
GraphScope Flex: A Graph
Computing Stack with LEGO-Like
Modularity

Wenyuan Yu
Alibaba Damo Academy

Applications across Graph Analytics, Traversal, and Learning

• More and more graph applications require more than just one type of workloads

• A simplified workflow for fraud-detection in Alibaba:

• Construct a property graph from raw data using SQL;
• Extract a subgraph using Gremlin;
• A label-propagation algorithm for identifying fraudulent entities;
• Graph sampling to conduct k-hop sampling by weight;
• Train a GNN model using TensorFlow or PyG

Real life graph applications often involve multiple types of graph

computations.

FLASHBACK: GraphScope: a Unified Engine for Big Graph Processing

• A simple and unified programming interface (Gremlin + Python);

• A distributed dataflow runtime that enables a separate optimization (or family of optimizations) for each graph
operation in one carefully designed coherent framework.

• An in-memory data store that automatically manages the representation, transformation, and movement of
intermediate data.

• We adopt the language integration approach advocated by Python to integrate the graph operators into a
general-purpose high-level programming interface. This approach allows us to seamlessly combine GraphScope
with other data processing systems

> helm install graphsco

> kubectl create -f gra

or

or

1

2

3

4

5

6

Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zhengping Qian, Chao Tian, Lei Wang, Jingbo Xu, Youyang Yao, Qiang Yin,

Wenyuan Yu, Jingren Zhou, Diwen Zhu, and Rong Zhu: GraphScope: A Unified Engine for Big Graph Processing, VLDB2021.

However, real-life graph applications are even more diverse
and complex

• Multiplicity of Workloads: Graph analytics, interactive queries, pattern
matching, and Graph Neural Networks (GNNs)
• Variety in Data Storage and Organization: Whether it's on-disk or in-

memory, mutable or immutable, distributed or transactional?
• Range of Programming Interfaces: GQL, openCypher or Gremlin? Pregel,

Gather-scatter, GraphBLAS or PIE? pyG or DGL
• Diverse Deployment Modes and Performance Needs: Offline data

analytical tasks? Online services?

Real-life graph applications are diverse and complex

Graph
Query

Languages

Gremlin

openCypher

GQL

SPARQL

GraphQL

ML with
GraphsPageRank WCC CDLP, …

Programming
Models

Pregel

GAS

GraphBLAS

PIE

Ligra

Higher query
throughput?

(e.g. snb
interactive)

Lower latency
for complex

queries?
(e.g. snb BI)

Transactional?

Static graph?

In-memory? On-disk?
Property
Graph?

Read only?

Partitioned?

GPU?

Streaming?

Graph
Analytics

GNNs

Graph
Embedding

Random
WalkSampling-

based
GNNs Subgraph

GNNs

Wholegraph
GNNs

V-Cut? E-Cut? Hybrid-
Cut?

Training?Inference?

KG

Hyper
Graph

…

RDF?

Archival?

CRUD?

GraphScope Flex: A Graph Computing Stack with LEGO-Like Modularity

…

To address such diversities, we are developing the GraphScope Flex. It follows a modular and
disaggregated design, where components are like LEGO bricks and user can easily make their customized
builds and deployments.

The interactive
query processing
stack

The graph
storage stack

• How to support more query languages?

• Gremlin

• 100+ Steps…

• Cypher，GQL，…

• How to effectively optimize graph queries?

• How to support more types of workloads? Higher QPS or Data-parallel?

The interactive query processing stack

Gremlin open
Cypher GQL …

GAIA IR GetV
E(dge)Join
P(ath)Join
shortestPath
…

Projection
Selection
Groupby
Orderby
Unwind
Dedup
Apply [7]
Join
…

A Universal Query Optimizer

GLogue1

High QPS/OLTP-like Plan Data parallel/OLAP-like plan

Codegen Codegen

Hiactor

Actor based execution engine2,4

Pegasus
Scoped Dataflow engine3

Intermediate
Representations

by extending
relational

operations

A graph based catalogue for
CBO of GPM

Dynamic Static In-mem Archival

A Common Interface – GRIN5

……

WIP

WIP

Pattern
Match

1. GLogS: Interactive Graph Pattern Matching
Query At Large Scale. ATC 23

2. Banyan: a scoped dataflow engine for
graph query service. VLDB 22

3. GAIA: A System for Interactive Analysis on
Distributed Graphs Using a High-Level
Language. NSDI 21

4. https://github.com/alibaba/hiactor
5. https://github.com/GraphScope/GRIN

Adapted with
Apache calcite

Our approach..

How computing engines interact with storage engines in GraphScope?

With or without a common interface

GRAPH
ANALYTICAL
ENGINE

GRAPH
INTERACTIVE
ENGINEs

GRAPH
LEARNING
ENGINE

Vineyard1 GART2 GraphAr3 Groot4

GRAPH
ANALYTICAL
ENGINE

GRAPH
INTERACTIVE
ENGINEs

GRAPH
LEARNING
ENGINE

Vineyard GART GraphAr Groot

1. Vineyard: Optimizing Data Sharing in Data-Intensive Analytics. SIGMOD 23
2. Bridging the Gap between Relational OLTP and Graph-based OLAP. ATC 23
3. Graph Archive format (shown later)
4. A rocksDB based distributed on-disk graph storage

Understanding the complexity of graph storage abstraction is crucial

Transactional? Static graph?

In-memory? On-disk?
Property
graph?

Read only?

Partitioned?

Streaming?

V-cut? E-cut? Hybrid-
cut?

RDF?

Archival?

CRUD?

Remote access?

Get edges
by src?

Get edges
by dst?

Primary
key?

Simple graph? Indices?

Push-
down?

Graph storages can be diverse. The requirements of computing engine accessing the data
are different as well.

The design of GRIN
• GRIN is a proposed standard graph retrieval interface in GraphScope

• The goal is to simplify the integrations between different computing engines and storage engines from
M * N to M + N

• To achieve the goal:

• It only supports the read-path over an immutable graph/snapshot. (no WRITEs at the moment)

• Using a trait abstraction for graph elements (V, E, …), inspired by POSIX (e.g. a FD can and cannot do
sth with it). API is written in C, which makes GRIN portable to engines written in different
programming languages like Rust, Java and C++

• GRIN defines a set of handles such as vertex, edge,, and abstracts the operations (e.g., getting the
adjacent edges of a vertex) as a set of APIs in different header files.

• C Macros and a YAML file to tell computing engines what features are supported by a storage.

• The handles and APIs are defined The APIs must be well-abstracted and low-level to avoid
introducing excessive performance loss.

GRIN is still a work in progress

• The three computing engines (analytical, interactive and learning) in GraphScope are being
rewrited to adapt their graph retrieval layer using GRIN APIs,.

• 3 (out of 5) storage engines are being adapted to provide their GRIN implementations, namely
Vineyard1, GART2 and GraphAr in GraphScope

• The preliminary results shows that the performance overhead of GRIN is always less than 10%, and
sometimes the performance is better if the original integration without GRIN is not designed or
implemented carefully.

• Watch https://github.com/GraphScope/GRIN for progress.
• Further ahead, we plan to make GRIN support more external graph storage and provide a way to

abstract a graph from other type of storages (tabular, …) while easier to use.

1. Vineyard: Optimizing Data Sharing in Data-Intensive Analytics. SIGMOD 23

2. Bridging the Gap between Relational OLTP and Graph-based OLAP. ATC 23

https://github.com/GraphScope/GRIN

GraphAr (short for “Graph Archive”) is a project that aims to make it easier for diverse applications
and systems (in-memory and out-of-core storages, databases, graph computing systems, and
interactive graph query frameworks) to build and access graph data conveniently and efficiently.

Knowledge
Graph
System

Graph
Computing System B

Graph Computing
System A

Graph Database A

Knowledge
Graph
System

Graph Computing
System B

Graph Computing
System A

GNN SystemGraphAr

Graph
Database B

Graph Database A

Graph
Database B

GNN
System

GraphAr: An Open Source File Format for Archiving and Exchanging
Graph Data

Objectives

GraphAr is designed to serve two main scenarios:
• As a standardized file format for importing, exporting and archiving of the graph data which can be used by diverse

existing systems, reducing the overhead when various systems co-work.

• As a direct data source for graph processing applications.

The GraphAr project provides:
• The GAR file format: a standardized system-independent file format for storing graph data.

• A set of libraries for reading, writing and transforming GAR files (presently available in C++ and Spark).

• Examples of how to use GraphAr to write graph algorithms, or collaborate with existing systems like GraphScope.

Features of GraphAr

• The file format supports the property graphs and different representations for the graph
topology (COO, CSR and CSC).

• It is compatible with existing widely-used file formats including ORC, Parquet (and less
ideally CSV).

• Apache Spark can be utilized to generate, load and transform GraphAr files.

• It is convenient for use in a variety of single-machine/distributed graph processing systems,
databases, and other downstream computing tasks.

• It enables users to conveniently perform operations without modifying the payload files,
such as appending new vertices, adding new properties, or constructing a new graph with a
set of selected vertices and edges.

GraphAr File Format – Vertices
Physical table of vertices
• label: person, chunk size: 500
• property groups: (id), (firstName, lastName, gender)

GraphAr File Format – Edges
Physical table of edges
• label: person-knows-person, type: CSR
• chunk size: 1024, property group: (creationDate)

GraphAr File Format – Meta Files

GraphInfo: ldbc_sample.graph.yml VertexInfo: person.vertex.yml EdgeInfo: person_knows_person.edge.yml

Future of GraphAr

• It is currently open-sourced at https://github.com/alibaba/GraphAr

• Support more file formats, more standard and user-defined data types.
• More graph features: RDF, time-series
• Encoding optimizations.
• Complete Spark suite to transform create GraphAr files.
• Integrations with popular graph database, such as Neo4j, Nebula, TuGraph, PyG …
• Explore the use GraphAr for data lake of graphs.

• We aim to make GraphAr vendor-neutral (e.g., Apache Foundation) when it matures.
• Current contributors: Alibaba Damo Academy, Zhejiang Lab and Nebula Graph
• New contributors are welcome!

Conclusion

• GraphScope Flex is an on-going efforts to make our graph computing stack more
composable to tackle diverse graph applications. Areas covered by this talk:
• A new query evaluation framework for a core subset of openCypher, Gremlin and GQL.

• Multiple language frontends
• An IR for graph queries (recursion not supported yet)
• A query optimizer based on Apache Calcite with a graph catalogue Glogue for CBO.
• Execution engines for query throughput and data parallel queries.

• A new storage layer:
• A common interface GRIN: https://github.com/GraphScope/GRIN
• A graph format for archiving graph data: (aim for Apache Incubator) https://github.com/alibaba/GraphAr

Scan to learn more from GraphScope github repo:

https://github.com/GraphScope/GRIN
https://github.com/alibaba/GraphAr

