
SQL Property Graphs in Oracle Database and
Oracle Graph Server (PGX)

Oskar van Rest
Consulting Member of Technical Staff
Product Development – Oracle Property Graph
June 23, 2023

SQL:2023
• Latest version of the SQL standard, published on June 1st, 2023
• Includes Part 16: Property Graph Queries (SQL/PGQ)

SQL Property Graphs are defined on top of existing relational or
JSON data
• No need to copy or transform data
• Transactional consistency
• Optionally add schemaless data to your graphs

SQL/PGQ is now implemented in Oracle 23c
• Oracle’s product documentation1 refers to the new feature as

SQL Property Graphs or Property Graphs in SQL

Property Graph Queries are now officially part of the SQL standard

Copyright © 2023, Oracle and/or its affiliates 2 6/23/23

1 Part II SQL Property Graphs - https://docs.oracle.com/en/database/oracle/property-graph/23.2/spgdg/sql-property-graphs.html

https://www.iso.org/standard/79473.html

https://docs.oracle.com/en/database/oracle/property-graph/23.2/spgdg/sql-property-graphs.html
https://www.iso.org/standard/79473.html

Benefits of property graphs in the Oracle Database:
• Extreme scalability by leveraging the existing SQL execution engine
• Security: Privileges, DataGuard, DataVault, RAS, Redaction, auditing, etc.
• SQL interoperability:

• Join property graph data with relational data, JSON data, XML data, spatial data, etc.
• SQL views, SQL triggers, SQL row pattern matching, SQL window functions, SQL

analytics functions
• PL/SQL, JavaScript Stored Procedures, etc.

• Use existing SQL tools and development environments: APEX, SQL Developer,
SQLcl, drivers for Java (JDBC), Python, C, C++, etc.

• Flashback technologies: Undo transactions, Flashback Query, Time Travel, etc.
• Data pump support: Import/export
• Etc.

SQL Property Graphs in Oracle Database 23c

Copyright © 2023, Oracle and/or its affiliates 3 6/23/23

Converged Database

Complete

Simple

Autonomous Database

Add a SQL statement (or a REST API call), not another database

Store and Access movie details in
JSON documents

4 Copyright © 2023, Oracle and/or its affiliates

Property Graphs as part of a Converged Database

6/23/23

Find movies that customers have in
common using Graph Pattern Matching

CREATE TABLE movie_details(
 title VARCHAR2(255),
 movie JSON);

SELECT m.title Title,
 m.movie.director DIR,
 m.movie.Star STAR
FROM movie_details m;

SELECT title
FROM GRAPH_TABLE (cust_movie
 MATCH
 (c1)-[e1]->(m)<-[e2]-(c2)
 WHERE c1.cust_id = 1246813
 AND c2.cust_id = 1002487
 COLUMNS (m.title))
FETCH FIRST 100 ROWS ONLY;

Use Fuzzy Text Search to find movie reviews
containing “disappointed” or variations of it

SELECT title, comments
FROM movie_reviews
WHERE CONTAINS(
 comment,
 'fuzzy(
 disappointed, 70, 6,
 weight)', 1) > 0;

Find theaters within 5km of Jane’s
location using built-in Spatial functions

Store rental transaction in a
Blockchain Table to prevent fraud

SELECT theater.name
FROM theater, customer
WHERE customer.name = 'Jane'
AND SDO_WITHIN_DISTANCE(
 theater.location,
 customer.location,
 'distance=5 unit=km')
 = 'TRUE';

CREATE BLOCKCHAIN TABLE rental(
 u_id number,
 user_name varchar2(100),
 order_date date, ...);

INSERT INTO rental VALUES
(1,'Dominic','08-FEB-2023',..);

Store concession purchases in XML and
easily retrieve them using standard SQL

CREATE TABLE purchase_orders (
 key_column VARCHAR2(10),
 xml_column XMLType);

SELECT xml_column
FROM purchase_orders;

SQL Property Graphs are part of Oracle Database Free—Developer Release (April 2023)
• The same, powerful Oracle Database, packaged for ease of use and simple download

SQL Property Graphs in Oracle Database Free—Developer Release

Copyright © 2023, Oracle and/or its affiliates 5 6/23/23

https://www.oracle.com/database/free/

https://www.oracle.com/database/free/

SQL Property Graph – Let’s start with a simple example

Copyright © 2023, Oracle and/or its affiliates 6 6/23/23

Relational Schema

CUSTOMER

MOVIE

CUSTSALES

Graph

MOVIEPLEX.CUSTOMER

P CUST_ID NUMBER
 LAST_NAME VARCHAR2(200)
 FIRST_NAME VARCHAR2(200)
 STREET_ADDRESS VARCHAR2(400)
 POSTAL_CODE VARCHAR2(10)
 CITY VARCHAR2(100)
 STATE_PROVINCE VARCHAR2(100)
 COUNTRY VARCHAR2(400)
 COUNTRY_CODE VARCHAR2(2)
 CONTINENT VARCHAR2(400)
 AGE NUMBER
 COMMUNTE_DISTANCE NUMBER
 CREDIT_BALANCE NUMBER
 EDUCATION VARCHAR2(40)
 EMAIL VARCHAR2(500)
 FULL_TIME VARCHAR2(40)
 GENDER VARCHAR2(20)
 HOUSEHOLD_SIZE NUMBER
 INCOME NUMBER
 INCOME_LEVEL VARCHAR2(20)
 INSUFF_FUNDS_INCIDENTS NUMBER
 JOB_TYPE VARCHAR2(200)
 LATE_MORT_RENT_PMTS NUMBER
 MARITAL_STATUS VARCHAR2(200)
 MORTGAGE_AMT NUMBER
 NUM_CARS NUMBER
 NUM_MORTGAGES NUMBER
 PET VARCHAR2(40)
 PROMOTION_RESONSE NUMBER
 RENT_OWN VARCHAR2(40)
 SEGMENT_ID NUMBER
 WORK_EXPERIENCE NUMBER
 YRS_CURRENT_EMPLOYER NUMBER
 YRS_CUSTOMER NUMBER
 YRS_RESIDENCE NUMBER
 LOC_LAT NUMBER
 LOC_LONG NUMBER

PK_CUST_CUST_ID(CUST_ID)

MOVIEPLEX.CUSTSALES

DAY DATE
 GENRE_ID NUMBER
F MOVIE_ID NUMBER
F CUST_ID NUMBER
 APP VARCHAR2(30)
 DEVICE VARCHAR2(30)
 OS VARCHAR2(30)
 PAYMENT_METHOD VARCHAR2(30)
 LIST_PRICE NUMBER
 DISCOUNT_TYPE VARCHAR2(30)
 DISCOUNT_PERCENT NUMBER
 ACTUAL_PRICE NUMBER

FK_CUSTSALES_CUST_ID(CUST_ID)
FK_CUSTSALES_MOVIE_ID(MOVIE_ID)

MOVIEPLEX.MOVIE

P MOVIE_ID NUMBER
 TITLE VARCHAR2(200)
 BUDGET NUMBER
 GROSS NUMBER
 LIST_PRICE NUMBER
 GENRE VARCHAR2(4000)
 SKU VARCHAR2(30)
 YEAR NUMBER
 OPENING_DATE DATE
 VIEWS NUMBER
 CAST VARCHAR2(4000)
 CREW VARCHAR2(4000)
 STUDIO VARCHAR2(4000)
 MAIN_SUBJECT VARCHAR2(4000)
 AWARDS VARCHAR2(4000)
 NOMINATIONS VARCHAR2(4000)
 RUNTIME NUMBER
 IMAGE_URL VARCHAR2(4000)
 SUMMARY VARCHAR2(16000)

PK_MOVIE_CUST_ID(MOVIE_ID)

Concise syntax when required metadata
exists
• i.e. primary and foreign keys,

uniqueness constraints

Graph created as a metadata object over
original data

• No data copy or transformation
• Transactional consistency

SQL Property Graph Creation

Copyright © 2023, Oracle and/or its affiliates 7 6/23/23

CREATE PROPERTY GRAPH MovieRentals
 VERTEX TABLES (
 Customer, Movie
)
 EDGE TABLES (
 CustSales SOURCE Customer DESTINATION Movie
);

SQL Property Graph Creation – Explicit syntax

Copyright © 2023, Oracle and/or its affiliates 8 6/23/23

CREATE PROPERTY GRAPH MovieRentals
 VERTEX TABLES (
 Customer KEY (Cust_ID)
 PROPERTIES (First_Name, Last_Name, Gender),
 Movie KEY (Movie_ID)
 PROPERTIES (Title, Genre, Budget / List_Price AS Cost_Ratio)
)
 EDGE TABLES (
 Custsales
 SOURCE KEY(Cust_ID) REFERENCES Customer (Cust_ID)
 DESTINATION KEY(Movie_ID) REFERENCES Movie (Movie_ID)
 PROPERTIES (Day AS Date_Rented));

Syntax for explicitly
defining keys

Syntax for explicitly
defining properties

Syntax for explicitly defining
edge relationships

Syntax for exposing
expressions as properties

9 Copyright © 2023, Oracle and/or its affiliates

SQL Property Graph Creation – Additional Notes

6/23/23

Element (vertex or edge) tables are existing tables (base tables, external tables, or materialized views)
User can specify options for
• Labels (1 or more per vertex/edge table)
• Properties (0 or more per label), can rename properties
• Keys (single or multi-column key)

If not specified, defaults apply:
• Single label defaults to table name/alias
• All (non-hidden) columns are exposed as properties for a given label
• Keys are inferred from primary/foreign keys of underlying tables.
• PK-FK determines connection between vertices via edges (e.g., customer –[custsales]-> movie)

User can mix and match within a single PG definition:
• Explicit options, and
• Implicit defaults

Querying SQL Property Graphs

Copyright © 2023, Oracle and/or its affiliates 10 6/23/23

SELECT …
FROM GRAPH_TABLE (
 <graph name> -- input graph
 MATCH <graph pattern> -- pattern to match
 WHERE <conditions> -- conditions to satisfy
 COLUMNS (<columns to return>) -- return type of result table
)
WHERE …
GROUP BY …
ORDER BY …

Find all two customers who rented the same romantic comedy movie one after the other and after
February 14th, 2023.

Querying Graphs – GRAPH_TABLE operator example

Copyright © 2023, Oracle and/or its affiliates 11 6/23/23

SELECT *
FROM GRAPH_TABLE(MovieRentals
 MATCH
 (cust1 IS Customer)–[e1]->
 (movie IS Movie)<–[e2]-(cust2 IS Customer)
 WHERE e1.Date_Rented > DATE '2023-02-14'
 AND movie.genre = 'Romantic Comedy'
 AND e2.Date_Rented > e1.Date_Rented AND cust1.Last_Name <> cust2.Last_Name
 COLUMNS(cust1.Last_Name AS EarlierRenter,
 cust2.Last_Name AS LaterRenter,
 e1.Date_Rented)
)
ORDER BY Date_Rented;

Property graph

Path pattern:
Vertex patterns +
Edge patterns

Result table

Predicates

Labelvertex edge

12 Copyright © 2023, Oracle and/or its affiliates

Given the following relational schema

6/23/23

person

place

company

knows

adores

located
_in

wo
rk
s_
at

CREATE TABLE place (
 id NUMBER(5) PRIMARY KEY,
 name VARCHAR2(100) ,
 size_p NUMBER(10));

CREATE TABLE company (
 id NUMBER(5) PRIMARY KEY,
 located_in NUMBER(5),
 name VARCHAR2(100) ,
 age NUMBER(5) ,
 size_c NUMBER(10),
 CONSTRAINT fk_c FOREIGN KEY (located_in)
 REFERENCES place(id));

CREATE TABLE person (
 id NUMBER(5) PRIMARY KEY,
 works_at NUMBER(5),
 details JSON,
 CONSTRAINT fk_p FOREIGN KEY (works_at)
 REFERENCES company(id));

Vertex tables

CREATE TABLE knows (
 e_src NUMBER(5) NOT NULL,
 e_dst NUMBER(5) NOT NULL,
 since NUMBER(5),
 CONSTRAINT pk_k PRIMARY KEY (e_src, e_dst),
 CONSTRAINT fk_k1 FOREIGN KEY (e_src) REFERENCES person(id),
 CONSTRAINT fk_k2 FOREIGN KEY (e_dst) REFERENCES person(id));

CREATE TABLE adores (
 e_src NUMBER (5) NOT NULL ,
 e_dst NUMBER (5) NOT NULL ,
 CONSTRAINT pk_a PRIMARY KEY (e_src, e_dst),
 CONSTRAINT fk_a1 FOREIGN KEY (e_src) REFERENCES person(id),
 CONSTRAINT fk_a2 FOREIGN KEY (e_dst) REFERENCES place(id));

Edge tables

13 Copyright © 2023, Oracle and/or its affiliates

Graph creation on top of JSON data

6/23/23

CREATE PROPERTY GRAPH MY_GRAPH
 VERTEX TABLES (
 person AS p KEY(id) LABEL person PROPERTIES(
 p.id,
 p.details.name.string() AS name,
 p.details.address.city.string() AS city,
 p.details.address.zip.number() AS zip,
 p.details.birthdate.date() AS birthdate,
 p.details.creditScore[*].avg() AS avg_credit_score),
 company,
 place
)
 EDGE TABLES (
 knows SOURCE KEY(e_src) REFERENCES p(id) DESTINATION KEY(e_dst) REFERENCES p(id),
 person AS works_at SOURCE KEY(id) REFERENCES p(id)
 DESTINATION KEY(works_at) REFERENCES company(id),
 adores SOURCE p DESTINATION place,
 company AS located_in SOURCE KEY(id) REFERENCES company(id)
 DESTINATION KEY(located_in) REFERENCES place(id)
);

JSON simplified syntax
used to define properties
from schemaless JSON

column values

person

place

company

knows

adores

located
_in

wo
rk
s_
at

14 Copyright © 2023, Oracle and/or its affiliates

Friends (and friends of friends) working in Seattle

6/23/23

Bob needs a loan to buy a new house in Seattle.

The bank wants to check how many friends and friends of friends of Bob work in Seattle in order to
understand the likelihood of his social integration.

SELECT *
FROM GRAPH_TABLE(MY_GRAPH
 MATCH (p)-[IS knows]-{1,2}(f),
 (f)-[IS works_at]->(c IS company),
 (c)-[IS located_in]->(pl IS place)
 WHERE p.name = 'Bob' AND
 pl.name = 'Seattle'
 COLUMNS (f.name, f.zip AS zip_code));

Graph query in SQL

In Oracle Database 21c and earlier, PGQL is the primary way to query
property graphs
• There are two ways to run PGQL queries

• PGQL on RDBMS: graph queries translated into SQL queries against
tables, using Recursive WITH and PL/SQL

• PGQL in Oracle Graph Server (PGX): graph queries processed in a
specialized in-memory graph engine
• Note: Property graphs in Oracle Database can (optionally) be loaded into

Oracle Graph Server (PGX) to accelerate certain types of queries and
graph algorithms

Property Graph Query Language (PGQL) and SQL

Copyright © 2023, Oracle and/or its affiliates 15 6/23/23

In Oracle Database 23c the new SQL syntax is introduced
• PGQL will continue to be supported but over time SQL will become the primary way for Oracle

customers to query property graphs
• We are adding syntax to PGQL to help customers transition to SQL

• For example, PGQL now supports SQL’s CREATE PROPERTY GRAPH statement and SQL’s
GRAPH_TABLE operator1

https://pgql-lang.org/

1PGQL 2.0 Specification - https://pgql-lang.org/spec/2.0/ (May 2023)

https://pgql-lang.org/
https://pgql-lang.org/spec/2.0/

Through helpful error messages, the GRAPH_TABLE operator in PGQL guides users to use SQL-
compatible syntax rather than legacy PGQL syntax
• Increases interoperability between the Oracle Database and the Oracle Graph Server (PGX)

New GRAPH_TABLE operator in PGQL helps to transition to SQL

Copyright © 2023, Oracle and/or its affiliates 16 6/23/23

SELECT *
FROM GRAPH_TABLE (financial_network
 MATCH (a IS account) -[e IS transfer]- (b IS Account)
 WHERE a.number = 10039
 COLUMNS (b.number, e.amount,
 CASE WHEN is_source_of(e, v)

 THEN 'Ougoing transfer’ ELSE 'Incoming transfer'
 END AS transfer_type))

LIMIT 10

Error(s) in line 6:
 CASE WHEN is_source_of(e, v)
 ^^^^^^^^^^^^^^^^^^

GRAPH_TABLE restriction: use v IS SOURCE OF e instead of is_source_of(e, v)

Error(s) in line 9:
LIMIT 10
^^^^^^^^
GRAPH_TABLE restriction: use FETCH FIRST 10 ROWS ONLY instead of LIMIT 10

Path modes: ACYCLIC, SIMPLE, TRAIL, WALK

SQL’s Path Modes explained:
• WALK (default): no filtering of paths happen.
• TRAIL: paths with repeated edges are not returned.

• ACYCLIC: paths with repeated vertices are not returned.
• SIMPLE: paths with repeated vertices are not returned unless the repeated vertex is the first and the last in the path.

17 Copyright © 2023, Oracle and/or its affiliates

New SQL features in PGQL (1/2)

6/23/23

Cycle avoidance in combination with ANY, ALL,
SHORTEST or CHEAPEST path finding:

SELECT *
FROM GRAPH_TABLE (financial_transactions
 MATCH SHORTEST 5 SIMPLE PATHS
 (a IS account) -[e IS transaction]->+ (a)
 WHERE a.number = 10039
 COLUMNS (LISTAGG(e.amount, ', ') AS amounts)
)

ORDER BY amounts +--------------------------------+
| amounts |
+--------------------------------+
| 1000.0, 1500.3, 9999.5, 9900.0 |
| 1000.0, 3000.7, 9999.5, 9900.0 |
+--------------------------------+
(while 5 paths were requested, only 2 valid
paths exist in the graph)

Path unnesting: ONE ROW PER VERTEX / STEP

Graph Table Rows Clause allows for unnesting of paths:

18 Copyright © 2023, Oracle and/or its affiliates

New SQL features in PGQL (2/2)

6/23/23

SELECT *
FROM GRAPH_TABLE (financial_transactions
 MATCH SHORTEST 5 SIMPLE PATHS
 (a IS account) -[IS transaction]->+ (a)
 WHERE a.number = 10039
 ONE ROW PER STEP (v1, e, v2)
 COLUMNS(MATCHNUM() AS matchnum,
 ELEMENT_NUMBER(e) AS elemnum,
 v1.number AS account1,
 v2.number AS account2, e.amount))

ORDER BY matchnum, elemnum

SQL’s Graph Table Rows Clause explained:
• ONE ROW PER MATCH (default): no unnesting takes place.
• ONE ROW PER VERTEX: declares a single iterator vertex variable;

produces one row per vertex.
• ONE ROW PER STEP: declares an iterator vertex variable, an

iterator edge variable, and another iterator vertex variable;
produces one row per step (a step is a vertex-edge-vertex triple).

+---+
| matchnum | elemnum | account1 | account2 | amount |
+---+
0	2	10039	8021	1000.0
0	4	8021	1001	1500.3
0	6	1001	2090	9999.5
0	8	2090	10039	9900.0
1	2	10039	8021	1000.0
1	4	8021	1001	3000.7
1	6	1001	2090	9999.5
1	8	2090	10039	9900.0
+---+
(2 paths with 4 edges each => 8 rows)

Graphs can be created and queried in SQL

A converged database like the Oracle Database combines the power of relational, graph, JSON and
more

Since graphs are part of the SQL engine all existing tools and programmatic interfaces work with
graphs

PGQL (Property Graph Query Language) will help with the transition to SQL, by alignment to SQL

Summary

Copyright © 2023, Oracle and/or its affiliates 19 6/23/23

