THE WORLD OF GRAPH DATABASES

FROM AN INDUSTRY PERSPECTIVE

Yuanyuan Tian Gray Systems Lab, Microsoft

A bit about myself related to graphs

- Long standing interest in graphs since 2003
 - Two books on graphs
 - 19/50+ publications on graphs (2700+ citations)
- Current: Principal Scientist Manager @ GSL
 - Working on graph projects with Azure Data and Llquid Team @ LinkedIn
- Past: Principal Research Staff Member @ IBM Research
 - The tech lead for IBM Db2 Graph product

Market Research

- The global graph analytics market in 2022 was valued at \$1.14B
- Global market for graph databases will grow at projected CAGR of 34.8% during forecasted period (2023-2028) and reach \$6.9B by 2028.

Global Graph Analytics Market Market forecast to grow at a CAGR of 34.8%

Graph Workloads

Graph Queries (Graph OLTP)

low-latency graph traversal and pattern matching

Local Traversal

e.g. neighbors of a vertex, shortest path between two vertices

e.g. node embedding, graph embedding

Graph Algorithms (Graph OLAP)

iterative, long running, graph processing

Global Computation

New Trend: Graph ML/AI
GNN

Graph Models

Resource Description Framework (RDF)

- Directed, edge-labeled graph (subjectpredicate-object triple)
- Application
 - Knowledge representation & inference
 - Semantic Web

Most graph databases support PG model

Property Graphs (PG)

- Directed, vertex-labeled, and edge-labeled graph with properties on each vertex/edge
- Application
 - Graph traversals/pattern matching
 - Path/graph analytics

Graph languages/Interfaces

Graph OLTP

- SPARQL for RDF graphs
- Chaos for PG graphs
 - Gremlin (imperative)
 - Supported by ~30 graph vendors
 - openCypher (declarative)
 - Supported by ~10 graph vendors
 - ISO Standard efforts: GQL and SQL/PGQ (declarative)

Need a few years to settle down!

Choose a standard/popular language and avoid inventing new ones!

Graph OLAP

- API/DSL + built-in algorithms
 - Most support Pregel-like API

Graph
Technology
Landscape
2022

Competitive Landscape

		Deployment	Graph Model	Graph OLTP				
				Query Language	Visualization tools	Transaction	Graph OLAP	Scale-Out
Graph Only Companies	TigerGraph	On-prem / AWS, Azure, GCP	PG	GSQL	Graph Studio	ACID	GSQL, 23 built in algorithms	Yes
	Neo4J	On-prem / AWS, Azure, GCP	PG	Cypher	Studio	Non-repeatable reads may occur	Pregel API, 48 built-in algorithms (including Graph ML)	Yes*
Data Companies	DataStax Enterprise Graph	On-prem / AWS, Azure, GCP	PG	Gremlin	Studio	Row-level (Cassandra)	SparkGraphComputer API	Yes
	Databricks GraphX & GraphFrames	On-prem / AWS, Azure, GCP	PG	Motif Finding DSL	-	-	Pregel API, 7 built-in algorithms	Yes
Enterprise Cloud Companies	Amazon Neptune	AWS	PG, RDF	Gremlin, SPARQL	Neptune Workbench	ACID	-	Yes
	Microsoft SQL Graph	On-prem / Azure	PG	SQL Extension	Power BI plugin, 3 rd party tools	ACID	Python/R scripts via Machine Learning Services	Yes* (Read- Only Queries)
	Microsoft Cosmos DB Graph	Azure	PG	Gremlin	Azure Portal, 3 rd party tools	-	-	Yes
	Oracle Spatial and Graph	On-prem / OCI AWS, Azure, GCP	PG, RDF	PGQL, SPARQL	Graph Studio	ACID	Green Marl DSL, 50+ built- in algorithms (including Graph ML)	Yes
	IBM Db2 Graph	On-prem / CP4D	PG	Gremlin	Graph UI	ACID		Yes

Graph Solution Space

Native Graph DB

Neo4j TigerGraph

AWS Neptune

Hybrid Graph DB

IBM Db2 Graph
Oracle Spatial & Graph
DataStax Graph
Microsoft SQL Graph
Microsoft Cosmos DB Graph

Native Graph DB

- Everything from scratch
- Pros: performance
- Cons: high engineering cost

Hybrid Graph DB

- Graph engine + existing backend store
- Pros: faster development, leverage backend store
- Cons: performance

Graph Solution Space

Graph-only DB

Only support graph workload (con)

Converged DB

 Support poly query languages/APIs on the shared data (pro)

Advantage of Converged DB solution

Poly languages/APIs on shared data

- View the data in the way that is needed!
- No data transfer or transformation cost
- If graph queries on original data (no schema change, no secondary copy)
 - No disturbance of existing applications
 - Transaction updates are visible to graph analysis in real time

Leverage of existing backend data store

- Transaction support
- Access control
- Compliance to audits and regulations
- Temporal support
- Scalability
- HA & DR

Fragmented DB

Converged DB

Graph Benchmarks

- Graph500 Benchmark
- HPC Scalable Graph Analysis Benchmark
- LinkBench
- Open Graph Benchmark
- LDBC Benchmarks (most comprehensive)
 - LDBC-SNB (used by TigerGraph and Neo4j)
 - LDBC Graphalytics
 - LDBC SPB
 - FinBench

All future performance studies should adopt LDBC benchmarks!

Opportunities and Directions

Growing market for graph databases (CAGR 34.8%, \$6.9B by 2027)

Graph-only vendors are currently leading

- Strength: performance and algorithm support
- Weakness: Data import/export is a bottleneck for end-to-end scenarios

Major cloud vendors are investing in graph space

• Advantage: they own the whole stack, including the source of truth

Recommendation for Researchers (more practical impact)

- Use widely-adopted graph models, languages, and benchmarks
- Practical challenges that industry faces:
 - Multi-tenancy and access control
 - Security and compliance
 - End-to-end pipelines with mixed graph and non-graph workloads
 - Dynamic graphs

Questions & Suggestions?

THANK YOU?