
FinBench: The new LDBC benchmark targeting financial scenario

Shipeng Qi

(with contributions from members of the FinBench Task Force)

Benchmark Overview

FinBench Motivation

• SNB, Social Network Benchmark, is designed based on social network

scenarios, which is limited when applied to the financial service industry.

• FinBench objective is to design a high-quality benchmark for evaluating the

performance of graph database systems in financial scenarios, e.g. anti-

fraud and risk control, based on financial data patterns and query patterns.

Key Features in FinBench
• Dataset

• PowerLaw distribution

• Multiplicity

• Hub Vertex

• Transaction Workload

• Read-write query

• Special graph patterns

• Time-window filtering

• Recursive path filtering

• Truncation

Brief of the initial version

• Standard Design: all key features in proposal implemented

• Workload: Transaction Workload, including 12 complex read queries, 6 simple

read queries, 19 write queries and 3 read-write queries

• Dataset: Up to SF10 scale supported

• Implementation on 3 systems: TuGraph, Galaxybase, and UltipaGraph

• Collaboration: 9 vendors in Task Force and 6 developers

Data Design and
Generated Datasets

● Data Schema

● Data Distribution

● Datasets Statistics

Data Schema

Data Distribution: Transfer Edge

● Degree: PowerLaw Distribution

● Asymmetric directed graph

● Hub vertex: degree increases with scale

○ MaxDegree = 1000 in SF1

○ MaxDegree = 10000 in SF10

○ Larger scale to be supported

Profiling of SF0.1

Transaction Workload

● Transaction Workload

● Time Window Filtering

● Recursive Path Filtering

● Read-Write Query

● Truncation

● Query Mix

● Transaction Workload Driver

Transaction Workload
Scenario: financial activities among accounts, persons, companies, loans and media

Queries:

• 12 complex reads: match exact patterns including cycles and trees(see next slide)

starting from one or two vertices

• 6 simple reads: discover the neighbourhood of an Account node

• 19 write queries: inserts, updates, deletes(cascade deletion)

• 3 read-write queries: transaction-wrapped complex reads

Transaction Workload: Example Patterns

Cycle
[Ref: Transaction Complex Read 4]

Tree
[Ref: Transaction Complex Read 6]

chain
[Ref: Transaction Complex Read 11]

Time Window Filtering

• Fact: queries only look back in a limited

time window

• Filtering: filter edges between startTime

and endTime in traversal

Blocked medium related accounts
[Ref: Transaction Complex Read 1]

Recursive Path Filtering

Assuming: A -[e1]-> B -[e2]-> ... -> X

• Timestamp order: e1 < … < ei

• Amount order: e1 > … > ei

Transfer trace after loan applied
[Ref: Transaction Complex Read 8]

Read-Write Query

• Transaction-wrapped complex
reads (risk control stategy)

• If the complex read matches,
commit the transaction with write
query. Otherwise, transaction
abort

Transfer under transfer cycle detection strategy
[Ref: Transaction Read Write 3]

Truncation
● Truncate less-important edges to avoid

complexity explosion when traversing

● Truncating is actually sampling

● TruncationLimit and truncationOrder is

defined to ensure consistency of results.

For example, keep only the top 100 edges in

order of timestamp descending

src :
Account

dst1l1 :
Account

dst1l2 :
Account

…

dst1l3 :
Account

dst2l1 :
Account

dst2l2 :
Account

…

dst2l3:
Account

Benchmark Suite

Datasets Statistics
Supported Scale Factor |V| |E|

0.01 8663 61674

0.1 64485 610658

0.3 192971 1830891

1 643241 6091820

3 1928439 18243343

10 6069955 51889416

Note: please see the tables in Appendix A for detailed statistics

FinBench datasets of SF0.01 to SF10 are published at the Google Drive. These datasets
were all generated using csv serializers in the initial version.

https://drive.google.com/drive/folders/1tURBIJE56ZNC9YvMtug31peYD5csizCa?usp=sharing

Transaction Workload Driver

1. Generate validation data set

● single-threaded, sequential execution
● output: validation results

2. Validate implementation

● single-threaded, sequential execution
● input: validation results
● output:

○ passed/failed validation
○ if failed: expected vs. actual results

3. Execute benchmark

● multi-threaded, concurrent execution

● Use TCR to control the load scale

● output:
○ passed/failed schedule audit
○ throughput (operations per second)
○ per-query performance results

Inherited from SNB Interactive driver, the driver has 3 modes of operation, all starting with a
database containing the initial data set.

Query Mix
Inherited from SNB design:

• Write queries and read-write queries: operations issue times generated by the
data generator

• Complex read queries: complex reads times are expressed in terms of update
operations (update frequencies)

• Simple read queries: a sequence of short reads follows each complex read
instance

Implementations and Standard-establishing Audits

Implementations and Standard-establishing Audits

system data model language

graph Cypher

graph Cypher

graph UQL

● Packages and Reports available at
https://drive.google.com/drive/folders/1OQXrz2CkQke7SE9KWBiMeEn0KYx-QCOl

● All systems passed cross-validation

https://drive.google.com/drive/folders/1OQXrz2CkQke7SE9KWBiMeEn0KYx-QCOl

Roadmap and acknowledgement

Roadmap

Version Estimated Time Features

✅ 0.1.0 Mid of 2023 • Runnable and auditable

0.2.0 End of 2023
• Larger scale data generation
• Optimize parameter curation
• Query mix profiling and design

0.3.0 2024 • New workload: Analytics workload

Acknowledgement

Name Affiliation

Shipeng Qi Ant Group

Bing Tong CreateLink

Changyuan Wang Vesoft

Yang Bin Ultipa

Shenghao Zhang StarGraph

Task Force
Members

Developers

Appendix

Work Chart: Goals of FinBench
Intended output

• The intended output is LDBC FinBench, a precise specification for evaluating graph database

query and computation performance based on financial scenarios. It is capable of

independent implementations using various graph database products, intended for approval

as one of LDBC Standards. https://github.com/ldbc/ldbc_finbench_docs

Work product
• Software for data generation：https://github.com/ldbc/ldbc_finbench_datagen

• Software for query driver：https://github.com/ldbc/ldbc_finbench_driver

• Reference implementation：https://github.com/ldbc/ldbc_finbench_transaction_impls

https://github.com/ldbc/ldbc_finbench_docs
https://github.com/ldbc/ldbc_finbench_datagen
https://github.com/ldbc/ldbc_finbench_driver
https://github.com/ldbc/ldbc_finbench_transaction_impls

Resources

• Specification: https://github.com/ldbc/ldbc_finbench_docs

• Benchmark Suite

• https://github.com/ldbc/ldbc_finbench_driver

• https://github.com/ldbc/ldbc_finbench_datagen

• https://github.com/ldbc/ldbc_finbench_transaction_impls

• https://github.com/ldbc/ldbc_finbench_acid

• Datasets: https://drive.google.com/drive/folders/1tURBIJE56ZNC9YvMtug31peYD5csizCa?usp=sharing

• Certification audit packages: https://drive.google.com/drive/folders/1OQXrz2CkQke7SE9KWBiMeEn0KYx-

QCOl?usp=sharing

https://github.com/ldbc/ldbc_finbench_docs
https://github.com/ldbc/ldbc_finbench_driver
https://github.com/ldbc/ldbc_finbench_datagen
https://github.com/ldbc/ldbc_finbench_transaction_impls
https://github.com/ldbc/ldbc_finbench_acid
https://drive.google.com/drive/folders/1tURBIJE56ZNC9YvMtug31peYD5csizCa?usp=sharing
https://drive.google.com/drive/folders/1OQXrz2CkQke7SE9KWBiMeEn0KYx-QCOl?usp=sharing
https://drive.google.com/drive/folders/1OQXrz2CkQke7SE9KWBiMeEn0KYx-QCOl?usp=sharing

Dataset statistics
V/E Entity SF0.01 SF0.1 SF0.3 SF1 SF3 SF10
V account 2633 26347 79199 264075 791769 1980883
V company 2633 4000 12000 40000 120000 300000
E companyApplyLoan 524 5332 15761 52820 158678 397060
E companyGuarantee 248 2315 7123 23870 71716 179526
E companyInvest 860 8639 25853 86092 259884 650190
E companyOwnAccount 864 8805 26356 88119 264352 660625
E deposit 5199 51686 153521 512680 1534595 3829905
V loan 1597 16138 47772 159166 476670 1189072
E loanTransfer 4886 49180 145679 484657 1453874 3625556
V medium 1000 10000 30000 100000 300000 2000000
V person 800 8000 24000 80000 240000 600000
E personApplyLoan 1073 10806 32011 106346 317992 792012
E personGuarantee 469 4694 14221 47935 144064 359283
E personInvest 1650 17296 52002 174064 520584 1300980
E personOwnAccount 1769 17542 52843 175956 527417 1320258
E repay 5046 50495 149559 497033 1488916 3715487
E signIn 4384 44540 134532 451362 1350759 8996781
E transfer 14145 138209 411882 1379527 4136803 11005032
E withdraw 20557 201119 609548 2011359 6013709 15056721

ACID Test Suite

• Based on the “ACID Test” work in LDBC SNB

• Atomicity and Isolation Test: Based on failing cases

• Consistency and Durability Test

• Execute the benchmark workload for duration T

• Inject failure(e.g. a power failure, software crash, reboot, etc)

into tested system

• After the restart of system, check if all the last committed

data survive

• Check if all the constraints (uniquness, precomputed

properties, indices) are not violated

Atomicity and Isolation Test

Auditing rules
Audit workflow:

● Start from ACID to find problems earlier
● Contract -> Audit -> Review -> Publish

Audited benchmark results:

● Produced by an independent auditor
● Reviewed by Task Force Lead and LDBC
● Published as “LDBC benchmark results”

Auditor selection:

● Independent with no conflict of interest
● Provide COI if needed considering auditors are from

vendors

New Chokepoint Example #1

Assuming: A -[e1]-> B -[e2]-> ... -> X

§ Timestamp order: e1 < e2 < … < ei

§ Amount order: e1 > e2 > … > ei

§ Time window: ei-1 < ei < ei-1 +△

[LANG] Language Features: Recursive path filtering pattern
More flexible expression is wished to support this filtering pattern.

New Chokepoint Example #2

[STORAGE] Data Access Locality: Temporal access locality and performance
Boost the time-window filtering with well-sorted data in storage layer

LabelId TemporalId DstVid EId

VertexUid : OutEdgeUid OutEdgeUid InEdgeUid

SrcVid

OutEdgeUid InEdgeUid

