
11

Graphs (GraphBLAS) and storage (TileDB) as Sparse
Linear algebra

http://graphblas.org

Tim Mattson
Intel Labs

≡

Notices and Disclaimers

Forward-Looking Statements. Statements in this presentation that refer to business outlook, plans, and expectations are forward-looking statements that involve risks
and uncertainties. Words such as "anticipate," "expect," "intend," "goal," "plans," "believe," "seek," "estimate," "continue,“ “committed,” “on-track,” ”positioned,” “ramp,”
“momentum,” “roadmap,” “path,” “pipeline,” “progress,” “schedule,” “forecast,” “likely,” “guide,” “potential,” “next gen,” “future,” "may," "will," “would,” "should," “could,”
and variations of such words and similar expressions are intended to identify such forward-looking statements. Statements that refer to or are based on estimates,
forecasts, projections, uncertain events or assumptions, including statements relating to Intel’s strategy and its anticipated benefits; business plans; financial
projections and expectations; total addressable market (TAM) and market opportunity; manufacturing expansion and investment plans; future manufacturing capacity;
future products, technology, and services, and the expected availability and benefits of such products, technology, and services, including product and manufacturing
plans, goals, timelines, ramps, progress, and future product and process leadership and performance; future economic conditions; future impacts of the COVID-19
pandemic; plans and goals related to Intel’s foundry business; future legislation; future capital offsets; pending or future transactions; the proposed Mobileye IPO;
supply expectations including regarding industry shortages; future external foundry usage; future use of EUV and other manufacturing technologies; expectations
regarding customers, including designs, wins, orders, and partnerships; projections regarding competitors; ESG goals; and anticipated trends in our businesses or the
markets relevant to them, including future demand, market share, industry growth, and technology trends, also identify forward-looking statements. Such statements
involve many risks and uncertainties that could cause actual results to differ materially from those expressed or implied in these forward-looking statements. Important
factors that could cause actual results to differ materially are set forth in Intel's earnings release dated January 26, 2022, which is included as an exhibit to Intel’s Form
8-K furnished to the SEC on such date, and in Intel's SEC filings, including the company's most recent reports on Forms 10-K and 10-Q. Copies of Intel’s SEC filings
may be obtained by visiting our Investor Relations website at www.intc.com or the SEC's website at www.sec.gov. All information in this presentation reflects
management’s views as of April 20, unless an earlier date is indicated. Intel does not undertake, and expressly disclaims any duty, to update any statement made in
this presentation, whether as a result of new information, new developments or otherwise, except to the extent that disclosure may be required by law.

Intel technologies may require enabled hardware, software or service activation. No product or component can be absolutely secure. Your costs and results may
vary. Product and process performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex
and www.Intel.com/ProcessInnovation. Future product and process performance and other metrics are projections and are inherently uncertain.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
2

33

Human Readable Disclaimer

• The views expressed in this talk are those of the speaker
and not his employer.

• This is a speculative, academic style talk … I am not
describing or even suggesting ANYTHING about future
products from Intel!!!

I work in Intel’s research labs. I don’t build products.
Instead, I get to poke into dark corners and think silly

thoughts… just to make sure we don’t miss any great ideas.

I have a really GREAT Job!!!!

4

A graph as a matrix
• Adjacency Matrix: A square matrix (usually sparse) where rows and columns are labeled by

vertices and non-empty values are edges from a row vertex to a column vertex

- ★ - ★ - - -

- - - - ★ - ★

- - - - - ★ -

★ - ★ - - - -

- - - - - ★ -

- - ★ - - - -

- - ★ ★ ★ - -

A =
From
vertex
(rows)

To vertex
(columns)

By using a matrix, I can turn graph algorithms into linear algebra.

5

3

2

10

46

GraphBLAS Math is a lot of fun, but without a
software ecosystem the impact from all this

cool math is negligible.

6

The Foundation of our GraphBLAS ecosystem:
SuiteSparse … C libraries for GraphBLAS and LAGraph

• Open-Source C library (Apache 2.0) conforms to the v2.0 C GraphBLAS specification.
• High performance, internal parallelism (OpenMP) for easy-to-code, fast Graph Algorithms
• Support from NSF, MIT Lincoln Labs, Intel, Nvidia, IBM, MathWorks, Redis Labs, and Julia Computing

https://people.engr.tamu.edu/davis/GraphBLAS.html

7

GraphBLAS Implementations

Third Party names are the property of their owners

SuiteSparse library (Texas A&M): First fully conforming
GraphBLAS release

• http://faculty.cse.tamu.edu/davis/suitesparse.html

GraphBLAS C (IBM): the second fully conforming release
• https://github.com/IBM/ibmgraphblas

GBTL: GraphBLAS Template Library (CMU/SEI/IU/PNNL):
GraphBLAS C++ implementation

• https://github.com/cmu-sei/gbtl

GraphBLAST: A C++ implementation for GraphBLAS for
GPUs (UC Davis)

• https://github.com/gunrock/graphblast

Python bindings:
• PyGB: A python wrapper around GBTL (UW/PNNL/CMU)

• https://github.com/jessecoleman/gbtl-python-binding
• pygraphblas: A python wrapper around SuiteSparse GraphBLAS

• https://github.com/michelp/pygraphblas
• Python-graphblas: Anaconda’s python wrapper around SuiteSparse

GraphBLAS
• https://github.com/python-graphblas/python-graphblas

pggraphblas: A PostgreSQL wrapper around SuiteSparse
GraphBLAS

• https://github.com/michelp/pggraphblas

Julia wrapper around SuiteSparse
• SuiteSparseGraphBLAS.jl

Matlab and Julia wrappers around SuiteSparse GraphBLAS
• https://aldenmath.com

Implementations in progress:
• Intel and SEI/CMU are working on a C++

implementation. We will have a preliminary
release running on clusters of CPUs, GPUs, and
multiple CPUs

• And soon Intel will have a Go implementation
(wrapping SuiteSparse)

http://faculty.cse.tamu.edu/davis/suitesparse.html
https://github.com/IBM/ibmgraphblas
https://github.com/cmu-sei/gbtl
https://github.com/gunrock/graphblast
https://github.com/jessecoleman/gbtl-python-binding
https://github.com/michelp/pygraphblas
https://github.com/python-graphblas/python-graphblas
https://github.com/michelp/pggraphblas
https://aldenmath.com/

8

Multilanguage support by wrapping SuiteSparse GraphBLAS

T matrix of triangles of A
T all zero, but 1 where T is non-zero
1 Matrix of all ones I identity matrix
̆ The math

Julia

pygraphblas

Third Party names are the property of their owners

9

Multilanguage support by wrapping SuiteSparse GraphBLAS

T matrix of triangles of A
T all zero, but 1 where T is non-zero
1 Matrix of all ones I identity matrix
̆ The math

Julia

pygraphblas

Third Party names are the property of their owners

Expressivity/productivity in programming languages should be
measured by how clear ”the math” maps onto code.

These interfaces are highly productive by that measure

10

LAGraph: A curated collection of high level Graph Algorithms

GrAPL 2019

Graph Algorithms built on top of the GraphBLAS.

Official release of LAGraph library v1.0 late 2021

Third Party names are the property of their owners

11

Integration of GraphBLAS with NetworkX
Jim Kitchen (Anaconda) and Erik Welch (Nvida)

The k-truss is the maximal induced subgraph of G with
each edge belonging to at least k-2 triangles.

This takes 10.7 seconds

This takes 0.5 seconds

This takes 0.28 seconds

8000 nodes, ~ 640_000 edges

conda install -c conda-forge graphblas-algorithms
 -or-
pip install graphblas-algorithms (Linux Only)

12

Hardware: NVIDIA DGX-1
CPU: Dual 20 Core Intel Xeon E5-2698 v4 2.2GHz
RAM: 512 GB 2133 MHz DDR4 RDIMMBenchmarks: GraphBLAS vs NetworkX

Speed-up
amazon

 google
 pokec

 enron
 preferentialAttachment

 caidaRouterLevel

 dblp cita
tionCiteseer

 coAuthorsD
BLP

 as-Skitte
r

 coPapersCiteseer

 coPapersDBLP

of vertices 262,111 916,428 1,632,804 36,692 100,000 192,244 326,186 268,495 299,067 1,696,415 434,102 5,404,486
of edges 1,234,877 5,105,039 30,622,564 367,662 999,970 1,218,132 1,615,400 2,313,294 1,955,352 22,190,596 32,071,440 30,491,458

degree centrality 32 48 31 29 60 140 65 180 200 530 190 220 0.25-1 s
reciprocity 290 370 470 230 600 840 1600 1000 1400 1700 2200 2200 3-5 min
generalized degree 140 160 190 150 220 150 1700 500 360 10-30 min
k-truss(k=5) 53 800 140 130 150 170 350 2000 1100 30-100 min

pagerank 130 340 930 50 240 250 390 580 810 1800 3900 4200 1 min
eigenvector centrality 53 120 150 61 650 740 1300 1100 1300 2000 5200 5300 30-100 min
katz centrality 420 530 830 300 1100 1400 1700 2100 2300 3400 7500 7600 hours-days

clustering 160 900 620 370 370 290 280 540 380 11000 2600 2100 10-30 min
transitivity 180 270 440 830 970 900 730 1600 970 20000 6600 5000 10-30 min
square clustering 1200 950 1400 1800 1100 1300 DNF DNF 21000 days-weeks?

pagerank (scipy) 3.4 14 23 2.1 3.3 3.8 6.3 9.8 11 20 23 27 0.25-1 s

N/A

N/A

Network
X run
times

(Requires Undirected Graph)

Moving Beyond Simple Graphs

14

Different Types of Graphs

• Simple Graphs: an edge connects
one source to one destination.

• Hypergraphs: at least one edge from
one source to multiple destinations.

• Multigraphs: Includes edges that share
end points.

6

4

3

21

5
7

All these graph types can be handled with the GraphBLAS

15

Hypergraph:
Multiple Outputs
from edge 12

Input
Value

Output
Values

I O
Two Incidence Matrices can
represent a wide range of graphs

UINT64 UINT64
Graph/Array source: Jananthan, Dibert, Kepner, Constructing Adjacency Arrays from Incidence Arrays, GABB’2017

A

C

B

D E

F

G

A B C D E F G A B C D E F G

Multigraph:
Multiple edges that
share end points

88

Adjacency matrices from incidence matrices

16

Edge

Ed
ge

IT
O

Ve
rt
ex

Vertex

In
pu
t

Output

Sum of output
from (ID ➜ OC)PLUS_SECOND Semiring

Adjacency can be projected from two
Incidence Matrices with Matrix
Multiplication: ITO=IO

IO

#!python
with PLUS_SECOND:

IO = I.T @ O

A B C D E F G

A B C D E F G
A
B
C
D
E
F
G

A
B
C
D
E
F
G

Graph/Array source : Jananthan, Dibert, Kepner, Constructing Adjacency Arrays from Incidence Arrays, GABB’2017

Graphony: Queries over property graphs

Print edges that match “bob” “manages” ”jane”:

Source: https://github.com/Graphegon/Graphony 17Michel Pelletier

Speaking of property graphs …

● A graph database built on
top of GrapghBLAS … one of
our major, commercial
success stories for the
GraphBLAS

● Supports a subset of the
Cypher query language …
mapping elements of the
language onto linear algebra
operations.

18https://redis.io/docs/stack/graph/Third Party names are the property of their owners

The lesson from Edgar Codd so long ago was the power
of an algebra to unify disparate approaches to a

problem.

Relational algebras are great at data management, but
they suck at computation. It would be stupid to build a

PDE solver around a relational algebra.

So if we want ”one algebra to rule them all”, what should
be our algebra?

PDE: Partial Differential Equation

20

Linear Algebra: One Algebra to rule them all

• Computational physics is basically applied linear algebra
– We create differential equations from the physics, discretize domains to replace derivatives with

differences, and solve resulting algebraic equations.
– Since the differential operators are replaced by modest sized stencils, the arrays in physics problems

are sparse (with a small number of exceptions such as in ab initio quantum chemistry).

• Graphs are linear algebra, databases map onto linear algebra, science and engineering is
linear algebra … if you go deep enough, in almost any field, you end up doing linear
algebra.

• All we need is a good library for Sparse Linear Algebra.

… to address data management, we need a storage
engine to work with GraphBLAS

SuiteSparse to the rescue:
SuiteSparse versus the Intel MKL sparse library

Hardware: NVIDIA DGX-1
CPU: Dual 20 Core Intel Xeon E5-2698 v4 2.2GHz
RAM: 512 GB 2133 MHz DDR4 RDIMM

SuiteSparse GraphBLAS traditional sparse linear algebra as well as graphs.

All we need is a good storage engine for an end-to-end solution

TileDB an data storage manager: Optimized for Sparse Arrays

x

y

cell

empty cell

dimensions
tile

attribute values
(a1, a2, …, am)

Logical representation Physical representation

(x, y) a1

…

am
celltile

Filescoordinates

Tile: Atomic unit of processing

Manage array storage as tiles of different shape/size in the index space, but with ~equal number
of non-empty cells

The TileDB Array Data Storage Manager, Stavros Papadopoulos, Kushal Datta, Samuel Madden, Tim Mattson, VLDB 2017

TileDB Inc website: https://tiledb.io
Third Party names are the property of their owners 23

24

Conclusion

• SuiteSparse GraphBLAS + TileDB as a storage engine is the foundation of an end-to-end
framework for data analytics.

• All that’s missing is a query engine supporting GQL that maps onto GraphBLAS

• I am looking for collaborators to implement the above (interface GraphBLAS to TileDB and
combine with a GQL query engine). This would be fun and impactful. Let me know if you
want to get involved.

Third Party names are the property of their owners

