From Single Instance to Horizontal Scalability

- Stability ↑↑↑
- Storage ↑↑↑
- Integration ↑↑↑
- Sharding +

Node To Tree To Graph
Evolution of Distributed Graph Systems

From Single Instance to Horizontal Scalability

- Standalone
- Master-Slave (i.e., HA, DR)
- Distributed Consensus (i.e., RAFT)
- HTAP
- Proxy (i.e., NameServer)
- Federation
- Shardling (i.e., Meta-server)
- ...
The Magic Quadrant of Graph DBMS

- Graph Computing Frameworks
- Non-Native Multi-model Graph Stores
- Some RDF Stores
- Non-Native Map-Reduce Graph Stores
- Native Graph Stores
- Some RDF Stores
- Some RDF Stores
- Small-Volume
- Volume
- Depth
- Shallow Computing
K-hop on Twitter-2010 Dataset
(42 Million Nodes & 1.47 Billion Edges with many supernodes)
Examine a graph's density

\[\frac{|E|}{|V||(|V|-1)|} \rightarrow \left(2 \times \frac{|E|}{|V|}\right)^k \]

Task-1

```
root@twitter > khop().src({__id == 12}).depth(1:6).boost() as n
return count(n)
```

Total number of neighbors from 1-hop to 6-hop.
Total latency is 1.68 seconds
3 schools of Distributed Graph Systems

<table>
<thead>
<tr>
<th>Distributed Graph System</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
</table>
| Distributed Consensus with HTAP [3] | • High Performance
• Better ACID support
• Small H/W footprint | • Vertical Scalability
• Difficult to handle 10 billion plus nodes and edges |
| Proxy/Name-server/Grid or Federation | • Balanced approach to scalability & performance
• No data migration | • Non-transparent graph partitioning (human-logic based) |
| Automated Shard | • Unlimited Scalability
• Great meta-data query and ingestion performance
• Sophisticated Cluster Management | • Degraded graph query performance
• Sophisticated Cluster Management
• Large H/W footprint |
Scenarios of Distributed Graph Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Characteristics</th>
<th>Business Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Density Parallel Graph Computing (HDPC)</td>
<td>• Real-time read/write data, online processing & calculation
• Ideal for deep range queries</td>
<td>• Transaction interception
• Online Anti-fraud
• Anomaly detection
• Real-time recommendation
• AI/ML Augmentation
• Other real-time scenarios</td>
</tr>
<tr>
<td>HDPC & Shard</td>
<td>• Separation of read/write operations
• Elastic compute nodes [19] for shard/offline data</td>
<td>• Knowledge Graph
• LLM Augmentation
• Indicator calculation
• Audit
• Cloud Data Center
• Graph at the core of IT Infra.</td>
</tr>
<tr>
<td>Shard</td>
<td>• Meta-data oriented
• Shallow neighborhood calculation (1-2 hop) only</td>
<td>• Archive
• Data Warehouse
• Data Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Peer</td>
<td>127.0.0.1:40061</td>
<td>HDPC / Computing & Storage Server/Instance</td>
</tr>
<tr>
<td>Shard</td>
<td>[Peer1…3]</td>
<td>HTAP Cluster</td>
</tr>
<tr>
<td>NameServer</td>
<td>[Shard1, Shard2]</td>
<td>Management & Computing Server</td>
</tr>
<tr>
<td>NameServer Cluster</td>
<td>[N1,N2]</td>
<td>Multiple NameServer</td>
</tr>
<tr>
<td>Elastic Compute Node</td>
<td>[Peer1, Peer2]</td>
<td>Dynamically allocate compute nodes</td>
</tr>
<tr>
<td>Meta</td>
<td>[127.0.0.1:50061]</td>
<td>Configuration&Listener</td>
</tr>
</tbody>
</table>
find().nodes() as nodes => [1,2,3,4]
khop().src().depth(3)
uncollect [“1”, “2”, “3”, “4”] as nodes
khop().src({_id == nodes}).depth(3)

Khop(1) on CN1
Khop(2) on CN2
Khop(3) on CN3
Khop(4) on CN1
A-to-B Path Parallelization

Dynamic CN

Chains/Broadcast

find().nodes({_id == 1}) as src
find().nodes({_id == 2}) as dest
ab().src(src).dest(dest).depth(1:2)
Cluster Hierarchy (as a Graph)

Meta

NameServer Cluster

NameServer

Elastic Compute Node

Shard[Peer]
Distributed Ultipa 5.0 Summary

• Type 1: Data are processed on name servers (or proxies)
• Type 2: Data are processed on shard servers and name servers (Peer-to-peer architecture).
• Exchange Operator between Relational Data Stream(s) and Graph Algo
• Optimization of relational data flow (as start node/edge) is necessary in restricted range graph queries.
HTAP/Instance vs. Shard

Latency (in seconds)

- Online Data Ingestion
 - HTAP 3-instance: 2736
 - HTAP 3-shard: 10800
- K-Hop (K=3)
 - HTAP 3-instance: 0.7
 - HTAP 3-shard: 11
- Shortest Path
 - HTAP 3-instance: 1.8
 - HTAP 3-shard: 28
- PageRank
 - HTAP 3-instance: 16
 - HTAP 3-shard: 161
- LPA
 - HTAP 3-instance: 101
Three schools of Distributed Graph Systems

<table>
<thead>
<tr>
<th>Distributed Graph System</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed Consensus with HTAP [3]</td>
<td>• High Performance</td>
<td>• Vertical Scalability</td>
</tr>
<tr>
<td></td>
<td>• Better ACID support</td>
<td>• Difficult to handle 10 billion plus nodes and edges</td>
</tr>
<tr>
<td></td>
<td>• Small H/W footprint</td>
<td></td>
</tr>
<tr>
<td>Proxy/Name-server/Grid or Federation</td>
<td>• Balanced approach to scalability & performance</td>
<td>• Non-transparent graph partitioning (human-logic based)</td>
</tr>
<tr>
<td></td>
<td>• No data migration</td>
<td></td>
</tr>
<tr>
<td>Automated Shard</td>
<td>• Unlimited Scalability</td>
<td>• Degraded graph query performance</td>
</tr>
<tr>
<td></td>
<td>• Great meta-data query and ingestion performance</td>
<td>• Sophisticated Cluster Management</td>
</tr>
<tr>
<td></td>
<td>• Sophisticated Cluster Management</td>
<td>• Large H/W footprint</td>
</tr>
</tbody>
</table>
Ultipa builds the world’s fastest graph database and killer apps that empower smart enterprises with graph-augmented business data intelligence.

Key Features of Ultipa Graph DBMS:
- Micro-second Query Processing & Ultra-Deep Data Penetration
- Real-time Attribution/Contribution Analysis
- Real-time Stress Testing & Scenario Simulation
- Highly Visualized 3D Interactive Web GUI
- HTAP-MPP Cluster and Fast Deployment & Migration

Ultipa Product Matrix:
- Real-time Decision Making & Anti-Fraud System
- Intraday Liquidity Risk & Cash Management System
- Real-time Asset & Liability Management System
- Smart Data Intelligence Toolkits
- Smart BI & Advanced Analytics

Contact Us
www.ulptipa.com
support@ulptipa.com

Data Governance
Graph to Relate Everything
Penetrate Everything
Quantify Everything

Agility & Capability
High-dimensional Correlation Analysis w/ Finest Granularity
Real-time RCA (Root-Cause)

Computing Power
Faster by 10,000x
100+ Algorithms
30-Hop Plus

Killer-App
Data Intelligence Toolkits
Asset-Liability Management
Smart BI/RTD Applications

Contact: ricky@ulptipa.com
+1-408-917-0675
https://www.linkedin.com/in/rickysun

Web: https://www.ulptipa.com
Ultpa V4
HTAP Distributed Consensus

Success Stories:
Deployed with G-SIB banks, stock exchanges and insurance companies. Largest commercial deployment of 100B+ graph size.
Ultipa V5
Horizontal Scalability
Low-mem Consumption
(GA in 2023)

Sophisticated scalable graph database system w/ unlimited scalability, deep-data processing, and elastic computing capabilities.