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Outline
• Background & Motivation
• Graphs can be represented as matrices
• Basic graph operations can be performed with linear algebra
• These operations can be composed to implement useful algorithms
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The GraphBLAS Application Programming Interface (API)

BLAS

Hardware architecture

Numerical applications

LINPACK/LAPACK

API: Separation of concerns

Goal: separate the concerns of hardware/library & application designers.

1979: BLAS Basic Linear Algebra Subprograms (BLAS 2 ’88, BLAS 3 ’90)
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The GraphBLAS API

BLAS

Hardware architecture

Numerical applications

LINPACK/LAPACK

API: Separation of concerns

Goal: separate the concerns of hardware/library & application designers.

1979: BLAS Basic Linear Algebra Subprograms (BLAS 2 ’88, BLAS 3 ’90)
2001: Sparse BLAS an extension to BLAS (little uptake)



DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution. 6© 2023 Carnegie Mellon University

The GraphBLAS API

BLAS GraphBLAS

Hardware architecture Hardware architecture

Numerical applications Graph analytical apps

LAGraphLINPACK/LAPACK

Goal: separate the concerns of hardware/library & application designers.

1979: BLAS Basic Linear Algebra Subprograms (BLAS 2 ’88, BLAS 3 ’90)
2001: Sparse BLAS an extension to BLAS (little uptake)
2013: GraphBLAS an effort to define standard building blocks

 for graph algorithms in the language of linear algebra

API: Separation of concerns API: Separation of concerns
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Book — Papers — GraphBLAS API version — SuiteSparse:GraphBLAS releases
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GraphBLAS Primitives
• Basic objects (opaque types)

– Matrices (sparse or dense), vectors (sparse or dense), algebraic operators (semirings)
• Fundamental operations over these objects

…plus reduction, transpose, Kronecker product, filtering, transform, etc.

Sparse matrix times 
sparse matrix

Sparse matrix times 
sparse vector

Element-wise 
multiplication 

(and addition)

Sparse matrix 
extraction 

(and assignment)
.
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Graph Operations as Matrix Operations
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• Matrix-vector multiply à find neighbors
- In-neighbors:     use  A
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many graph algorithms.
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One more thing… write masks: 𝐦
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ANOTHER feature of GraphBLAS: 
All operations support a write mask.

 𝐟′ 𝐦 = 𝐀⊤⨁.⨂𝐟

=

One more thing… write masks: 𝐦
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Algorithm: Breadth-First Search (BFS)

0

1

1



DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution. 18© 2023 Carnegie Mellon University

𝐟

𝐀!� � � � � � �
� l
� l
� l l l
� l l
� l l
� l l
� l

� l
�
�
�
�
�
�

𝐯

𝐟 𝑠𝑟𝑐 = l

�

�

��

� �

�

Example: Breadth-First Search (levels)



DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution. 19© 2023 Carnegie Mellon University

Example: Breadth-First Search (levels)
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Example: Breadth-First Search (levels)
level = 0
 𝐯 += level	 ∗ 	𝐟
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Example: Breadth-First Search (levels)
level = 0
 𝐯 += level	 ∗ 	𝐟
	𝐟′ /𝐯 = 𝐀⊤⨁.⨂𝐟 // Boolean semiring



DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution. 22© 2023 Carnegie Mellon University

�

�

��

� �

�

0 𝐀!� � � � � � �
� l
� l
� l l l
� l l
� l l
� l l
� l

�
� l
�
� l
�
�
�

0𝐟 𝐯

l

l

𝐟′#𝐯

Example: Breadth-First Search (levels)
level = 0
 𝐯 += level	 ∗ 	𝐟
	𝐟′ /𝐯 = 𝐀⊤⨁.⨂𝐟
	𝐟 = 𝐟′
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level = 3
 𝐯 += level	 ∗ 	𝐟
	𝐟′ /𝐯 = 𝐀⊤⨁.⨂𝐟
	𝐟 = 𝐟′
	if	 𝐟.empty()	return	v

Example: Breadth-First Search (levels)

3
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• Input: adjacency matrix 𝐀 (Boolean), source vertex 𝑠𝑟𝑐 (integer)
• Output: visited vertices vector, 𝐯 (integer)
• Workspace: frontier vector 𝐟 (Boolean)

1. 	𝐟 𝑠𝑟𝑐 = true
2.  level = 0
3.  while	 ! 𝐟.empty()
4.  𝐯	 += level	 ∗ 	𝐟
5.  𝐟 <𝐯 = 𝐀⊤⨁.⨂𝐟 // using the Boolean semiring (OR.AND)

6.       ++level

Example: Breadth-First Search (levels)
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Graph applications

Bindings (e.g., python)

Resources/Activities (some covered in the next talk?)
● C API Specification

○ https://github.com/GraphBLAS/graphblas-api-c

● C API Implementation: SuiteSparse:GraphBLAS
○ https://github.com/DrTimothyAldenDavis/GraphBLAS

● LAGraph Algorithms Repository
○ https://github.com/GraphBLAS/LAGraph

● Language Bindings: python, Julia, postgres, etc
○ https://github.com/python-graphblas/python-graphblas

○ https://github.com/JuliaSparse/SuiteSparseGraphBLAS.jl

○ https://github.com/michelp/pggraphblas

● IN PROGRESS: C++ API Specification and Reference Lib.
○ https://github.com/GraphBLAS/graphblas-api-cpp

○ https://github.com/GraphBLAS/rgri

GraphBLAS Implementations
(e.g., SuiteSparse)

Hardware Platforms: CPU, GPU, etc.

LAGraph

API: Separation of concerns

NetworkX
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Website: http://graphblas.org
• Lists workshops and conferences
• Links to the latest API Specifications
• Teams developing implementations
• Other useful resources

Mailing list: Graphblas@lists.lbl.gov
• Hosted by LBL  (mailto:abuluc@lbl.gov)
• Join the Forum by joining the list

Monthly teleconference:
• Second Friday of every month, 12pm Eastern Time
• Send email (mailto:kepner@ll.mit.edu) to receive the calendar invite and Zoom ID.

Questions? Scott McMillan
Principal Research Engineer

Advanced Computing Lab
AI Division

Software Engineering Institute
Carnegie Mellon University

mailto: smcmillan@sei.cmu.edu 

http://graphblas.org/
mailto:Graphblas@lists.lbl.gov
mailto:abuluc@lbl.gov
mailto:kepner@ll.mit.edu
mailto:smcmillan@sei.cmu.edu


DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution. 29© 2023 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA  15213

DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution.

Backups



DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution. 30© 2023 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA  15213

DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution.

Graphs (GraphBLAS) and 
Storage (TileDB) as Sparse Linear Algebra

Timothy G. Mattson, Intel
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Graph Algorithms and Linear Algebra

This is not a new idea
• At least since the 1950’s 
• There is even has a book.

Benefits of graphs as linear algebra
• Well suited to memory hierarchies of modern 

microprocessors
• Can utilize decades of experience in 

distributed/parallel computing from linear 
algebra in supercomputing.

• Easier to understand … for some people.

2011
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SuiteSparse:GraphBLAS:
An Implementation of the C API

Tim Davis, Texas A&M University
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• Conforms to the v2.0 C API (Nov 2021)

• New features:  
• faster hypersparse matrices (the “hyperhash”, avoids binary search), in v7.3.0beta 
• pack/unpack (O(1)-time move semantics)
• named types and operators (for future JIT)
• matrix and vector sort
• eWiseUnion (like eWiseAdd but with 2 scalars; all entries in output go through the operator)
• matrix and vector iterators
• matrix reshape

• Performance: 
• GrB_mxm, particularly with sparse-times-dense or dense-times-sparse.  AVX2 and AVX512 exploit
• faster MATLAB interface

• Port to Octave 7

• Supported by Intel, NVIDIA, Redis, MIT Lincoln Lab, MathWorks, Julia Computing

SuiteSparse:GraphBLAS v7.4.x
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SuiteSparse versus the Intel MKL sparse library
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• CUDA acceleration (with J. Eaton and C. Nolet, NVIDIA): 3x to 9x speedup in GrB_mxm
• Julia integration (just announced v0.7), replacing Julia SparseArrays
• more MATLAB integration

• further Python integration
• JIT for faster user-defined types and operations
• aggressive non-blocking mode, kernel fusion

• x=A\b over a field

• more built-in types (FP16, complex integers, …)

• faster kernels (GrB_mxm for sampled dense-dense matrix multiply)
• matrices with shallow components

Work in progress and future work

https://github.com/DrTimothyAldenDavis/GraphBLAS
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LAGraph: graph algorithms library

Tim Davis, Scott McMillan, Gabor Szarnyas, 
Tim Mattson, Jim Kitchen, Eric Welch, 
David Bader, Roi Lipman, and contributors.
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Version 1.0 released in September 2022

6 polished, stable algorithms (the GAP benchmark):
• Breadth-first search
• Betweenness-centrality
• PageRank
• Connected Components
• Single-source Shortest-Path
• Triangle Counting

Stable utilities
• malloc/calloc/realloc/free wrappers
• create/destroy the LAGraph_Graph
• compute properties: degree, A’, # diag entries
• delete properties
• display graph
• Matrix Market file I/O (very slow)
• Sorting
• thread control
• timing
• type management

LAGraph: graph algorithm library
Graphalytics algorithms in next Release

Many experimental algorithms to be curated
• K-truss, All K-truss
• Bellman-Ford single-source shortest path
• Maximal independent set
• Triangle Centrality
• Community detection w/ label propagation
• Deep Neural Network Inference
• Strongly Connected Components
• Minimum Spanning Forest
• Local Clustering Coefficient
• K-core
• Counting all size-4 graphlets
• Triangle polling
• Fiedler vector 

Experimental utilities
• random matrix, vector generators
• Binary matrix file I/O (very fast),

     serialize/deserialize, parallel LZ4 comp.

https://github.com/GraphBLAS/LAGraph



DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution. 38© 2023 Carnegie Mellon University

Version 1.0 released in September 2022

6 polished, stable algorithms (the GAP benchmark):
• Breadth-first search
• Betweenness-centrality
• PageRank
• Connected Components
• Single-source Shortest-Path
• Triangle Counting

Stable utilities
• malloc/calloc/realloc/free wrappers
• create/destroy the LAGraph_Graph
• compute properties: degree, A’, # diag entries
• delete properties
• display graph
• Matrix Market file I/O (very slow)
• Sorting
• thread control
• timing
• type management

LAGraph: graph algorithm library https://github.com/GraphBLAS/LAGraph

Graphalytics algorithms in next Release

Many experimental algorithms to be curated
• K-truss, All K-truss
• Bellman-Ford single-source shortest path
• Maximal independent set
• Triangle Centrality
• Community detection w/ label propagation
• Deep Neural Network Inference
• Strongly Connected Components
• Minimum Spanning Forest
• Local Clustering Coefficient
• K-core
• Counting all size-4 graphlets
• Triangle polling
• Fiedler vector 

Experimental utilities
• random matrix, vector generators
• Binary matrix file I/O (very fast),

     serialize/deserialize, parallel LZ4 comp.

HELP
WANTED 
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python-graphblas + NetworkX

Jim Kitchen, Anaconda, 

Eric Welch, NVIDIA,

and contributors.
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Python package for accelerated GraphBLAS

• python-graphblas
• package that dispatches to SuiteSparse:GraphBLAS for computation
• Stays in sync with advances in SuiteSparse:GraphBLAS

• graphblas-algorithms
• Like LAGraph, a set of graphblas algorithms
• Built on top of python graphblas 
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Dispatching Example with graphblas-algorithms

The k-truss is the maximal induced subgraph of G with 
each edge belonging to at least k-2 triangles. 

This takes 10.7 seconds

This takes 0.5 seconds

This takes 0.28 seconds

* Notice that dispatching is opt-in

8000 nodes,  ~ 640_000 edges

conda install -c conda-forge graphblas-algorithms
            -or- 
pip install graphblas-algorithms (Linux Only)
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Hardware: NVIDIA DGX-1
CPU: Dual 20 Core Intel Xeon E5-2698 v4 2.2GHz
RAM: 512 GB 2133 MHz DDR4 RDIMMBenchmarks: GraphBLAS vs NetworkX

Speed-up
amazon

 google
 pokec

 enron
 preferentialAttachment

 caidaRouterLevel

 dblp  cita
tionCiteseer

 coAuthorsD
BLP

 as-Skitte
r

 coPapersCiteseer

 coPapersDBLP

# of vertices 262,111 916,428 1,632,804 36,692 100,000 192,244 326,186 268,495 299,067 1,696,415 434,102 5,404,486
# of edges 1,234,877 5,105,039 30,622,564 367,662 999,970 1,218,132 1,615,400 2,313,294 1,955,352 22,190,596 32,071,440 30,491,458

degree centrality 32 48 31 29 60 140 65 180 200 530 190 220 0.25-1 s
reciprocity 290 370 470 230 600 840 1600 1000 1400 1700 2200 2200 3-5 min
generalized degree 140 160 190 150 220 150 1700 500 360 10-30 min
k-truss(k=5) 53 800 140 130 150 170 350 2000 1100 30-100 min

pagerank 130 340 930 50 240 250 390 580 810 1800 3900 4200 1 min
eigenvector centrality 53 120 150 61 650 740 1300 1100 1300 2000 5200 5300 30-100 min
katz centrality 420 530 830 300 1100 1400 1700 2100 2300 3400 7500 7600 hours-days

clustering 160 900 620 370 370 290 280 540 380 11000 2600 2100 10-30 min
transitivity 180 270 440 830 970 900 730 1600 970 20000 6600 5000 10-30 min
square clustering 1200 950 1400 1800 1100 1300 DNF DNF 21000 days-weeks?

pagerank (scipy) 3.4 14 23 2.1 3.3 3.8 6.3 9.8 11 20 23 27 0.25-1 s

N/A

N/A

NetworkX 
run times

(Requires Undirected Graph)
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How to Try It Out

Dispatching is a feature in NetworkX 3.0
• Note: This is an experimental feature, and the API may change. Do not rely on this 

for production applications.
Install graphblas-algorithms and optional dependencies

• `conda install -c conda-forge graphblas-algorithms`
• `conda install pandas scipy`  # needed for display and converting to NetworkX

Try the Dispatch Example
• https://github.com/python-graphblas/graphblas-algorithms


