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• Stability ↑ ↑ ↑
• Storage ↑ ↑ ↑
• Integration ↑ ↑ ↑ ☆
• Sharding    ↑ ↑ ↑  +



Evolution of Distributed 
Graph Systems



Volume

DepthThe Magic Quadrant of
Graph DBMS

Some RDF
Stores

Some RDF
Stores

Some RDF
Stores

Non-Native
Map-Reduce
Graph Stores

Native
Graph Stores

Graph
Computing
Frameworks

Non-Native
Multi-model
Graph Stores

Shallow Computing

Small-Volume

Some RDF
Stores



1-Hop 2-Hop 3-Hop 6-Hop
Ultipa 0.00062 0.027 0.52 1.408
TigerGraph 0.024 0.46 6.6 62.5
Neo4j 0.2 18.3 290
JanusGraph 0.39 27.7 4300
ArangoDB 1.667 28.9 3888
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K-hop	on	Twitter-2010	Dataset	
(42	Million	Nodes	&	1.47	Billion	Edges	with	many	supernodes)
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Distributed	Graph	System Pros Cons

Distributed	Consensus	
with	HTAP	[3] l High	Performance

l Better	ACID	support
l Small	H/W	footprint

l Vertical	Scalability
l Difficult	to	handle	10	billion	plus	

nodes	and	edges

Proxy/Name-server/Grid	
or	Federation	 l Balanced	approach	to	

scalability&	performance
l No	data	migration

l Non-transparent	graph	partitioning	
(human-logic	based)

Automated	Shard
l Unlimited	Scalability
l Great	meta-data	query	and	

ingestion	performance
l Sophisticated	Cluster	

Management

l Degraded	graph	query	performance
l Sophisticated	Cluster	Management	
l Large	H/W	footprint



Type Characteristics Business Scenarios

High Density Parallel Graph 
Computing (HDPC)

• Real-time read/write data, online processing & 
calculation

• Ideal for deep range queries

• Transaction interception
• Online Anti-fraud
• Anomaly detection
• Real-time recommendation 
• AI/ML Augmentation
• Other real-time scenarios

HDPC & Shard • Separation of read/write operations
• Elastic compute nodes [19] for shard/offline 

data 

• Knowledge Graph
• LLM Augmentation
• Indicator calculation 
• Audit
• Cloud Data Center
• Graph at the core of IT Infra.

Shard • Meta-data oriented
• Shallow neighborhood calculation (1-2 hop) 

only

• Archive
• Data Warehouse
• Data Science



Peer 127.0.0.1:40061

Shard

NameServer

[Peer1…3]

[Shard1, Shard2]

HDPC / Computing 
& Storage Server/Instance

HTAP 
Cluster 

Management 
&Computing Server

NameServer 
Cluster

[N1,N2] Multiple NameServer

Elastic Compute 
Node

[Peer1, Peer2] Dynamically allocate 
compute nodes

Meta [127.0.0.1:50061] Configuration&Listener



find().nodes() as nodes => [1,2,3,4]
khop().src().depth(3)

uncollect [“1”,“2”,“3”,“4”] 
as nodes
khop().src({_id == nodes}).depth(3)

Khop(1) on CN1
Khop(2) on CN2
Khop(3) on CN3
Khop(4) on CN1



find().nodes({_id == 1}) as src
find().nodes({_id == 2}) as dest
ab().src(src).dest(dest).depth(1:2)

find().nodes() as src
find().nodes() as dest
ab().src(src).dest(dest).depth(1:2)

Dynamic CN

Chains/Broadcast
find().nodes({_id == 1}) as src
↘find().nodes({_id == 2}) as dest
↘ab().src(src).dest(dest).depth(1:2)

http://www.baidu.com/link?url=2ECdFGPzZeSElUX0ILGie_JumE9DFR3Cf4-9AY8lwFNkJd5KyQezd3vJHQ8f4OTjFPDdQ7G3IPJnSW_2oBHlP_


Elastic Compute Node

Shard1 Shard2

Meta



• Type 1: Data are processed on name servers (or proxies)
• Type 2: Data are processed on shard servers and name servers 

(Peer-to-peer architecture).
• Exchange Operator between Relational Data Stream(s) and Graph 

Algo
• Optimization of relational data flow (as start node/edge) is 

necessary in restricted range graph queries.
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Distributed Graph System Pros Cons

Distributed Consensus with 
HTAP [3]

• High Performance
• Better ACID support
• Small H/W footprint

• Vertical Scalability
• Difficult to handle 10 billion plus nodes 

and edges

Proxy/Name-server/Grid or 
Federation 

• Balanced approach to scalability & 
performance

• No data migration

• Non-transparent graph partitioning 
(human-logic based)

Automated Shard • Unlimited Scalability
• Great meta-data query and ingestion 

performance
• Sophisticated Cluster Management

• Degraded graph query performance
• Sophisticated Cluster Management 
• Large H/W footprint



Data Governance

Computing Power

Agility & Capability

Killer-App

Graph to Relate Everything
Penetrate Everything

Quantify Everything

Faster by 10,000x
100+ Algorithms

30-Hop Plus

Data Intelligence Toolkits
Asset-Liability Management
Smart BI/RTD Applications

High-dimensional Correlation
Analysis w/ Finest Granularity
Real-time RCA (Root-Cause)

Contact:  ricky@ultipa.com
+1-408-917-0675
https://www.linkedin.com/in/rickysun

Web:        https://www.ultipa.com

mailto:ricky@ultipa.com
https://www.linkedin.com/in/rickysun
http://www.ultipa.com/


Ul#pa V4
HTAP Distributed

Consensus

Success Stories:
Deployed with G-SIB banks,
stock exchanges and insurance
companies. Largest commercial
deployment of 100B+ graph size.

Multi-tier Storage
Acceleration

HD Parallel
Compute Engine

HTAP Distributed
Consensus



Ultipa V5
Horizontal Scalability
Low-mem Consumption
(GA in 2023)

Cost-based Query Optimizer

Self-defined Sharding

Index-selec<on Op<mizer

Resource Consumption Estimation

Push-down and Exchange

Pregal-basd Distributed Graph Algorithm
Storage Near Compute
(Low Data Migration)

Advanced Graph
Query Optimizer
(Deeper & Faster)

Sophisticated scalable graph database system w/ unlimited scalability,
deep-data processing, and elastic computing capabilities.


