
This Talk @
http://tiny.cc/ldbc_sadi

License: CC-BY

Semantic Automated Discovery and Integration
A design-pattern for “native” Linked-Data

Semantic Web Services

Mark D. Wilkinson
Fundacion BBVA Chair in Biological Informatics

CBGP-UPM Madrid

What’s the Problem?

XML Schema

XML Schema allows us to
describe, to a machine,
the structure of an XML

document

Therefore we can
share, integrate, and

aggregate data!

Therefore we can
share, integrate, and

aggregate data!

What did XML Schema do for us?

“...XML Schema (among other things) allowed
us to ~automate the creation of memory-
structures which could hold the given
XML-formatted data...”

-- Paul Gordon, SUN COE, Calgary

Does not solve the integration or aggregation problem

XML Schema
There will be an element called “GBQualifier”
There will be a child element called “GBQualifier_name”
The content of that child element will be free-text
There will be a child element called “GBQualifier_value”
The content of that child element will be free-text

XML Schema
There will be an element called “qualifier”
It will have an attribute called “name”
The content of that attribute will be text
There will be a child element called “value”
The content of that child element will be free-text

EMBL Nucleotide Record Schema

GenBank Nucleotide Record Schema

XML Schema
There will be an element called “GBQualifier”
There will be a child element called “GBQualifier_name”
The content of that child element will be free-text
There will be a child element called “GBQualifier_value”
The content of that child element will be free-text

XML Schema
There will be an element called “qualifier”
It will have an attribute called “name”
The content of that attribute will be text
There will be a child element called “value”
The content of that child element will be free-text

These two fragments represent XML
documents that contain
EXACTLY the same data;

However we cannot immediately integrate
them...

GenBank Nucleotide Record Schema

EMBL Nucleotide Record Schema

XML Schema
There will be an element called “GBQualifier”
There will be a child element called “GBQualifier_name”
The content of that child element will be free-text
There will be a child element called “GBQualifier_value”
The content of that child element will be free-text

XML Schema
There will be an element called “qualifier”
It will have an attribute called “name”
The content of that attribute will be text
There will be a child element called “value”
The content of that child element will be free-text

...because the “meaning” of each Schema
element is implicit.

Therefore, we resort to
“Schema Mapping” to integrate the data

GenBank Nucleotide Record Schema

EMBL Nucleotide Record Schema

XML Schema
There will be an element called “GBQualifier”
There will be a child element called “GBQualifier_name”
The content of that child element will be free-text
There will be a child element called “GBQualifier_value”
The content of that child element will be free-text

XML Schema
There will be an element called “qualifier”
It will have an attribute called “name”
The content of that attribute will be text
There will be a child element called “value”
The content of that child element will be free-text

GenBank Nucleotide Record Schema

EMBL Nucleotide Record Schema

XML Schema
There will be an element called “GBQualifier”
There will be a child element called “GBQualifier_name”
The content of that child element will be free-text
There will be a child element called “GBQualifier_value”
The content of that child element will be free-text

XML Schema
There will be an element called “qualifier”
It will have an attribute called “name”
The content of that attribute will be text
There will be a child element called “value”
The content of that child element will be free-text

GenBank Nucleotide Record Schema

EMBL Nucleotide Record Schema

So, obviously, all we need to do is automate the
process of schema-mapping, and then we will

achieve interoperability!

So, obviously, all we need to do is automate the
process of schema-mapping, and then we will

achieve interoperability!

Ozan Kılıç Y, Aydin MN: Automatic XML Schema Matching. European
and Mediterranean Conference on Information Systems 2009
(EMCIS2009), July 13-14, 2009

Though there have been numerous attempts to
automate schema mapping none have proven

reliable in an open-Web situation

Nevertheless...

Web Services

“Service Oriented Architectures”

WSDL
(and many other 4-letter words)

But...

XML Schema

“The phrase ‘practical Web Services’
 is not intrinsically an oxymoron,
 but [I] argue that there are
 few in existence.”

-- Charles Petrie, Stanford University

Why?

XML Schema
There will be an element called “GBQualifier”
There will be a child attribute called “GBQualifier_name”
The content of that child attribute will be free-text
There will be a child attribute called “GBQualifier_value”
The content of that child attribute will be free-text

XML Schema
There will be an element called “qualifier”
It will have an attribute called “name”
The content of that attribute will be text
There will be a child attribute called “value”
The content of that child attribute will be free-text

Because the automated-schema matching problem
is so disruptive

that there is little point in building
“modular/reusable” Web Services...

They are simply too difficult to integrate
with other Web Services, so why bother even trying?

 -- adapted from Petrie, SWSIP 2009

Then we moved into very dark times...

We still want SOA’s, so...

…rather than modular Services, we’ll just
build Services that do the entire
operation as a single function!

These Services, therefore,
had a much higher complexity

(both w.r.t. data types and
the functional description of the service)

So…
perversely…

XML Schema

made the interoperability problem

WORSE!

But there is hope!

“Linked Data” movement

Resource Description Framework
“RDF”

The “Semantic Web” movement

Web Ontology Language
“OWL”

What does RDF do for us?

“...RDF replaces XML Schema, because RDF
 says that there is only one data model...”

-- Paul Gordon, SUN COE, Calgary

What does OWL do for us?

“...the semantics are no longer implicit
 in that data model...”

XML Schema
There will be an element called “GBQualifier”
There will be a child attribute called “GBQualifier_name”
The content of that child attribute will be free-text
There will be a child attribute called “GBQualifier_value”
The content of that child attribute will be free-text

XML Schema
There will be an element called “qualifier”
It will have an attribute called “name”
The content of that attribute will be text
There will be a child attribute called “value”
The content of that child attribute will be free-text

-- Paul Gordon, SUN COE, Calgary

Semantic Automated Discovery and Integration

http://sadiframework.org
Microsoft
Research

A semantics-based Web Services design-pattern

http://sadiframework.org/
http://sadiframework.org/
http://sadiframework.org/

Make Web Services look more like
the Semantic Web

standards-compliant

Lightweight
(only 2 “rules”)

Rules were based on our
observations of Web Service functionality

(specifically in the bioinformatics space)

Observation #1:

Web Services in Bioinformatics create
implicit biological relationships

between their input and output

Observation #1:

SADI Design Pattern #1

Make the implicit explicit…

A Web Service should create “triples” linking the input data
to the output data, thus explicitly describing the semantic

relationship between them

HTTP GET and POST

GET guarantees
the response relates to the request URI
in a very precise and predictable way

POST does not…

Observation #2:

That’s why Web Services have a fundamentally different
behaviour than the Semantic Web

HTTP GET and POST

Observation #2:

We can fix that!

(without breaking any existing rules or standards!)

HTTP GET and POST

Observation #2:

SADI Design Pattern #2

SUBJECT URI of the output graph (triples)

 is the same as

SUBJECT URI of the input graph (triples)

(the output is “about” the input... Now explicitly!)

Consequence

Web Services now exhibit a very similar behavior
to the Web itself

POST “behaves like” GET

Service Interfaces defined by
two OWL classes:

SADI Interface Definitions

SADI Interface Definitions

OWL Class #1: My Input Class

OWL Class #2: My Output Class

SADI Interface Definitions

Consumes OWL Individuals (RDF) of Class #1

Returns OWL Individuals (RDF) of Class #2

…but the URI of those two individuals is the same!
(see design pattern #2)

SADI Service Invocation

Service Description

INPUT OWL Class
NamedIndividual: things with
 a “name” property
 from “foaf” ontology

OUTPUT OWL Class
GreetedIndividual: things with
 a “greeting” property
 from “hello” ontology

person:1

hello:Greeted
Individual

rdf:type

Hello, Guy
Incognito!

hello:greeting

POST http://example.org/myservice

person:1

hello:Named
Individual

rdf:type

Guy Incognito

foaf:name

Service Discovery

Input and output are about the same “thing”

Therefore, to describe what a service does
 simply compare (“diff”) the

Input and Output OWL classes

Service Description

INPUT OWL Class
NamedIndividual: things with
 a “name” property
 from “foaf” ontology

OUTPUT OWL Class
GreetedIndividual: things with
 a “greeting” property
 from “hello” ontology

person:
1

hello:Greeted
Individual

rdf:type

Hello, Guy
Incognito!

hello:greeting

person:
1

hello:
NamedIndivi

dual

rdf:type

Guy Incognito

foaf:name

The service provides
a “greeting” to any
entity that has a
“name” property

Index of all properties

consumed/produced

by all services

Service Registry

Real-world Example

 Input Data: BRCA1 rdf:type Gene ID

 Output Data: BRCA1 hasDNASequence AGCTTAGCCA…

 Registry Index: Service provides “hasDNASequence” property to Gene IDs

e.g. The question:

“what is the DNA sequence of BRCA1?”

Discover a SADI Web Service that generates the
DNA Sequence property for gene identifiers

Describing service functionality in this way
turns out to be extremely powerful!

Knowledge Explorer
Plug-in

For more information about the Knowledge Explorer surf to:
http://io-informatics.com

http://io-informatics.com/
http://io-informatics.com/

SADI has just invoked a service that provided the “Encodes”
property for the three genes of interest. Three new nodes

appear that are “Protein Sequence” type nodes

Ask the SADI Registry what properties can be provided to
things of type “Protein Sequence”;

Discover a service that provides the hasGOTerm property

Semantic Health And Research Environment

SPARQL + Registry Lookup + Service Invocation
+ Workflow Orchestration + DL Reasoning

Semantic Health And Research Environment

SHARE answers arbitrary SPARQL queries
by finding and executing SADI Services

Example #1

What is the phenotype of every allele of the
Antirrhinum majus DEFICIENS gene

SELECT ?allele ?image ?desc

WHERE {
 locus:DEF genetics:hasVariant ?allele .
 ?allele info:visualizedByImage ?image .

 ?image info:hasDescription ?desc
}

Example #1

What is the phenotype of every allele of the
Antirrhinum majus DEFICIENS gene

SELECT ?allele ?image ?desc

WHERE {
 locus:DEF genetics:hasVariant ?allele .
 ?allele info:visualizedByImage ?image .

 ?image info:hasDescription ?desc
}

Note that there is no “FROM” clause!
We don’t tell it where it should get the information,
The machine has to figure that out by itself...

Enter that query into
SHARE

Click “Submit”...

Because it is the Semantic Web
The query results are live hyperlinks
to the respective Database or images

Importantly

We posed, and answered a
complex SPARQL query

without a SPARQL endpoint

(in fact, the data didn’t even have to exist...)

Example #2

Show me the latest Blood Urea Nitrogen and Creatinine levels
of patients who appear to be rejecting their transplants

SELECT ?patient ?bun ?creat
FROM <http://sadiframework.org/ontologies/patients.rdf>
WHERE {

?patient rdf:type patient:LikelyRejecter .
?patient l:latestBUN ?bun .
?patient l:latestCreatinine ?creat .

}

Likely Rejecter:

A patient who has creatinine levels
that are increasing over time

 - - Wilkinson “MD”

Likely Rejecter:

Our triplestore contains various
blood chemistry measurements

at various time-points

Likely Rejecter:

…but there is no “likely rejecter”
property in our triplestore

SHARE determines

by DL Reasoning

the need to do a
Linear Regression analysis over

Creatinine blood chemistry measurements

SHARE determines

by DL Reasoning

how and where that analysis
can be done

and orchestrates a workflow
that does it

The SHARE system utilizes Semantics (via SADI) to discover and access
analytical services on the Web that do linear regression analysis

VOILA!

SHARE formulated a path
(workflow)

to generate data de novo

because the data required by
the query didn’t exist

That’s enough for now

:-)

This Talk @
http://tiny.cc/ldbc_sadi

License: CC-BY

SADI is an open-source initiative

(please forgive the chaos as we move from
Google Code to GitHub!)

http://sadiframework.org

Mark Wilkinson markw@illuminae.
com

