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Applications across Graph Analytics, Traversal, and Learning

• More and more graph applications require more than just one type of workloads

• A simplified workflow for fraud-detection in Alibaba:

• Construct a property graph from raw data using SQL;
• Extract a subgraph using Gremlin;
• A label-propagation algorithm for identifying fraudulent entities;
• Graph sampling to conduct k-hop sampling by weight;
• Train a GNN model using TensorFlow or PyG

Real life graph applications often involve multiple types of graph 

computations.



FLASHBACK: GraphScope:  a Unified Engine for Big Graph Processing 

• A simple and unified programming interface (Gremlin + Python);

• A distributed dataflow runtime that enables a separate optimization (or family of optimizations) for each graph 
operation in one carefully designed coherent framework.

• An in-memory data store that automatically manages the representation, transformation, and movement of 
intermediate data.

• We adopt the language integration approach advocated by Python to integrate the graph operators into a 
general-purpose high-level programming interface. This approach allows us to seamlessly combine GraphScope 
with other data processing systems 

> helm install graphsco

> kubectl create -f gra
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However, real-life graph applications are even more  diverse 
and complex

• Multiplicity of Workloads: Graph analytics, interactive queries, pattern 
matching, and Graph Neural Networks (GNNs)
• Variety in Data Storage and Organization: Whether it's on-disk or in-

memory, mutable or immutable, distributed or transactional?
• Range of Programming Interfaces: GQL, openCypher or Gremlin? Pregel, 

Gather-scatter, GraphBLAS or PIE? pyG or DGL
• Diverse Deployment Modes and Performance Needs: Offline data 

analytical tasks? Online services?



Real-life graph applications are diverse and complex
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GraphScope Flex: A Graph Computing Stack with LEGO-Like Modularity

…

To address such diversities, we are developing the GraphScope Flex. It follows a modular and 
disaggregated design, where components are like LEGO bricks and user can easily make their customized 
builds and deployments.
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• How to support more query languages?

• Gremlin

• 100+ Steps…

• Cypher，GQL，…

• How to effectively optimize graph queries?

• How to support more types of workloads? Higher QPS or Data-parallel?

The interactive query processing stack
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How computing engines interact with storage engines in GraphScope?

With or without a common interface
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1. Vineyard: Optimizing Data Sharing in Data-Intensive Analytics. SIGMOD 23
2. Bridging the Gap between Relational OLTP and Graph-based OLAP. ATC 23
3. Graph Archive format (shown later)
4. A rocksDB based distributed on-disk graph storage



Understanding the complexity of graph storage abstraction is crucial
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are different as well.



The design of GRIN
• GRIN is a proposed standard graph retrieval interface in GraphScope

• The goal is to simplify the integrations between different computing engines and storage engines from 
M * N to M + N

• To achieve the goal:

• It only supports the read-path over an immutable graph/snapshot. (no WRITEs at the moment)

• Using a trait abstraction for graph elements (V, E, …), inspired by POSIX (e.g. a FD can and cannot do 
sth with it). API is written in C, which makes GRIN portable to engines written in different 
programming languages like Rust, Java and C++

• GRIN defines a set of handles such as vertex, edge,, and abstracts the operations (e.g., getting the 
adjacent edges of a vertex) as a set of APIs in different header files.

• C Macros and a YAML file to tell computing engines what features are supported by a storage.

• The handles and APIs are defined The APIs must be well-abstracted and low-level to avoid 
introducing excessive performance loss.



GRIN is still a work in progress

• The three computing engines (analytical, interactive and learning) in GraphScope are being 
rewrited to adapt their graph retrieval layer using GRIN APIs,.

• 3 (out of 5) storage engines are being adapted to provide their GRIN implementations, namely 
Vineyard1, GART2 and GraphAr in GraphScope

• The preliminary results shows that the performance overhead of GRIN is always less than 10%, and 
sometimes the performance is better if the original integration without GRIN is not designed or 
implemented carefully.

• Watch https://github.com/GraphScope/GRIN for progress.
• Further ahead, we plan to make GRIN support more external graph storage and provide a way to 

abstract a graph from other type of storages (tabular, …) while easier to use.

1. Vineyard: Optimizing Data Sharing in Data-Intensive Analytics. SIGMOD 23

2. Bridging the Gap between Relational OLTP and Graph-based OLAP. ATC 23

https://github.com/GraphScope/GRIN


GraphAr (short for “Graph Archive”) is a project that aims to make it easier for diverse applications 
and systems (in-memory and out-of-core storages, databases, graph computing systems, and 
interactive graph query frameworks) to build and access graph data conveniently and efficiently.
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Objectives

GraphAr is designed to serve two main scenarios:
• As a standardized file format for importing, exporting and archiving of the graph data which can be used by diverse 

existing systems, reducing the overhead when various systems co-work.

• As a direct data source for graph processing applications.

The GraphAr project provides:
• The GAR file format: a standardized system-independent file format for storing graph data.

• A set of libraries for reading, writing and transforming GAR files (presently available in C++ and Spark).

• Examples of how to use GraphAr to write graph algorithms, or collaborate with existing systems like GraphScope.



Features of GraphAr

• The file format supports the property graphs and different representations for the graph 
topology (COO, CSR and CSC).

• It is compatible with existing widely-used file formats including ORC, Parquet (and less 
ideally CSV).

• Apache Spark can be utilized to generate, load and transform GraphAr files.

• It is convenient for use in a variety of single-machine/distributed graph processing systems, 
databases, and other downstream computing tasks.

• It enables users to conveniently perform operations without modifying the payload files, 
such as appending new vertices, adding new properties, or constructing a new graph with a 
set of selected vertices and edges.



GraphAr File Format – Vertices
Physical table of vertices
• label: person, chunk size: 500 
• property groups: (id), (firstName, lastName, gender)



GraphAr File Format – Edges
Physical table of edges
• label: person-knows-person,  type: CSR
• chunk size: 1024,  property group: (creationDate) 



GraphAr File Format – Meta Files

GraphInfo: ldbc_sample.graph.yml VertexInfo: person.vertex.yml EdgeInfo: person_knows_person.edge.yml



Future of GraphAr

• It is currently open-sourced at https://github.com/alibaba/GraphAr

• Support more file formats, more standard and user-defined data types.
• More graph features: RDF, time-series
• Encoding optimizations.
• Complete Spark suite to transform create GraphAr files.
• Integrations with popular graph database, such as Neo4j, Nebula, TuGraph, PyG …
• Explore the use GraphAr for data lake of graphs.

• We aim to make GraphAr vendor-neutral  (e.g., Apache Foundation) when it matures.
• Current contributors: Alibaba Damo Academy, Zhejiang Lab and Nebula Graph
• New contributors are welcome!



Conclusion

• GraphScope Flex is an on-going efforts to make our graph computing stack more 
composable to tackle diverse graph applications. Areas covered by this talk:
• A new query evaluation framework for a core subset of openCypher, Gremlin and GQL.

• Multiple language frontends
• An IR for graph queries (recursion not supported yet)
• A query optimizer based on Apache Calcite with a graph catalogue Glogue for CBO.
• Execution engines for query throughput and data parallel queries. 

• A new storage layer:
• A common interface GRIN: https://github.com/GraphScope/GRIN
• A graph format for archiving graph data: (aim for Apache Incubator) https://github.com/alibaba/GraphAr

Scan to learn more from GraphScope github repo:

https://github.com/GraphScope/GRIN
https://github.com/alibaba/GraphAr

