teams, e.g. “Ross County”, “Hamilton”

 scottish-football-competitions-1: contains entities describing the Scottish football competitions;

 scottish-football-teams-2: contains entities describing the Scottish football teams;

 international-football-competitions-3: contains entities describing the International football

competitions;

 international-football-teams-2: contains entities describing the International football teams;

 UK-Parliament-Identifiers-People-7: contains entities describing People in the UK Parliament, e.g.

their names, references to external databases like DBpedia;

 geonames-GB : contains entities describing places, names and their coordinates (lat, long) for Great

Britain. The dataset has been retrieved from the Geonames database. Version of the dataset: May 23

21:12:35 CEST 2011.

 Data generation

Starting point of the current benchmark is a dataset, consisting of ontologies, reference datasets (covered in

section: Input Data) and generated data – a large number of annotations (or descriptions) of media assets that

refer entities found in the reference datasets. All the generated data consists of descriptions of creative work

instances, which refer one or several entities from the reference datasets.

A creative work can be described as a meta-data about a real entity (or entities) that exist in reference

datasets. A creative work can have various properties like: title, description, modification date – which all are

literal values and other properties like: primaryTopicOf, thumbnail, etc. – referring to other resources. A

creative work also has properties: ‘about’ and ‘mentions’ which refer to the entities from reference datasets.

That way a creative work provides meta-data about one or several entities – facts about them and relations.

LDBC SPB Task Force Report

 Page 18 of 37

Main purpose of the data generator is to reproduce the distribution of about and mentions tags which was

analysed and taken from a ‘live’ dataset provided by the BBC. Following Table 4 shows the distribution of

total about and mentions tags found in creative works, also shows their individual distributions.

Table 4 : Distribution of ‘about’ and ‘mentions’ in creative works, analysed from

‘live’ data provided by the BBC

Amount
Distribution of about

and mentions, %

Distribution of

about tags, %

Distribution of

mentions tags, %

1 22.33 % 10.06 % 94.77 %

2 32.67 % 23.13 % 3.82 %

3 24.60 % 30.88 % 0.93%

4 11.63 % 22.78 % 0.31 %

5 3.27 % 10.35 % 0.12 %

6 1.52 % 2.80 % 0.05 %

7 1.00 % 0 % 0 %

8 0.74 % 0 % 0 %

9 0.69 % 0 % 0 %

10 0.47 % 0 % 0 %

First step of data generation process is to identify all instances from different domain ontologies (also

referred to as entities above) that exist in the reference datasets. For more details on the query used, refer to

D 2.2.2 - 2.3 Semantic Publishing: Data Generator [5].

Once identified, they are used for tagging when a creative work is generated. Next step is to create a bias

towards popular entities when tagged. This is achieved by randomly selecting an amount of 5% of all

instances (or entities) to be ‘popular’ instances, and the rest 95% to be ‘regular’. Another allocation is used

which applies the bias towards popular entities by using popular instances for 30% of generated creative

works and ‘regular’ instances for the rest 70%.

Additional properties are added to each creative work, e.g.:

 randomly generated and sized sentences used for the title, shortTitle and description properties;

 randomly generated date-time which is within a range of one year from current date;

 type of creative works is distributed as follows: 45% of creative works will have a type: BlogPost,

35% - NewsItem, 20% - Programme;

 audience type : chosen depending on the type of creative work, e.g. for BlogPost the audience chosen

is: InternationalAudience, for NewsItem – audience chosen is: NationalAudience;

 liveCoverage property: a boolean property whose value is chosen based on the type of the creative

work;

 primaryFormat property: depending on creative work type - TextualFormat, InteractiveFormat,

VideoFormat, AudioFormat;

 thumbnail property: using a randomly generated URI, assuming that thumbnails will be identified by

a Uniform Resource Identifier;

 altText property: a randomly generated text string, used in case a thumbnail cannot be resolved;

LDBC SPB Task Force Report

 Page 19 of 37

 primaryContentOf property: referring to a randomly generated URI of a document, assuming that

such a document hypothetically exists and is identified by a URI.

Each creative work resides in its own context. URI identifier used for each creative work and its context

differ by a single indirection used in that URI. For creative works it is ‘things’ and for its context - ‘context’.

All generated creative works are stored in files with a file format of choice. Available serialization formats

are: TriG, TriX, N-Triples, N-Quads, N3, RDF/XML, RDF/JSON, Turtle. It should be noted that not all of

these serialization formats do have support for contexts so not all of the serialization formats will generate

creative works each residing in its own context.

 Workloads

The workload in the Semantic Publishing Benchmark is created by the simultaneous execution of the

editorial and aggregation agents. Simulating a constant load generated by end-users, journalists, editors,

automated engines, etc.

Editorial agents simulate the editorial work performed by journalists, editors or automated text annotation

engines by executing following operations:

 Insert operations: generate new creative work descriptions (content metadata) following the

distribution rules defined in Data generation section. Each creative work is added to the database in a

single transaction by execution of an insert SPARQL query.

 Update operations: update an existing creative work. Update operation consists of two actions,

executed in one transaction, following the BBC’s use-case for update of creative works. First action

is to delete the context where a creative work description resides along with all its content. Second

action is to insert the same creative work (using its current ID) with all properties – current and

updated ones.

 Delete operations: delete an existing creative work. Delete operation will erase the context where a

creative work resides along with all of its content.

Each editorial agent will execute a mix of editorial operations in a constant loop, until the benchmark run has

finished. Editorial operations executed by an agent are chosen pseudo-randomly following the distribution:

80% INSERT operations, 10% UPDATE operations, 10% DELETE operations.

Important note to add here is on how IDs of new creative works and their contexts are created. Instead of

using a randomly generated Globally Unique Identifier (GUID) which would be otherwise a reasonable

choice, the IDs of creative works are created by incrementally increasing a long number starting from 1. That

way when simulating all editorial operations, there is no need to explicitly have a knowledge of all creative

work IDs stored in the database, but just retrieve the greatest ID stored, and that retrieval is performed just

once – before benchmark phase begins. That approach saves time for retrieval of creative work IDs and is

keeping the complexity of IDs creation low.

Aggregation agents simulate the retrieval operations performed by journalists, end-users or automated search

engines by executing a mix of aggregation queries:

 Aggregation queries: queries that take longer to execute as their purpose is to accumulate a result of

creative works that match certain criteria, e.g. creative works about some topic , or creative works

modified within some time range

 Search queries: those queries execute faster and are searching for creative works that match a

concrete data

 Statistics queries: queries that produce statistics about existing creative works, their distribution, etc.

For example: most popular creative work types, most popular topics creative works are about or

mention, shows the greatest number of mention tags that creative work has

 Analytical queries: so called ‘drill-down’ queries, which would dynamically re-configure their

criteria, based on the result produced in their previous execution. E.g. retrieve all creative works

LDBC SPB Task Force Report

 Page 20 of 37

modified in August 2012. From result pick a creative work and further enhance modification time

criteria by adding a time interval of few hours around its modification time, etc.

Each aggregation agent will execute a mix of the queries described above in a constant loop, until the

benchmark run has finished. Query order for execution is pseudo-randomly chosen following a distribution

per query (defined in the benchmark’s configuration) which limits the execution of the ‘heavy’ aggregation

queries as they would take longer to execute and favours execution of ‘faster to execute’ ones - e.g. search

queries or statistics queries, also analytics queries fall into that group.

Pseudo random allocation of query execution is controlled by an allocations module built-in the benchmark

which after being initialized with corresponding to agent type’s distribution values would produce the next

allocation value used for selecting the next query or operation for execution. Allocations module is using a

built-in random utility which initialized with a seed value guarantees the pseudo randomness of its results.

Thus during each execution of the benchmark same pseudo-random sequence of results will be produced.

The result of workload execution is constantly updated and shown as a benchmark result, updated once per

second. Each update of the benchmark result is adequately showing the current state of each type of agents,

how many queries or operations have been executed, what is the current operations or query execution rate.

Failures to execute an operation or query encountered by each of the agent is registered and shown too.

The number of editorial and aggregation agents that will run can be configured before to running the

benchmark.

For further details on queries descriptions see D2.2.2. - 2.2 Semantic Publishing: Workloads [5]

 Choke points

By using the term “choke points” we mean the technical challenges that each RDF store needs to overcome

in order to satisfy the need for a fast and reliable service using real-world data and real-world queries.

Following is a description of choke points that can be identified in each of the aggregation queries executed

during the benchmark's run:

Identifier query1.txt - Retrieve creative works about thing t (or such that mention thing t)

Description Join ordering based on cardinality evaluation of functional properties:

cwork:dateModified, cwork:dateCreated.

 OPTIONAL and nested OPTIONAL clauses which are treated by the query

optimizer as nested sub-queries (i.e. optimized separately and added to the main

query plan)

Optimisation Optimizer should use an efficient cost evaluation method for choosing the optimal

join tree (among all join trees that the query has)

Optimizer should be able to decide whether to put the OPTIONAL triples on top of

the join tree and delay their execution until the last possible moment

Identifier query2.txt - Retrieve creative works that are about or mention things that have

specific properties

Description Join ordering based on cardinality evaluation of functional properties:

cwork:dateModified, cwork:dateCreated

 OPTIONAL clauses which are treated by the query optimizer as nested sub-

queries (i.e. optimized separately and added to the main query plan)

LDBC SPB Task Force Report

 Page 21 of 37

 FILTER constraint

Optimisation Optimizer should use an efficient cost evaluation method for choosing the optimal

join tree (among all join trees that the query has)

Optimizer should be able to decide whether to put the OPTIONAL triples on top of

the join tree and delay their execution until the last possible moment or consider also

the FILTER condition on variables from the OPTIONAL clause – in which case

putting the OPTIONAL triples on top of the join tree will not be optimal (pushing it

down as much as possible will reduce the amount of intermediate results)

Identifier query3.txt - Retrieve creative works that have been modified in a time range of one

hour

Description full scan query

 FILTER constraint on time interval defining start end end periods

 GROUP BY, ORDER BY

Optimisation Optimizer should be able to decide to use appropriate indexes for achieving optimal

execution time

Optimizer should be able to split the FILTER conditions in conjunction of conditions

and push them down the join tree as much as possible, which will limit the amount of

intermediate results.

Identifier query4.txt - Retrieve the most popular types of creative works, skip the base type

Description full scan query

 FILTER constraint excluding entities of base class from result set

 GROUP BY, ORDER BY

 Optimisation Optimizer should be able to decide to use appropriate indexes for achieving optimal

execution time

Optimizer should be able to push the FILTER condition down the join tree as much as

possible and apply it as soon as variables in it have been bound

Optimizer should not consider the GROUP BY and ORDER BY as important clauses

in cases where all results are counted (COUNT(*))

Identifier query5.txt - Retrieve the N most popular topics that creative works are about

query6.txt - Retrieve the N most popular topic types that creative works are about

query7.txt - Retrieve the N most popular topics that creative works mention

Description full scan query

 GROUP BY, ORDER BY

Optimisation Optimizer should be able to decide to use appropriate indexes for achieving optimal

execution time

LDBC SPB Task Force Report

 Page 22 of 37

Optimizer should not consider the GROUP BY and ORDER BY as important clauses

in cases where all results are counted (COUNT(*))

Identifier query8.txt - Retrieve the N most popular topics creative works that have been

modified in a time range of one hour are about.

Description full scan query

 Join ordering based on cardinality evaluation of functional property :

cwork:dateModified

 FILTER constraint on time interval defining start and end periods

 GROUP BY, ORDER BY

Optimisation Optimizer should use an efficient cost evaluation method for choosing the optimal

join tree (among all join trees that the query has)

Optimizer should be able to split the FILTER conditions into conjunction of

conditions and push them down the join tree as much as possible, which will limit the

amount of intermediate results

Optimizer should not consider the GROUP BY and ORDER BY as important clauses

in cases where all results are counted (COUNT(*))

Identifier query9.txt - Retrieve the largest number of mentioned topics in creative works

Description full scan query

 aggregation query and sub-query

 COUNT, MAX, GROUP BY

Optimisation Optimizer should not consider the GROUP BY as important clause in cases where all

results are counted (COUNT(*))

Identifier query10.txt - Retrieve a list of N creative works that are mentioning the maximum

number of topics and their number

Description two aggregate sub-queries

 FILTER constraint

 COUNT, MAX, GROUP BY

Optimisation Optimizer should identify the possibility of asynchronous execution of the aggregate

sub-queries.

Optimizer should be able to identify the aggregate (COUNT, MAX) sub-query and

use the right type of join operation (intersection).

Optimizer should push the FILTER condition down the join tree as much as possible

and apply it as soon as variables in it have been bound.

LDBC SPB Task Force Report

 Page 23 of 37

Identifier query11.txt - Retrieve similar creative works regarding the ’things’ they are about or

mention. Calculates a score for a particular Creative Work, about most similar

articles.

query12.txt – A simplified version of query11 – all optimisations except for

UNIONS are true for it.

Description three aggregation star-shaped sub-queries, one select sub-query

 Join ordering based on cardinality evaluation of functional property :

cwork:about, cwork:mentions

 COUNT

 DISTINCT

 UNION

Optimisation Optimizer should identify the possibility of asynchronous execution of the aggregate

sub-queries.

Optimizer should consider cardinality of star-shaped sub-queries for choosing the

optimal join ordering.

Optimizer should identify the possibility to run the UNIONs in term and the

DISTINCT in parallel.

Optimizer should consider the selectivity of the DISTINCT for choosing the right

execution plan. The distinct's state should be shared between threads or should be

merged after the top order sort.

Identifier query13.txt – Retrieve a list of N creative works, the ’things’ they are about and

mention, their categories, the modification date.

Description star-shaped query

 DISTINCT

 ORDER BY, LIMIT

 FILTER

Optimisation Optimizer should consider correctly estimated cardinalities of all triple patterns in

order to select the optimal join ordering for the execution plan. Depending on

estimated cardinalities, to select the right type of join operator.

Optimizer should push the FILTER condition down the join tree as much as possible

and apply it as soon as variables in it have been bound.

Identifier query14.txt - Retrieve a list of N creative works, the ’things’ they are about and

mention, their categories, the modification date, their thumbnail, and primary format.

LDBC SPB Task Force Report

 Page 24 of 37

query15.txt - Similar to query14, differs in FILTER constraints

query16.txt - Similar to query14, differs in simplified FILTER constraint, but

introduces an additional OPTIONAL clause

query17.txt - Similar to query16

query18.txt - Similar to query17, FILTER condition is placed inside the OPTIONAL

clause

Description star-shaped query

 DISTINCT

 ORDER BY, LIMIT

 OPTIONAL

 FILTER, multiple conditions

Optimisation Optimizer should consider correctly estimated cardinalities of all triple patterns in

order to select the optimal join ordering for the execution plan. Depending on

estimated cardinalities, to select the right type of join operator.

Optimizer should split the FILTER condition in conjunction of conditions and push

them as deep as possible in the join tree, thus starting their execution as soon as

possible. Disjunctions in filter condition should be transformed into UNIONs.

Equality between a variable and a constant should be handled by replacing every

match of the variable with the constant. (Query rewriting)

Optimizer should be able to decide whether to put the OPTIONAL triples on top of

the join tree and delay their execution until the last possible moment. (query16,

query17). Also should consider the FILTER condition on variables from the

OPTIONAL clause – in which case putting the OPTIONAL triples on top of the join

tree will not be optimal (pushing it down as much as possible will reduce the amount

of intermediate results (query18)).

Identifier query19.txt - Retrieve a list of N creative works, their thumbnail and the thumbnail’s

alternative text.

query20.txt - similar to query19, differs from it by a more complex FILTER

condition.

Description star-shaped query

 OPTIONAL

 FILTER

 owl:sameAs

 owl:propertyChainAxiom

 owl:ObjectProperty

Optimisation Optimizer should be able to decide whether to put the OPTIONAL triples on top of

the join tree and delay their execution until the last possible moment. Also should

consider the FILTER condition on variables from the OPTIONAL clause – in which

case putting the OPTIONAL triples on top of the join tree will not be optimal

LDBC SPB Task Force Report

 Page 25 of 37

(pushing it down as much as possible will reduce the amount of intermediate results).

Reasoning support for owl:propertyChainAxiom is required (query19).

Reasoning support for owl:sameAs is required (query20).

Identifier query21.txt - Retrieve a list of N sport disciplines

Description path query

Optimisation Optimizer should be able to decide to use appropriate indexes for achieving optimal

execution time.

Optimizer should consider correctly estimated cardinalities not only for building the

optimal logical execution plan, but also for choosing the appropriate physical

operators (join). Traversal should be started with the more selective part of the triple

pattern.

Identifier query22.txt - Retrieve a list of N creative works, the document they are primary

content of, and its platform

Description owl:inverseOf

 OPTIONAL

 FILTER

Optimisation Optimizer should be able to decide to use appropriate indexes for achieving optimal

execution time.

Optimizer should be able to decide whether to put the OPTIONAL triples on top of

the join tree and delay their execution until the last possible moment. Also should

consider the FILTER condition on variables from the OPTIONAL clause – in which

case putting the OPTIONAL triples on top of the join tree will not be optimal

(pushing it down as much as possible will reduce the amount of intermediate results).

Equality between a variable and a constant should be handled by replacing every

match of the variable with the constant. (Query rewriting)s

Reasoning support for owl:inverseOf is required.

Identifier query23.txt - Retrieve an ordered list of web documents and their subdocuments.

Description owl:AsymmetricProperty

 FILTER

Optimisation Optimizer should be able to decide to use appropriate indexes for achieving optimal

execution time.

Consistency support of owl:AsymmetricProperty is required as the query should

return empty result.

LDBC SPB Task Force Report

 Page 26 of 37

Identifier query24.txt - Retrieve creative works within a certain range defined by geo-

coordinates. Retrieves a list of all creative works that are mentioning entities within a

geo-range. A drill-down query, starts with an initial range and narrows down with

selected results.

Description geo-spatial query

Optimisation Optimizer could recognize the existence of pair lat and long and try to ignore its 'data

independence' assumption.

The query gives an opportunity for each RDF engine to use its custom

implementation of geo-spatial functionality. Requires building a specialized geo-

spatial index and use of custom functions.

Identifier query25.txt - Retrieve creative works that have been modified within a randomly

selected date-time range. A drill-down query, starts with a time range of a year, then

narrows down to a month, day, hour, etc.

Description time-range query

Optimisation Optimizer should consider correctly estimated cardinalities not only for building the

optimal logical execution plan, but also for choosing the appropriate physical

operators (join)

The query gives an opportunity for each RDF engine to utilize a specialized index for

faster look-ups of date/time object values.

Identifier query26.txt - Retrieve creative works and their properties, which contain a a certain

word in their title or description, using a regex expression.

Description full-text search query

Optimisation Optimizer should consider correctly estimated cardinalities not only for building the

optimal logical execution plan, but also for choosing the appropriate physical

operators (join)

The query gives an opportunity for each RDF engine to utilize a specialized index for

ull-text search

For further details on choke points classification see D4.4.1 Analysis and classification of choke points, [6]

LDBC SPB Task Force Report

 Page 27 of 37

 Instructions

The Publishing benchmark driver is distributed as a single file: semantic_publishing_benchmark.jar. All

necessary configuration and definition files, ontologies and reference data comes packed in that jar file.

Additionally sources are available for download.

Deployment of the benchmark driver consist of saving the distribution jar file to a folder and extracting the

following items from it:

 test.properties – a configuration file containing all required parameters for running the benchmark.

Properties file needs to be modified according to the current setup of the database being tested.

 definitions.properties – a definitions file containing various allocation parameters which can be

changed to do additional fine-tuning to the benchmark's data-generator or operation / query

execution behaviour of editorial and aggregation agents

 data/ – a folder containing all required ontologies, reference datasets and query templates

 readme.txt – a text file with information about configuring and running the benchmark (same

information will be provided here)

There exist some operational considerations that have been described in the following list.

 Description of operational phases

 loadOntologies – loads ontologies (in folder 'data/ontologies') into database, a required step;

 loadDatasets – loads the reference datasets (in folder 'data/datasets') into database, a required step;

 generateCreativeWorks – using ontologies and reference data from previous two phases, generates

creative works and saves them in files. Generated files need to be loaded into database manually (or

automatically). Note: in order to execute current phase, ontologies and reference data from previous

two phases must be stored in the database;

 loadCreativeWorks – automatically loads generated creative works files into database (currently

tested for N-Quads);

 warmUp – series of Aggregation queries are executed for a configurable period of time;

 benchmark – all aggregation and editorial agents are started and kept running for a configurable

period of time (see parameter benchmarkRunPeriodSeconds);

 checkConformance – executes conformance queries (in folder 'data/sparql/conformance'). That phase

can be executed independetly of previous ones (with exception of loadOntologies which needs to be

executed always first);

 cleanup – optional phase, can be used to clear all data from database after benchmark run has

finished.

 Configuration

Before starting the benchmark some configuration parameters need to be changed by editing file:

test.properties. Following is a description of all configuration parameters:

 ontologiesPath : path to ontologies, provided with the distribution jar file, e.g. "./data/ontologies"

 referenceDatasetsPath : path to reference datasets, provided with the distribution jar file, e.g.

"./data/datasets"

 creativeWorksPath : path to folder where generated creative works data will be saved, e.g.

"./data/generated". Folder is created automatically.

LDBC SPB Task Force Report

 Page 28 of 37

 queriesPath : path to all query templates, executed during the benchmark run, e.g. "./data/sparql"

 definitionsPath : path to the definitions.properties file

 endpointURL : URL of the endpoint used for the benchmark, e.g.

"http://localhost:8080/openrdf-sesame/repositories/ldbc_pub"

 endpointUpdateURL : URL of the endpoint for execution of update queries, e.g.

"http://localhost:8080/openrdf-sesame/repositories/ldbc_pub/statements"

 datasetSize : define the size of generated data (triples) which will be produced by the data-generator

of the benchmark

 generatedTriplesPerFile : define a limit on the number of triples per file (generated data is saved to

files - path is defined by parameter -creativeWorksPath)

 queryTimeoutSeconds : define the timeout for queries execution

 verbose : if set to true, a more detailed status of the benchmark's state is output to console

 generateCreativeWorksFormat : define the serialization format used by the data-generator. Available

options for generated file formats are : TriG, TriX, N-Triples, N-Quads, N3, RDF/XML, RDF/JSON,

Turtle. Use the exact name as shown in list.

 warmupPeriodSeconds : define the warmup period (seconds) in which aggregation agents will

execute queries without reporting to the benchmark result

 benchmarkRunPeriodSeconds : define the benchmark’s run period (seconds) during which editorial

and aggregation agents will run simultaneously with benchmark result data being recorded and

shown

 aggregationAgents : define the number of aggregation agents which will concurrently execute a mix

of aggregation queries (query mix can be tuned by changing parameter

aggregationOperationsAllocation in definitions.properties file)

 editorialAgents : define the number of editorial agents which will concurrently execute a mix of

editorial queries (query mix can be tuned by changing parameter editorialOperationsAllocation in

definitions.properties file)

Following parameters are used to define and configure benchmark’s execution phases. Parameters are

ordered, starting from initial phase and following their logical execution order.

 loadOntologies : populates the database with required ontologies (it is possible to upload ontology

files manually, if the phase has not been enabled)

 loadReferenceDatasets : populates the database with required reference datasets (it is possible to

upload reference datasets files manually, if the phase has not been enabled)

 generateCreativeWorks : in order to run that phase, ontologies and reference data from previous two

phases must be stored in the database. Data-generator produces required for the benchmark creative

works data and saves it to -creativeWorksPath

 loadCreativeWorks : uploads generated creative works data into database. This phase is optional, and

uploading can be done manually (tested for N-Quad files)

 warmUp : runs aggregation agents simultaneously, no benchmarking is performed

 runBenchmark : runs the benchmark - all aggregation and editorial agents are started and

simultaneously execute query mixes of the aggregation queries and editorial operations. Benchmark

results are recorded.

 checkConformance : starts a set of conformance tests by executing a set of queries which verify the

capabilities of the RDF database engine. Note : before running that phase, running loadOntologies is

http://localhost:8080/openrdf-sesame/repositories/ldbc_pub
http://localhost:8080/openrdf-sesame/repositories/ldbc_pub/statements

LDBC SPB Task Force Report

 Page 29 of 37

required. The checkConformance phase may not be part of the benchmarking process and can be run

independently.

 Fine-tuning

The data generator of the publishing benchmark can be further tuned on data-generation and execution

distributions of aggregation query / editorial operations, so that a different data distributions and

workload to be achieved. Tuning can be done by changing parameter values in definition.properties file.

Following is a description of those parameters:

 aboutsAllocations : define number of about tags used when generating creative works

 mentionsAllocations : define number of mentions tags used when generating creative works

 entityPopularity : define amount of entities to be considered as popular among all entities found in

the reference dataset

 usePopularEntities : define the amount of tags that will use popular entities during data-generation

and aggregation (set bias towards popular entities)

 creativeWorkTypesAllocation : define the allocation of different types of creative works (BlogPost,

NewsItem, Programme)

 aboutAndMentionsAllocation : define ratio of about / mentions tags to use in aggregation queries as

an aggregation criteria

 editorialOperationsAllocation : define distribution of execution frequency for each of the editorial

operation from the editorial query mix (queries in folder /data/sparql/editorial)

 aggregationOperationsAllocation : define distribution of execution frequency for each of the

aggregation queries from the aggregation query mix (queries in folder /data/sparql/aggregation)

 Requirements to execute the benchmark

Publishing benchmark requires for its execution Java Runtime Environment 1.6 or higher.

 Execution of the benchmark

Publishing benchmark can be started by executing the following command in console:

> java -jar semantic_publishing_benchmark.jar <path_to_test.properties>

 Results gathering

Results produced by the benchmark (diagnostic and benchmark results) are shown on the console output

during the whole operation of the benchmark driver. Additionally, the same results of the benchmark are

saved to three different types of log files, limited in size of 25 Mb each (and saving to a next-version of the

file after exceeding the 25 Mb limit):

 semantic_publishing_benchmark_queries_brief.log : stores a brief log of each executed query or

operation;

 semantic_publishing_benchmark_queries_detailed.log : stores a detailed log for each query or

operation - contents and results;

LDBC SPB Task Force Report

 Page 30 of 37

 semantic_publishing_benchmark_results.log : stores the summary results of the benchmark, saved

each second during the run. Summary results shown on the console output are also saved to that file.

Summary of the benchmark result includes:

 total seconds of benchmark run time

 total number of editorial and aggregation agents

 total number of editorial and aggregation operations and queries

 average number of editorial and aggregation operations and queries for the total benchmark run

 Disclosure items

This section provides guidelines for user of the benchmark, regarding items that need to be disclosed when

modifications have been made. Not all RDF databases will support the full requirements of the Semantic

Publishing Benchmark, in which case a test sponsor could modify some of the benchmark's definitions

parameters. Such modifications might be: changes to query templates, disabling execution of queries, or

altering behaviour of the data-generator. Any modification should be coordinated with the LDBC before

implementing.

The benchmark driver has been designed to be highly configurable and many of its features have been made

flexible for tuning. Items that need to be disclosed, if modified, are:

 properties in definitions.properties file. All properties can be modified to alter the behavior of data-

generator or the distribution of query / operations executions. Each modification of any property in

that file needs to be disclosed;

 aggregation, editorial and conformance queries are saved to template files allowing the user to view

or modify each one. e.g. a reason for modification could be to alter a query template (as long as end

result produced by it is the same) to enable a non-standard feature provided by certain database

engine. Modifications to query templates are acceptable only if modified version produces equal

result to the original query. Each modification of query templates needs to be disclosed;

 any modifications to the source code of the benchmark;

 any modifications to third-party library components used by the benchmark, e.g. updating a library

component to a newer version;

 any modification to ontologies, reference datasets and the dictionary file (WordsDictionary.txt) used

by the data-generator.

Additional items that need to be disclosed:

 The total dataset size

 Number of aggregation and editorial agents configured to execute queries and operations

 Benchmarks’ run time (value of parameter -benchmarkRunPeriodSeconds)

 The hardware used to run the benchmark including : CPU, Chipset, Physical memory, Hard disks -

specifications and configuration, network adapters, etc.

 Operating System used (for the benchmark test driver and for the database under test)

 Total cost of hardware listed at full price

LDBC SPB Task Force Report

 Page 31 of 37

 Auditing rules

Execution of the semantic publishing benchmark in sponsored test conditions will be audited in a manner

consistent with all of the LDBC benchmarks. These auditing rules will be defined by the LDBC, the first

draft of which will likely be in deliverable D6.6.3 Auditor Training M24.

Over and above the general rules, the following key points need to be verified by the auditor:

 Input data size set and checked: the input data size is set in the configuration file passed to the test

driver at start-up. After completion of the benchmark, it should be verified that at least this much

data is present in the database - this can be achieved by executing a query similar to: SELECT

(COUNT(*) as ?c) WHERE { GRAPH ?g { ?s ?p ?o} };

 Hardware: visually confirm the hardware specification and where possible login to the test

machine(s) and execute appropriate utility software to interrogate the hardware;

 Collection of output values: the final output from the test driver contains the actual benchmarked

performance values.

 Publication rules

At the moment of writing of this document publication rules are one of the remaining items.

LDBC SPB Task Force Report

 Page 32 of 37

 Status of the benchmark

 Remaining items

Remaining items covered here were initially planned to be implemented for the Semantic Publishing

Benchmark, which have not been implemented at the moment of writing of the current document:

 Validation of query results;

 A set of queries for testing database capabilities when executing: Faceted Search;

 Publication rules and publication strategy.

 Unclear behaviours and/or risks

This section describes the aspects of the benchmark that could raise doubts in its effectiveness. When

designing the benchmark, certain assumptions have been made as a starting point for the development of the

benchmark. Following is a list of unclear behaviours or risks that might occur:

 distribution of popular entities and in particular the correlations that in practice are likely to occur,

but which have not been modeled in the data generator. Choosing which entity to be ‘popular’ and

which - ‘not popular’ (or regular) was based on the assumption of a random distribution of popular

entities among all. Tagging of all entities (as a part of the data-generation process) then is further

biased towards the popular ones (by selecting randomly among all ‘marked’ as popular), which

might not always represent the real-life use-case (where data is not properly distributed and

clustering of popular entities could take to extreme levels). Properly distributed data provides

optimization opportunities for database query engines, but if it is randomly distributed - that

optimization can’t be applied;

 distribution ratios of queries / operations for each of the agents types : aggregation and editorial

agents execute a mix of queries / operations with a pre-defined distribution for each query /

operation. The assumption was made that queries that will take longer to execute (i.e. harder to

process by the database engine) should be executed less frequently than the faster-to-execute queries.

Although that distribution can be modified for both types of agents, it is up to the database vendor to

decide, if results produced by the benchmark are relevant;

 the ratio between editorial and aggregation agents number : in the real-life BBC use case, this ration

has not been studied yet, but an assumption was made for a constant rate of update operations (see

section 2.3 Processes - editorialOperationsRate = log10(dataset size) + 1), which binds the number of

editorial agents indirectly to the dataset size

 the distribution of geonames locations : selection of geonames locations for each generated creative

work was decided to be random. Geonames locations thus are randomly distributed among all

generated creative works. A certain bias towards more popular places could be used, as is in the

‘real-life’ case, e.g. distribution of geonames locations around the area of big cities or locations of

greater importance should be higher than the rest of all other places;

 random generation of text strings - even though all ‘synthetic’ text strings and sentences were

generated using a random selection of words from a dictionary, still that approach could not be the

most proper for some vendors with more specific requirements, e.g. the strings length are randomly

selected for a fixed min or max interval, or frequency of certain word inside generated sentences is

based on the distribution provided by the random algorithm used;

 the use of context aware serialisation RDF format for generated data - it might be the case that some

database vendors will not to be able to easily meet all requirements of the semantic publishing

benchmark. For example - generated data must be saved in a context aware RDF serialization format.

There is no guarantee that all the databases will be capable of importing generated data saved in such

serialization formats e.g. N-Quad, TriG, TriX. Nevertheless, the data-generator can be configured to

LDBC SPB Task Force Report

 Page 33 of 37

produce data in all supported serialization formats and vendors could make an effort to ‘adapt’ the

generated data to their specific requirements for importing it.

 Future work

Future work addresses several items encountered during the course of development and use of the semantic

publishing benchmark such as:

 additional tuning of queries from the aggregate query-mix is needed – currently the output results

produced by the benchmark in terms of values could look discouraging from a user's point of view

(e.g. a rather low result value for aggregate operations could be misleading for an adequate

estimation of RDF engine's capabilities);

 validation of results – validation of results is an important feature of the benchmark. Further work is

required for setting a “ground truth” for validation of query results of the queries;

 data generation – finding the balance between generated metadata (creative works) and the amount

of reference data (tagged by the creative works). This could be important for users, because it could

provide a more realistic results of RDF engine's capabilities. Also distribution of entities and the

correlations that are likely to occur between them needs to be further enhanced and modelled;

 implementation of additional query types, e.g. faceted search queries.

 Implementation plan for addressing remaining items

Implementation plan for the remaining items consists of design, implementation and testing of samples for:

Faceted Search queries, design and implementation of validation functionality for query results. Those tasks

have been assigned to Ontotext as it takes the main part of the publishing benchmark development process.

 Publication strategy

At the moment of writing of this document publication rules are one of the remaining items.

 Results

The work on fine-tuning and calibration of the Semantic Publishing Benchmark started in October with an

effort for benchmarking few of the most popular RDF database engines. Overall, this effort appears to take

longer than expected. All the results below should be considered preliminary and are provided for the sake of

giving initial feeling about the complexity and the characteristics of the benchmark. Those are not meant to

indicate real world performance or to serve for comparison between different engines.

Although we experiment with several engines, there is substantial progress and usable results only for two of

those: Virtuoso 7.0 Opensource and OWLIM-SE 5.4. The results presented below come from benchmarking

efforts at Ontotext. There is a parallel effort for benchmarking taking place at Forth – those will be published

when they become available.

Both databases have been benchmarked on the same hardware configuration shown in Table 5:

Table 5: Hardware configuration used for benchmark results

CPU 2 x Intel(R) Xeon(R) CPU E5-2687W 0 @ 3.10GHz CPU

RAM 256GB

LDBC SPB Task Force Report

 Page 34 of 37

CPU 2 x Intel(R) Xeon(R) CPU E5-2687W 0 @ 3.10GHz CPU

Storage SSD Drives, RAID-0

OS SunOS Solaris 5.11

In Table 6 are shown benchmark configuration properties:

Table 6: Benchmark configuration properties

Warm up time 60 s

Benchmark time 300 s

Editorial agents 2

Aggregation agents 14

Results that follow have been measured by execution of a reduced query mix which contains 7 queries – a

subset of the full query mix. A reduced query mix has been used to speed up the process of initial calibration

of the benchmark.

Most of the experimentation took place with a dataset of 50 million explicit statements (all together,

ontologies, reference knowledge and metadata), that includes metadata for 2.4 million creative works (18.7

statements per asset on average). The following table (Table 7) presents the overall results for different

datasets sizes, both for OWLIM and Virtuoso.

Table 7: Benchmark results for different dataset sizes

Dataset

size

OWLIM Virtuoso

Editorial ops. Aggregation ops. Editorial ops. Aggregation ops.

 10 M 9.1 68.8 142.7 (? 2.9)

 50 M 8.1 52.9 140.7 17.8

100 M 5.8 39.2 3.55 (? 0.5)

With the increase of dataset size, the rates of editorial operations drops for OWLIM, which could be

explained by the fact that OWLIM is does a forward-chaining and materialisation, i.e. OWLIM performance

reasoning during load or update; with the 50 million statements dataset, after materialization OWLIM deals

with 82 million statements. The decline in the aggregation operations can be explained with the fact that

some of the queries require “full scan”. Overall, the decline in the performance looks reasonable – it is the

range of 40% between the 10M dataset and the 100M one, both for editorial and aggregation operations.

For Virtuoso the rate of editorial operations is relatively constant and not dependent on the data set size,

which can be explained with the backward-chaining inferencing employed by that engine, that performs

reasoning at query time.

As one can observe, within these tests we had troubles to get very consistent results out of Virtuoso.

Performance results vary in some ranges, which needs further investigation. This is something that should be

straightforward to fix with some help from OpenLink. It should also be noted, that the results for OWLIM

are measure when its geo-spatial index is used, while we were not able to craft a query that uses the special-

purpose geo-spatial indices of Virtuoso. Again, this should be straightforward and should allow Virtuoso to

demonstrate better results on aggregation queries.

The performances of OWLIM for each of the aggregation queries is shown in the next table (Table 8), using

average execution time per query. Query execution performances for Virtuoso will not be analysed because

of the non-deterministic performance results shown by Virtuoso so far.

LDBC SPB Task Force Report

 Page 35 of 37

Table 8: Query performances, OWLIM

Dataset

Size

Average Execution time, ms

 Q1 Q2 Q3 Q4 Q5 Q6 Q7

 10M 670 7 59 39 44 17 565

 50M 700 7 252 101 57 38 601

100M 793 6 628 180 144 22 677

Following is an analysis of the of the query performances for OWLIM shown in Table 8.

Q1 – equivalent to query1 in choke points analysis (Section 3.5). Increasing execution times are expected

with the increase of the dataset sizes, as this query contains an aggregate sub-select. Query contains multiple

optionals and nested optionals, which are treated as nested sub-queries and optimized separately.

Q2 – equivalent to query2 in choke points analysis (Section 3.5). Execution times are relatively constant

because the query optimizer employs various indexes effectively and the query is about an exact entity in the

dataset.

Q3 – a query which is not in the initial query mix, containing several UINON sections, OPTIONAL and a

FILTER constraint. Result is ORDER BY a date-time value. Motivation to add this query was to explore

behaviour of the RDF engine with a query containing unions in combination with optionals and filter

constraints. Query execution times rapidly increases with larger dataset sizes which shows that UNION

sections present a choke point for the RDF database.

Q4 – a query which is not in the initial query mix. Motivation to add this query is to have a simple query

containing few triple patterns and which orders the results by some criteria (currently date of creation).

Query execution times increase with dataset sizes, which could be explained with the fact that larger dataset

sizes require more time for a full scan and for ordering results later.

Q5 – equivalent to query8 in choke points analysis (Section 3.5). A full scan query with ordering based on a

date-time FILTER constraint. Again execution time increases with dataset size.

Q6 – equivalent to query24 in choke points analysis (Section 3.5). It is a geo-spatial query. The query gives

opportunity to RDF databases for utilizing their geo-spatial optimisations. Results are produced with geo-

spatial optimisations enabled for the three dataset sizes. As expected, execution times should not vary too

much as geo-spatial optimisations were utilized.

Q7 – a shorter version of Q1, with all nested optionals removed. Motivation to add this version of the query

is to compare its execution performance to the nested OPTIONALS version of Q1. Again increase of

execution time is observed with the increase of dataset size. And decrease in query execution time is present

compared with Q1 for the same dataset. What is interesting to note is that nested OPTIONALs do not add

too much “weight” in the query performance compared to Q1.

 Conclusion

In this status report we have reviewed the progress of the Semantic Publishing Benchmark.

First section describes the motivation for the benchmark and relevance to the industry.

LDBC SPB Task Force Report

 Page 36 of 37

Further we have added detailed information about some of the key features of the benchmark like: input data,

data generation, workloads, a description of technical challenges that queries would present a RDF engine.

Also we have presented additional information on configuration, execution and fine tuning of the benchmark

and data generation.

In the last section we have outlined remaining items that need to be implemented, unclear behaviours

encountered during the course of development, and future work that would address those issues and further

evolve the benchmark. We have published results of the benchmark on two of the leading RDF engines -

OWLIM and Virtuoso.

LDBC SPB Task Force Report

 Page 37 of 37

References

[1] http://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_cup_2010_dynamic_sem.html

[2] http://www.bbc.co.uk/blogs/bbcinternet/2012/04/sports_dynamic_semantic.html

[3] http://www.slideshare.net/JemRayfield/dsp-bbcjem-rayfieldsemtech2011

[4]https://speakerdeck.com/jemrayfield/bbc-dynamic-semantic-publishing-sport%7Colympics-semtechbiz-

uk

[5] http://www.ldbc.eu:8090/download/attachments/1671227/D2.2.2-final.pdf

[6] http://www.ldbc.eu:8090/download/attachments/1671227/LDBC_2_2_1_final_v2.pdf

http://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_cup_2010_dynamic_sem.html
http://www.bbc.co.uk/blogs/bbcinternet/2012/04/sports_dynamic_semantic.html
http://www.slideshare.net/JemRayfield/dsp-bbcjem-rayfieldsemtech2011
https://speakerdeck.com/jemrayfield/bbc-dynamic-semantic-publishing-sport%7Colympics-semtechbiz-uk
https://speakerdeck.com/jemrayfield/bbc-dynamic-semantic-publishing-sport%7Colympics-semtechbiz-uk
http://www.ldbc.eu:8090/download/attachments/1671227/D2.2.2-final.pdf
http://www.ldbc.eu:8090/download/attachments/1671227/LDBC_2_2_1_final_v2.pdf?version=1&modificationDate=1380549454000

