

Benchmarking GraphDB with SNB & SPB

The experiences from passing SNB with a SPARQL engine and parallelizing SPB workloads at AWS

> Tomas Kovatchev and Atanas Kiryakov LDBC TUC Meeting, June 2023

Presentation Outline

o Social Network Benchmark

o Semantic Publishing Benchmark

Extending SNB compatibility to RDF & SPARQL

• Implementing SNB Interactive driver

• No imperative language or stored procedures based query execution

• GraphDB Path-search extension used for traversal

- Graph path search/traversal is very clumsy to implement in vanila SPARQL
- GraphDB's Path search extension is **compliant with SPARQL 1.1** syntax, unlike other triplestores

• Data loading with SNB Hadoop data generator

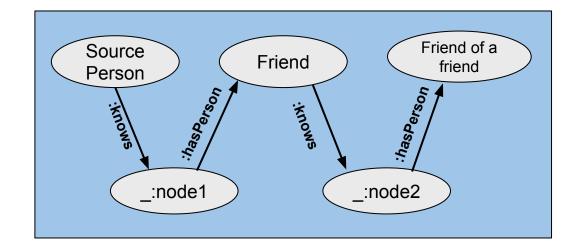
 \circ $\;$ Audited dataset generator with no modifications to data model

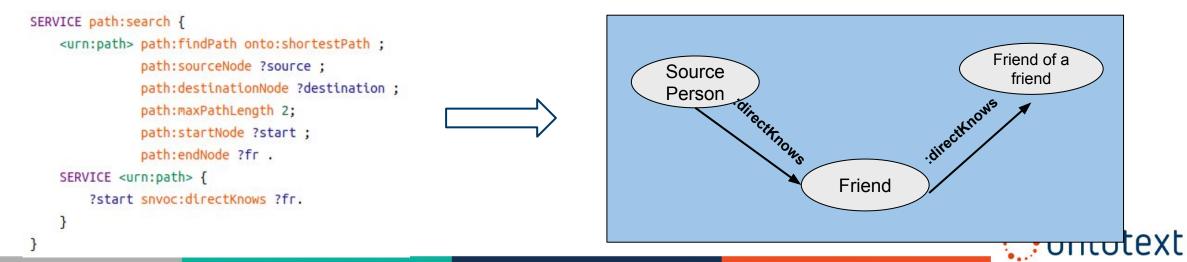
SNB Interactive Challenges

- Complex query plans with multiple JOINs and OPTIONAL clauses required
- Numerous aggregation queries and path traversals
- Multiple-hop queries matched with joins of related metadata
- Frequent data update queries
- Combined complex analytical with lightweight throughput queries

Ontotext's Approach

- Optimized All-path traversal memory utilization by leveraging our global entity pool
- Optimized Shortest-path traversal by implementing a greedy approach to iterate adjacency lists
- Used inference to materialize "shortcuts" in the graph


Queries SF10	An LPG engine (ms)	GraphDB (ms)	AVG reads Δ base
6: all path search	4,303.25	1,631.12	-62.1%
14: shortest path + weight	2,037.14	812.40	-60.1%


Optimizing query performance with inference

Shortest Path Extract - Q11 without Inference

Shortest Path Extract - Q11 with Inference (25x times faster)

GraphDB: The First RDF Engine to Pass SNB

Audited results:

- Scale factor 30 (SF30) a graph of 1.5 billion edges
- Workload: Interactive (14 queries)
- Hardware: AWS r6id.8xlarge server (256GiB RAM, Intel Xeon 8375C)
- 12 ops./sec. on a driver configured with 4 read and 4 write threads
 - Linear scalability the result with single agent is 3 ops./sec.

The first audited result for system with declarative query language!

Further reading: SNB main page: <u>https://ldbcouncil.org/benchmarks/snb/</u> Audited results are published at <u>https://ldbcouncil.org/benchmarks/snb-interactive/</u>

Presentation Outline

o Social Network Benchmark

o Semantic Publishing Benchmark

ontotext

Semantic Publishing Benchmark

- Replicates BBC's Dynamic **Semantic Publishing approach** through
 - BBC implemented this first for their FIFA World Cup website in 2010
 - Large volume of streaming content, e.g. creative works and media assets
 - Enriching content with metadata that describes it and links it to reference knowledge information about entities: players, teams, groups, matches
 - **Regular updates to the metadata** and less often updates to the reference knowledge
 - Aggregation queries, that retrieve content according to various criteria
- Challenges multiple possible bottlenecks in engine performance (full scans etc.)
- Combines **frequent updates** with **inference**, **geospatial constraints** and **FTS**

GraphDB combines high-availability and scalability on SPB

Audited benchmarks runs:

- Two scale factors:
 - Scale factor 5 (SF5, **SPB 1B**) a graph of 1.4B edges, after inference materialization
 - Scale factor 3 (SPB 256M) a graph of 400M edges, after inference materialization
- Workload: Aggregation agents (12 queries) + Editorial agents (2 updates queries)
- Hardware: AWS r6id.8xlarge server (256GiB RAM, 32 vCPUs, Intel Xeon 8375C)
- Two configurations: **single server** and high-availability replication **cluster of 3 nodes**

Further reading: SPB main page with audited results: <u>https://ldbcouncil.org/benchmarks/spb/</u>

Cloud-ready graph database within minutes

- Quick & easy to set up and replicate benchmark results
 - Available helm chart and docker images both for single instance and clustered setups
 - No parameter tunings required to match performance from audited results

• Scaling performance with cloud hardware

AWS Cloud Instance	Cost/ hour	SPB 1B 16 read agents (QPS)
i4i.4xlarge	\$0.89	72
m6id.8xlarge	\$1.20	104
r6id.8xlarge	\$1.52	130

Notes on the table:

- Unaudited data in the table above
- GraphDB Single instance with 80 GiB heap
- 1Yr Reserved as of June 2023

Read/Write Agents	SPB 256M R/W Ops	SPB 1B R/W Ops
0/4	0/38	0/17
8/4	217/31	69/13
16/4	335/26	106/10
24/0	413/0	158/0

Hardware: r6id.8xlarge

Enterprise grade graph database within minutes

Scaling throughput with # of concurrent users in a cluster

Read/Write agents	SPB 256M QPS (Queries per Second)	SPB 1B QPS (Queries per Second)
16/0	467	181
32/0	755	305
64/0	986	409

* GraphDB 3-node high-availability cluster, r6id.8xlarge instances with 32 vCPUs

- Serving ~1000 QPS to 64 clients with high availability cluster
- Effective query load balancing across the nodes in the cluster
- Sublinear query performance for growing datasets

Summary of Results & Findings

GraphDB is versatile and capable to handle diverse workloads:

- Transaction and analytical workloads
- Graph-analytics, logical reasoning, FTS, geo-spatial ... all at once
- High-availability and vertical scalability

Social Network Benchmark (SNB):

- GraphDB is the first RDF engine to pass graph analytics-heavy benchmark
- The first audited results for system with declarative query language (not C++)

Semantic Publishing Benchmark (SPB):

- Read throughput scales well given stronger AWS instance
- Great horizontal scalability in a cluster: over 1000 QPS!

Thank you!

SMOOTH DATA INTEGRATION

