GraphScope Flex: A Graph
Computing Stack with LEGO-Like
Modularity

Wenyuan Yu

Alibaba Damo Academy

Applications across Graph Analytics, Traversal, and Learning

* More and more graph applications require more than just one type of workloads

* A simplified workflow for fraud-detection in Alibaba:

* Construct a property graph from raw data using SOQL;
* Extract a subgraph using Gremlin;
* A label-propagation algorithm for identifying fraudulent entities;
* Graph sampling to conduct k-hop sampling by weight;

* Train a GNN model using TensorFlow or PyG

Construct the 2N Extract a Compute % | | Sample k-hop
graph by SparK subgraph |ans| | label “ =% | by weight
ETL from tables g.V().. propagation s)9l

Train a
GNN model

Distributed File System

Real life graph applications often involve multiple types of graph

computations.

FLASHBACK: GraphScope: a Unified Engine for Big Graph Processing

Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zhengping Qian, Chao Tian, Lei Wang, Jingbo Xu, Youyang Yao, Qiang Yin,

Wenyuan Yu, Jingren Zhou, Diwen Zhu, and Rong Zhu: GraphScope: A Unified Engine for Big Graph Processing, VLDB2021.

e via item_id discount

as('fraud_
import graphscope
C create - ra Node Dot s x
Next, we load a graph from a csv file. . " "
= e \ 7 . Node Tyge pape
or L7 . i
data = pd.read_csv("transactions.csv") <) Y, . Name Trse Vare
> e m P : " . b . = o i . <
s . . J g o1 et 34839
’ or 0 387321 Tom Alex 2021/2/3 iPhone $12.30 PayPal 4332 -15% t . ' T - d > : . e athas
1 387322 Emily Tim 2021/2/3 iPhone $82.21 CreditCard 2142 -20% i = . . e 3nan
Ki ha * . - ot Wt “wer
2 387323 Jonathon Henry 2021/2/5 Browser $32.20 PayPal 8748 100%
Catalog 3 387324 Harry Jeffrey 2021/2/5 android $12.30 PayPal 431 100% sess.monitor() @

4 387325 Gimmy Dieter 2021/2/7 iPhone $12.30 PayPal 89328 100% ' '
FFFFFF ' kubernetes Endpoint Coordinator '
Vﬁ';::’yvm aaaaaaaaaaaaaaaaaa]: |g = Graph(edges=data) @ . e cluster]

oson s JUS— TOTAL_V = g.V().count() : :

s graph processing @ im g.V().propertySack('$pr', 1 / TOTAL_V) H :

G ra h S O e ’;::,‘FMPA”'NTW = v“ | rcpcat(: :
‘ : aaaaaaaa 201) 2446 W().has("'$pr*) | ‘1

Developer Toois .propertySack('$tmp*', value('$pr')/outE().count()) i !

L atter(value('$tmp')).by(out()) i o o o o o o o o i

er('$tmp').by(sum) ']

tySack('$new', ©.15 / TOTAL_V + 0.85 . Pod-0 P Pod-2 Pod-3 Pod-4 P

‘$tmp')) i 1 -

value('snew') - value('$pr')) > le-10)

k('$pr', value('s$new'

j File View Run Kernel Tabs Setting Help
M + +] * C " Welcome.ipynb X @ #| Untitled.ipynb %
/ B+ XD » m C » Code v Python3 O B + X O » ®m C » Markdown v
Name -

We can inspect the graph in an exploration manner with Gremlin

.select('candidate', 'fraud_nbrs')

E-Commerce

,,,,,,,,,,,

'od-1 od- od- od- Pod-5 Pod-6 Pod-7

* A simple and unified programming interface (Gremlin + Python)

* A distributed dataflow runtime that enables a separate optimization (or family of optimizations) for each graph
operation in one carefully designed coherent framework.

* An In-memory data store that automatically manages the representation, transformation, and movement of
iIntermediate data.

* We adopt the language integration approach advocated by Python to integrate the graph operators into a

general-purpose high-level programming interface. This approach allows us to seamlessly combine GraphScope
with other data processing systems

However, real-life graph applications are even more diverse
and complex

* Multiplicity of Workloads: Graph analytics, interactive queries, pattern
matching, and Graph Neural Networks (GNNSs)

* Variety In Data Storage and Organization: Whether it's on-disk or In-
memory, mutable or immutable, distributed or transactional?

* Range of Programming Interfaces: GOL, openCypher or Gremlin? Pregel,
Gather-scatter, GraphBLAS or PIE? pyG or DGL

* Diverse Deployment Modes and Performance Needs: Offline data
analytical tasks? Online services?

Real-life graph applications are diverse and complex

ML with
Graphs
FOSRE m “ Graph
Embedding

Graph
Analytics

SPARQL

Graph openCypher

Query
Languages

Sampling-
based

Programming

Random
Walk
Models GNNs

Subgraph
g GNNS
GraphBLAS Wholegraph
GNNSs
Static graph? w u ;

Graph? “ w
Partitioned? m mm

Higher query
throughput?
(e.g. snb
Interactive)

Lower latency
for complex
queries?
(e.g. snb Bl)

Read only? .
Y Transactional?

Property

On-disk?

GraphScope Flex: A Graph Computing Stack with LEGO-Like Modularity

To address such diversities, we are developing t
disaggregated design, where components are |i

builds and deployments.

The interactive
qguery processing
stack

Execution
Layer

Storage
Layer

ne Graphscope Flex. It follows a modu
ke LEGO bricks and user can easily ma

ar ana

H B B BN B B = = = B

Graph IR

Hiactor Codegen

Hiactor

- B B B B B BB = B B BB B BB B =

- . W B
TR ST T R T LRI T i
)y ! i e

P Ve g (« N e L L LR
R LRSS 3 I 6t E el D M
0 Dramnol [/ Sy A
§ = TR BT S N L S R A i L
A Ay PR e A I 5| sl &)
T e A A et B e P L 55
AL e T et o e oy
O R T e oL Vet Ao Yo B

Python/Java/... SDK

GNN Models

Immutable In-memory Graph

Ke thelr customized

The graph
storage stack

The Interactive query processing stack

How to support more query languages?
Gremlin
100+ Steps:
Cypher, GQOL,
How to effectively optimize graph queries?

How to support more types of workloads? Higher QPS or Data-parallel?

Our approach..

A graph based catalogue for

CBO of GPM
GLogue?

wl

Gremlin

l

open Pattern

GQL
Cypher 1
Intermediate
Representations
by extending

relational
operations

GAIA IR

Adapted with
Apache calcite

l Data parallel/OLAP-like plan

Projection
Selection
Groupby
Orderby
Unwind
Dedup
Apply [7]
Join

o1

GetV
E(dge)Join
P(ath)Join

shortestPath

GLogS: Interactive Graph Pattern Matching
Query At Large Scale. ATC 23

Banyan: a scoped dataflow engine for
graph query service. VLDB 22

GAIA: A System for Interactive Analysis on
Distributed Graphs Using a High-Level
_anguage. NSDI 21
nttps://github.com/alibaba/hiactor
nttps://github.com/GraphScope/GRIN

How computing engines interact with storage engines in GraphScope?

With or without a common Interface

1. Vineyard: Optimizing Data Sharing in Data-Intensive Analytics. SIGMOD 23
2. Bridging the Gap between Relational OLTP and Graph-based OLAP. ATC 23

3. Graph Archive format (shown later)
4. A rocksDB based distributed on-disk graph storage

Understanding the complexity of graph storage abstraction is crucial

Graph storages can be diverse. The requirements of computing engine accessing the data
are different as well.

Get edges

by src?

Transactional? Static graph? m
m Read only?
Get edges

Simple graph? m
o J e g

Property
On-disk? graph?

Partitioned? m m m

The design of GRIN

GRIN Is a proposed standard graph retrieval interface in GraphScope

K/lhe Rloal S to simplity the integrations between different computing engines and storage engines from

toM + N

To achieve the goal:

It only supports the read-path over an iImmutable graph/snapshot. (no WRITEs at the moment)

Using a trait abstraction f_orgraph elements (V, E,), inspired by POSIX (e.g. a FD can and cannot do
sth with 1t). APl 1s written in C, which makes GRIN portable to engines written in different
programming languages like Rust, Java and C++

GRIN defines a set of handles such as vertex, edge,, and abstracts the operations (e.g., getting the
adjacent edges of a vertex) as a set of APIs in different header files.

C Macros and a YAML file to tell computing engines what features are supported by a storage.

The handles and APIs are defined The APls must be well-abstracted and low-level to avoid
iIntroducing excessive performance |oss.

GRIN is still a work In progress

The three computing engines (analytical, interactive and learning) in GraphScope are being
rewrited to adapt their graph retrieval layer using GRIN APIs,.

3 (out of 5) storage engines are being adapted to provide their GRIN implementations, namely
Vineyard!, GART? and GraphAr in GraphScope

The preliminary results shows that the pertormance overhead of GRIN is always less than 10%, and
sometimes the performance is better if the original integration without GRIN 1s not designed or

implemented carefully.

Watch https://github.com/GraphScope/GRIN for progress.

Further ahead, we plan to make GRIN support more external graph storage and provide a way to
abstract a graph from other type of storages (tabular,) while easier to use.

Vineyard: Optimizing Data Sharing in Data-Intensive Analytics. SIGMOD 23
Bridging the Gap between Relational OLTP and Graph-based OLAP. ATC 23

https://github.com/GraphScope/GRIN

GraphAr: An Open Source File Format for Archiving and Exchanging
Graph Data

GraphAr (short for “Graph Archive”) is a project that aims to make it easier for diverse applications
and systems (in-memory and out-of-core storages, databases, graph computing systems, and
interactive graph query frameworks) to build and access graph data conveniently and efficiently.

Graph Database A Graph Computing
System A
Graph Database A Graph Computing
\ System A
Knowledge GNN Knowledge /
Graph System Graph —— GNN System
System System / \
grapg . Graph Computing
atabase
Graph Graph System B

Database B Computing System B

Objectives

GraphAr is desighed to serve two main scenarios:

« As a standardized file format for importing, exporting and archiving of the graph data which can be used by diverse
existing systems, reducing the overhead when various systems co-work.

« As a direct data source for graph processing applications.

The GraphAr project provides:

« The GAR file format: a standardized system-independent file format for storing graph data.
« A et of libraries for reading, writing and transforming GAR files (presently available in C++ and Spark).

Examples of how to use GraphAr to write graph algorithms, or collaborate with existing systems like GraphScope.

Features of GraphAr

« The file format supports the property graphs and different representations for the graph
topology (COO, CSR and CSC).

« It is compatible with existing widely-used file formats including ORC, Parquet (and less
ideally CSV).

« Apache Spark can be utilized to generate, load and transform GraphAr files.

» It is convenient for use in a variety of single-machine/distributed graph processing systems,
databases, and other downstream computing tasks.

» It enables users to conveniently perform operations without modifying the payload files,
such as appending new vertices, adding new properties, or constructing a new graph with a
set of selected vertices and edges.

GraphAr File Format — Vertices

Physical table of vertices
* |abel: person, chunk size: 500
* property groups: (1d), (firstName, lastName, gender)

“ firstName lastName gender

0 933 0 Mahinda Perera male

1 6597069767117 1 Eli Peretz female

499 | 13194139534267 499 | Asha-Rose | Chung male

Jvertex/person/id/chunk0 Jvertex/person/firstName lastName gender/chunk(

“ firstName lastName gender

500 | 15393162788965 500 | Hans Becker male

501 | 15393162789614 501 | Adi Cohen female

903 | 32985348834100 903 | Bruno Oliveira male

Jvertex/person/id/chunkl

Jvertex/person/firstName lastName gender/chunkl

GraphAr File Format — Edges

Physical table of edges

* |abel: person-knows-person, type: CSR
* chunk size: 1024, property group: (creationDate)

0 87 2010-07-30T15:19:53.298+0000
164 829 2010-06-11T19:23:42.146+0000

Jedge/person_knows_person/ordered_
by_source/adj_list/part0/chunkQ

Jedge/person_knows_person/ordered_by
_source/creationDate/part0/chunkO

0 0
B
164 30 2010-05-16T17:41:47.623+0000
499 | 3772
3778 269 565 2011-12-22T17:56:13.491+0000

Jedge/person_knows_\person/
ordered_by_source/offset/chunkQ

269

321

Jedge/person_knows_person/ordered_
by_source/ad)_list/partQ/chunk1

source destination

Jedge/person_knows_person/ordered_by
_source/creationDate/partO/chunk 1

creationDate
2012-01-04T13:29:11.784+0000

499

628

2012-08-03T01:00:51.312+0000

Jedge/person_knows_person/ordered_

by_source/adj_list/part0/chunk?2

Jedge/person_knows_person/ordered_by
_source/creationDate/partO/chunk?2

500 |0

501 1

903 | 2848
2848

Jedge/person_knows_\person/
ordered_by_source/offset/chunk1

500 623 2012-04-21T19:08:41.647+0000
637 704 2012-08-10T02:49:19.288+0000

Jedge/person_knows_person/ordered_
by_source/adj_list/partl/chunkQ

Jedge/person_knows_person/ordered_by
_source/creationDate/part1/chunkO

638 375 2012-06-26T02:41:08.148+0000
793 884 2012-03-10T06:07:41.141+0000

Jedge/person_knows_person/ordered_
by_source/ad;_list/part]l/chunk]1

793

662

source destination

Jedge/person_knows_person/ordered_by
_source/creationDate/part1/chunk1

creationDate
2012-02-19T06:42:02.399+0000

901

252

2012-08-13T10:11:20.606+0000

Jedge/person_knows_person/ordered_

by_source/adj_list/partl/chunk?2

Jedge/person_knows_person/ordered_by
_source/creationDate/part]l/chunk?2

GraphAr File Format — Meta Files

Graphlnfo: ldbc_sample.graph.yml Vertexinfo: person.vertex.yml Edgelnfo: person_knows_person.edge.yml

1 label: person

1 name: ldbc_sample ?

. £ 2 chunk_size: 100

vertices: :

3 prefix: vertex/person/ 1 src_label: person

3 - person.vertex.yml 2 edge_label: knows
4 property_groups:

4 edges: . FFFTE RIS 3 dst_label: person

5 — person_knows_person.edge.yml 6 . FamEs 44 4 chunk_size: 1024

6 version: gar/vl . Ty 5 src_chunk_size: 100

: B 6 dst_chunk_size: 100
d EashEmalys TS 7 directed: false
9 refix: 1d '
p. Lol 8 prefix: edge/person_knows_person/

10 file_type: csv 9 adj lists:
11 - properties: 16 —_orderéd- frue 21 - ordered: true
12 — name: firstName 11 aligned_by: src 22 aligned_by: dst
13 data_type: string 15 prefix:_ordered by_source/ 23 prefix: ordered_by
14 is_primary: false 13 file type: csv 24 file_type: csv
15 - name: lastName 14 oroperty groups: 25 property_groups:
16 data_type: string 15 - prefix: creationDate/ 26 - prefix: creati
17 is_primary: false 16 file type: csv 27 file_type: csv
18 - name: gender 17 properties: 28 properties:
19 data_type: string 18 - name: creationDate 29 - name: crea
20 1s_primary: false 19 data_type: string 30 data_type:
21 prefix: firstName_lastName_gender, -p is_primary: false 31 is_primary
22 file_type: csv 32 version: gar/vl
23 version: gar/vl

Future of GraphAr

» It is currently open-sourced at https.//github.com/alibaba/GraphAr

 Support more file formats, more standard and user-defined data types.

» More graph features: RDF, time-series

» Encoding optimizations.

« Complete Spark suite to transform create GraphAr files.

» Integrations with popular graph database, such as Neo4j, Nebula, TuGraph, PyG ...
» Explore the use GraphAr for data lake of graphs.

« We aim to make GraphAr vendor-neutral (e.g., Apache Foundation) when it matures.
 Current contributors: Alibaba Damo Academy, Zhejiang Lab and Nebula Graph
* New contributors are welcome!

Conclusion

* GraphScope Flex 1s an on-going eftorts to make our graph computing stack more
composable to tackle diverse graph applications. Areas covered by this talk:

* A new query evaluation framework tfor a core subset of openCypher, Gremlin and GQL.
* Multiple language frontends
* An IR for graph queries (recursion not supported yet)
* A query optimizer based on Apache Calcite with a graph catalogue Glogue for CBO.
* Execution engines for qguery throughput and data parallel queries.

* A new storage layer:

* A common interface GRIN: https://github.com/GraphScope/GRIN
* A graph format for archiving graph data: (aim for Apache Incubator) https://github.com/alibaba/GraphAr

https://github.com/GraphScope/GRIN
https://github.com/alibaba/GraphAr

