
DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 1© 2023 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Graph Processing using GraphBLAS
Scott McMillan, CMU Software Engineering Institute

with collaborators Benjamin Brock, Tim Mattson,
Jose E. Moreira, Aydin Buluc, Tim Davis,
Gabor Szarnyas, Roi Lipman,
Jim Kitchen, Erik Welch,
and many more…

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 2© 2023 Carnegie Mellon University

Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice
for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM23-0646

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 3© 2023 Carnegie Mellon University

5

3

2

10

46

A
0

2
1

3
4
5
6

3 4 5 6210

to
 v

er
te

x

from vertexT

=

v A vT

⊕.⊗

Outline
• Background & Motivation
• Graphs can be represented as matrices
• Basic graph operations can be performed with linear algebra
• These operations can be composed to implement useful algorithms

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 4© 2023 Carnegie Mellon University

The GraphBLAS Application Programming Interface (API)

BLAS

Hardware architecture

Numerical applications

LINPACK/LAPACK

API: Separation of concerns

Goal: separate the concerns of hardware/library & application designers.

1979: BLAS Basic Linear Algebra Subprograms (BLAS 2 ’88, BLAS 3 ’90)

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 5© 2023 Carnegie Mellon University

The GraphBLAS API

BLAS

Hardware architecture

Numerical applications

LINPACK/LAPACK

API: Separation of concerns

Goal: separate the concerns of hardware/library & application designers.

1979: BLAS Basic Linear Algebra Subprograms (BLAS 2 ’88, BLAS 3 ’90)
2001: Sparse BLAS an extension to BLAS (little uptake)

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 6© 2023 Carnegie Mellon University

The GraphBLAS API

BLAS GraphBLAS

Hardware architecture Hardware architecture

Numerical applications Graph analytical apps

LAGraphLINPACK/LAPACK

Goal: separate the concerns of hardware/library & application designers.

1979: BLAS Basic Linear Algebra Subprograms (BLAS 2 ’88, BLAS 3 ’90)
2001: Sparse BLAS an extension to BLAS (little uptake)
2013: GraphBLAS an effort to define standard building blocks

 for graph algorithms in the language of linear algebra

API: Separation of concerns API: Separation of concerns

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 7© 2023 Carnegie Mellon University

Book — Papers — GraphBLAS API version — SuiteSparse:GraphBLAS releases

0.9 1.0 1.2 1.3

1.0 3.02.2

Mathematical
foundations,

HPEC

Seven good
reasons,

ICCS

Standards for graph
algorithm primitives,

HPEC

Graph
Algorithms

in the
Language of

Linear Algebra

LAGraph,
GrAPL@
IPDPS

2013 2014 2015 2016 2017 2018 20192011 2012

C API,
GABB@
IPDPS

2020 2021

2.0

5.14.0

C++ API Roadmap,
Distributed
GraphBLAS

GrAPL@
IPDPS

…

2022

7.46.2

C++
Iterators,
GrAPL@
IPDPS

C++
Concepts,
GrAPL@
IPDPS

Intro. to
GraphBLAS

v2.0,
GrAPL@
IPDPS

2023

GraphBLAS C/C++ Timeline

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 8© 2023 Carnegie Mellon University

GraphBLAS Primitives
• Basic objects (opaque types)

– Matrices (sparse or dense), vectors (sparse or dense), algebraic operators (semirings)
• Fundamental operations over these objects

…plus reduction, transpose, Kronecker product, filtering, transform, etc.

Sparse matrix times
sparse matrix

Sparse matrix times
sparse vector

Element-wise
multiplication

(and addition)

Sparse matrix
extraction

(and assignment)
.

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 9© 2023 Carnegie Mellon University

𝐀!" = #
	l (𝑣! , 𝑣") ∈ 𝐸
	 Ø (𝑣! , 𝑣") ∉ 𝐸

source

de
st

.

𝐀 � � � � � � �
� l l
� l l
� l
� l l
� l
� l
� l l l

�

�

��

� �

�

Graphs as Adjacency Matrices

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 10© 2023 Carnegie Mellon University

𝐀!" = #
	l (𝑣! , 𝑣") ∈ 𝐸
	 Ø (𝑣! , 𝑣") ∉ 𝐸

source

de
st

.

𝐀 � � � � � � �
� l l
� l l
� l
� l l
� l
� l
� l l l

�

�

��

� �

�

Graphs as Adjacency Matrices

source

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 11© 2023 Carnegie Mellon University

𝐀!" = #
	l (𝑣! , 𝑣") ∈ 𝐸
	 Ø (𝑣! , 𝑣") ∉ 𝐸

source

de
st

.

𝐀 � � � � � � �
� l l
� l l
� l
� l l
� l
� l
� l l l

�

�

��

� �

�

Graphs as Adjacency Matrices

de
st

.

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 12© 2023 Carnegie Mellon University

Graph Operations as Matrix Operations

�

�

��

� �

�

𝐀!� � � � � � �
� l
� l
� l l l
� l l
� l l
� l l
� l

l

l

l
=

𝐀!⊕.⊗	𝐟𝐟

• Matrix-vector multiply à find neighbors
- In-neighbors: use A
- Out-neighbors: use AT

so
ur

ce

dest.

dest.

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 13© 2023 Carnegie Mellon University

Graph Operations as Matrix Operations

�

�

��

� �

�

𝐀!� � � � � � �
� l
� l
� l l l
� l l
� l l
� l l
� l

l

l

l
=

𝐀!⊕.⊗ 𝐟𝐟

• Matrix-vector multiply à find neighbors
- In-neighbors: use A
- Out-neighbors: use AT

so
ur

ce

Finding out-neighbors is used
many graph algorithms.

dest.

dest.

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 14© 2023 Carnegie Mellon University

Graph Operations as Matrix Operations

l

l
=

𝐀!⊕.⊗ 𝐟

Another way to look at matrix-vector multiply…

�

�

��

� �

�

𝐀!� � � � � � �
� l
� l
� l l l
� l l
� l l
� l l
� l

𝐟�
�
�
� l
�
�
�

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 15© 2023 Carnegie Mellon University

One more thing… write masks: 𝐦

l
=

𝐟

Often not interested in some nodes…

�

�

��

� �

�

𝐀!� � � � � � �
� l
� l
� l l l
� l l
� l l
� l l
� l

�
�
�
� l
�
�
�

𝐟’𝐦

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 16© 2023 Carnegie Mellon University

l

𝐟

Often not interested in some nodes…

�

�

��

� �

�

𝐀!� � � � � � �
� l
� l
� l l l
� l l
� l l
� l l
� l

�
�
�
� l
�
�
�

𝐦 𝐟’

ANOTHER feature of GraphBLAS:
All operations support a write mask.

 𝐟′ 𝐦 = 𝐀⊤⨁.⨂𝐟

=

One more thing… write masks: 𝐦

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 17© 2023 Carnegie Mellon University

Algorithm: Breadth-First Search (BFS)

0

1

1

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 18© 2023 Carnegie Mellon University

𝐟

𝐀!� � � � � � �
� l
� l
� l l l
� l l
� l l
� l l
� l

� l
�
�
�
�
�
�

𝐯

𝐟 𝑠𝑟𝑐 = l

�

�

��

� �

�

Example: Breadth-First Search (levels)

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 19© 2023 Carnegie Mellon University

Example: Breadth-First Search (levels)

𝐀!� � � � � � �
� l
� l
� l l l
� l l
� l l
� l l
� l

� l
�
�
�
�
�
�

level	=	0

0𝐟 𝐯

level = 0
 𝐯 += level	 ∗ 	𝐟

�

�

��

� �

�

0

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 20© 2023 Carnegie Mellon University

�

�

��

� �

�

0

// Use 𝐯 as a
mask, /𝐯 .

𝐀!� � � � � � �
� l
� l
� l l l
� l l
� l l
� l l
� l

� l
�
�
�
�
�
�

0𝐟 𝐯

#𝐯

Example: Breadth-First Search (levels)
level = 0
 𝐯 += level	 ∗ 	𝐟

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 21© 2023 Carnegie Mellon University

�

�

��

� �

�

0 𝐀!� � � � � � �
� l
� l
� l l l
� l l
� l l
� l l
� l

� l
�
�
�
�
�
�

0𝐟 𝐯

l

l

𝐟′#𝐯

Example: Breadth-First Search (levels)
level = 0
 𝐯 += level	 ∗ 	𝐟
	𝐟′ /𝐯 = 𝐀⊤⨁.⨂𝐟 // Boolean semiring

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 22© 2023 Carnegie Mellon University

�

�

��

� �

�

0 𝐀!� � � � � � �
� l
� l
� l l l
� l l
� l l
� l l
� l

�
� l
�
� l
�
�
�

0𝐟 𝐯

l

l

𝐟′#𝐯

Example: Breadth-First Search (levels)
level = 0
 𝐯 += level	 ∗ 	𝐟
	𝐟′ /𝐯 = 𝐀⊤⨁.⨂𝐟
	𝐟 = 𝐟′

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 23© 2023 Carnegie Mellon University

�

�

��

� �

�

0

1

1 𝐀!� � � � � � �
� l
� l
� l l l
� l l
� l l
� l l
� l

�
� l
�
� l
�
�
�

0
1

1

𝐟 𝐯

#𝐯

l

l

l

𝐟′

level	=	1level = 1
 𝐯 += level	 ∗ 	𝐟
	𝐟′ /𝐯 = 𝐀⊤⨁.⨂𝐟
	𝐟 = 𝐟′

Example: Breadth-First Search (levels)

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 24© 2023 Carnegie Mellon University

𝐀!� � � � � � �
� l
� l
� l l l
� l l
� l l
� l l
� l

�
�
� l
�
� l
�
� l

0
1
2
1
2

2

𝐟 𝐯

#𝐯

l

𝐟′

level	=	2level = 2
 𝐯 += level	 ∗ 	𝐟
	𝐟′ /𝐯 = 𝐀⊤⨁.⨂𝐟
	𝐟 = 𝐟′

Example: Breadth-First Search (levels)

�

�

��

� �

�

0

1

1

22

2

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 25© 2023 Carnegie Mellon University

𝐀!� � � � � � �
� l
� l
� l l l
� l l
� l l
� l l
� l

�
�
�
�
�
� l
�

0
1
2
1
2
3
2

𝐟 𝐯

#𝐯 𝐟′

level	=	3

�

�

��

� �

�

0

1

1

22

2

level = 3
 𝐯 += level	 ∗ 	𝐟
	𝐟′ /𝐯 = 𝐀⊤⨁.⨂𝐟
	𝐟 = 𝐟′
	if	 𝐟.empty()	return	v

Example: Breadth-First Search (levels)

3

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 26© 2023 Carnegie Mellon University

• Input: adjacency matrix 𝐀 (Boolean), source vertex 𝑠𝑟𝑐 (integer)
• Output: visited vertices vector, 𝐯 (integer)
• Workspace: frontier vector 𝐟 (Boolean)

1. 	𝐟 𝑠𝑟𝑐 = true
2. level = 0
3. while	 ! 𝐟.empty()
4. 𝐯	 += level	 ∗ 	𝐟
5. 𝐟 <𝐯 = 𝐀⊤⨁.⨂𝐟 // using the Boolean semiring (OR.AND)

6. ++level

Example: Breadth-First Search (levels)

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 27© 2023 Carnegie Mellon University

Graph applications

Bindings (e.g., python)

Resources/Activities (some covered in the next talk?)
● C API Specification

○ https://github.com/GraphBLAS/graphblas-api-c

● C API Implementation: SuiteSparse:GraphBLAS
○ https://github.com/DrTimothyAldenDavis/GraphBLAS

● LAGraph Algorithms Repository
○ https://github.com/GraphBLAS/LAGraph

● Language Bindings: python, Julia, postgres, etc
○ https://github.com/python-graphblas/python-graphblas

○ https://github.com/JuliaSparse/SuiteSparseGraphBLAS.jl

○ https://github.com/michelp/pggraphblas

● IN PROGRESS: C++ API Specification and Reference Lib.
○ https://github.com/GraphBLAS/graphblas-api-cpp

○ https://github.com/GraphBLAS/rgri

GraphBLAS Implementations
(e.g., SuiteSparse)

Hardware Platforms: CPU, GPU, etc.

LAGraph

API: Separation of concerns

NetworkX

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 28© 2023 Carnegie Mellon University

Website: http://graphblas.org
• Lists workshops and conferences
• Links to the latest API Specifications
• Teams developing implementations
• Other useful resources

Mailing list: Graphblas@lists.lbl.gov
• Hosted by LBL (mailto:abuluc@lbl.gov)
• Join the Forum by joining the list

Monthly teleconference:
• Second Friday of every month, 12pm Eastern Time
• Send email (mailto:kepner@ll.mit.edu) to receive the calendar invite and Zoom ID.

Questions? Scott McMillan
Principal Research Engineer

Advanced Computing Lab
AI Division

Software Engineering Institute
Carnegie Mellon University

mailto: smcmillan@sei.cmu.edu

http://graphblas.org/
mailto:Graphblas@lists.lbl.gov
mailto:abuluc@lbl.gov
mailto:kepner@ll.mit.edu
mailto:smcmillan@sei.cmu.edu

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 29© 2023 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Backups

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 30© 2023 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

Graphs (GraphBLAS) and
Storage (TileDB) as Sparse Linear Algebra

Timothy G. Mattson, Intel

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 31© 2023 Carnegie Mellon University

Graph Algorithms and Linear Algebra

This is not a new idea
• At least since the 1950’s
• There is even has a book.

Benefits of graphs as linear algebra
• Well suited to memory hierarchies of modern

microprocessors
• Can utilize decades of experience in

distributed/parallel computing from linear
algebra in supercomputing.

• Easier to understand … for some people.

2011

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 32© 2023 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

SuiteSparse:GraphBLAS:
An Implementation of the C API

Tim Davis, Texas A&M University

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 33© 2023 Carnegie Mellon University

• Conforms to the v2.0 C API (Nov 2021)

• New features:
• faster hypersparse matrices (the “hyperhash”, avoids binary search), in v7.3.0beta
• pack/unpack (O(1)-time move semantics)
• named types and operators (for future JIT)
• matrix and vector sort
• eWiseUnion (like eWiseAdd but with 2 scalars; all entries in output go through the operator)
• matrix and vector iterators
• matrix reshape

• Performance:
• GrB_mxm, particularly with sparse-times-dense or dense-times-sparse. AVX2 and AVX512 exploit
• faster MATLAB interface

• Port to Octave 7

• Supported by Intel, NVIDIA, Redis, MIT Lincoln Lab, MathWorks, Julia Computing

SuiteSparse:GraphBLAS v7.4.x

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 34© 2023 Carnegie Mellon University

SuiteSparse versus the Intel MKL sparse library

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 35© 2023 Carnegie Mellon University

• CUDA acceleration (with J. Eaton and C. Nolet, NVIDIA): 3x to 9x speedup in GrB_mxm
• Julia integration (just announced v0.7), replacing Julia SparseArrays
• more MATLAB integration

• further Python integration
• JIT for faster user-defined types and operations
• aggressive non-blocking mode, kernel fusion

• x=A\b over a field

• more built-in types (FP16, complex integers, …)

• faster kernels (GrB_mxm for sampled dense-dense matrix multiply)
• matrices with shallow components

Work in progress and future work

https://github.com/DrTimothyAldenDavis/GraphBLAS

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 36© 2023 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

LAGraph: graph algorithms library

Tim Davis, Scott McMillan, Gabor Szarnyas,
Tim Mattson, Jim Kitchen, Eric Welch,
David Bader, Roi Lipman, and contributors.

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 37© 2023 Carnegie Mellon University

Version 1.0 released in September 2022

6 polished, stable algorithms (the GAP benchmark):
• Breadth-first search
• Betweenness-centrality
• PageRank
• Connected Components
• Single-source Shortest-Path
• Triangle Counting

Stable utilities
• malloc/calloc/realloc/free wrappers
• create/destroy the LAGraph_Graph
• compute properties: degree, A’, # diag entries
• delete properties
• display graph
• Matrix Market file I/O (very slow)
• Sorting
• thread control
• timing
• type management

LAGraph: graph algorithm library
Graphalytics algorithms in next Release

Many experimental algorithms to be curated
• K-truss, All K-truss
• Bellman-Ford single-source shortest path
• Maximal independent set
• Triangle Centrality
• Community detection w/ label propagation
• Deep Neural Network Inference
• Strongly Connected Components
• Minimum Spanning Forest
• Local Clustering Coefficient
• K-core
• Counting all size-4 graphlets
• Triangle polling
• Fiedler vector

Experimental utilities
• random matrix, vector generators
• Binary matrix file I/O (very fast),

 serialize/deserialize, parallel LZ4 comp.

https://github.com/GraphBLAS/LAGraph

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 38© 2023 Carnegie Mellon University

Version 1.0 released in September 2022

6 polished, stable algorithms (the GAP benchmark):
• Breadth-first search
• Betweenness-centrality
• PageRank
• Connected Components
• Single-source Shortest-Path
• Triangle Counting

Stable utilities
• malloc/calloc/realloc/free wrappers
• create/destroy the LAGraph_Graph
• compute properties: degree, A’, # diag entries
• delete properties
• display graph
• Matrix Market file I/O (very slow)
• Sorting
• thread control
• timing
• type management

LAGraph: graph algorithm library https://github.com/GraphBLAS/LAGraph

Graphalytics algorithms in next Release

Many experimental algorithms to be curated
• K-truss, All K-truss
• Bellman-Ford single-source shortest path
• Maximal independent set
• Triangle Centrality
• Community detection w/ label propagation
• Deep Neural Network Inference
• Strongly Connected Components
• Minimum Spanning Forest
• Local Clustering Coefficient
• K-core
• Counting all size-4 graphlets
• Triangle polling
• Fiedler vector

Experimental utilities
• random matrix, vector generators
• Binary matrix file I/O (very fast),

 serialize/deserialize, parallel LZ4 comp.

HELP
WANTED

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 39© 2023 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

python-graphblas + NetworkX

Jim Kitchen, Anaconda,

Eric Welch, NVIDIA,

and contributors.

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 40© 2023 Carnegie Mellon University

Python package for accelerated GraphBLAS

• python-graphblas
• package that dispatches to SuiteSparse:GraphBLAS for computation
• Stays in sync with advances in SuiteSparse:GraphBLAS

• graphblas-algorithms
• Like LAGraph, a set of graphblas algorithms
• Built on top of python graphblas

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 41© 2023 Carnegie Mellon University

Dispatching Example with graphblas-algorithms

The k-truss is the maximal induced subgraph of G with
each edge belonging to at least k-2 triangles.

This takes 10.7 seconds

This takes 0.5 seconds

This takes 0.28 seconds

* Notice that dispatching is opt-in

8000 nodes, ~ 640_000 edges

conda install -c conda-forge graphblas-algorithms
 -or-
pip install graphblas-algorithms (Linux Only)

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 42© 2023 Carnegie Mellon University

Hardware: NVIDIA DGX-1
CPU: Dual 20 Core Intel Xeon E5-2698 v4 2.2GHz
RAM: 512 GB 2133 MHz DDR4 RDIMMBenchmarks: GraphBLAS vs NetworkX

Speed-up
amazon

 google
 pokec

 enron
 preferentialAttachment

 caidaRouterLevel

 dblp cita
tionCiteseer

 coAuthorsD
BLP

 as-Skitte
r

 coPapersCiteseer

 coPapersDBLP

of vertices 262,111 916,428 1,632,804 36,692 100,000 192,244 326,186 268,495 299,067 1,696,415 434,102 5,404,486
of edges 1,234,877 5,105,039 30,622,564 367,662 999,970 1,218,132 1,615,400 2,313,294 1,955,352 22,190,596 32,071,440 30,491,458

degree centrality 32 48 31 29 60 140 65 180 200 530 190 220 0.25-1 s
reciprocity 290 370 470 230 600 840 1600 1000 1400 1700 2200 2200 3-5 min
generalized degree 140 160 190 150 220 150 1700 500 360 10-30 min
k-truss(k=5) 53 800 140 130 150 170 350 2000 1100 30-100 min

pagerank 130 340 930 50 240 250 390 580 810 1800 3900 4200 1 min
eigenvector centrality 53 120 150 61 650 740 1300 1100 1300 2000 5200 5300 30-100 min
katz centrality 420 530 830 300 1100 1400 1700 2100 2300 3400 7500 7600 hours-days

clustering 160 900 620 370 370 290 280 540 380 11000 2600 2100 10-30 min
transitivity 180 270 440 830 970 900 730 1600 970 20000 6600 5000 10-30 min
square clustering 1200 950 1400 1800 1100 1300 DNF DNF 21000 days-weeks?

pagerank (scipy) 3.4 14 23 2.1 3.3 3.8 6.3 9.8 11 20 23 27 0.25-1 s

N/A

N/A

NetworkX
run times

(Requires Undirected Graph)

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution. 43© 2023 Carnegie Mellon University

How to Try It Out

Dispatching is a feature in NetworkX 3.0
• Note: This is an experimental feature, and the API may change. Do not rely on this

for production applications.
Install graphblas-algorithms and optional dependencies

• `conda install -c conda-forge graphblas-algorithms`
• `conda install pandas scipy` # needed for display and converting to NetworkX

Try the Dispatch Example
• https://github.com/python-graphblas/graphblas-algorithms

