To Revisit Benchmarking Graph Analytics

A work collaborated by Shanghai Jiao Tong
University and Alibaba Damo Academy

I LDBC Graphalytics Benchmark

R1 Target platforms and systems

R2 Diverse, representative benchmark elements: Algorithms, Datasets, etc.

R3 Diverse, representative process: Performance, Scalability and Robustness

R4 Include a renewal process

R5 Modern software engineering

Why revisit the benchmark: Algorithm

- Selected algorithms are representative but not diverse

1
Algorithms: BFS, PR, WCC, CDLP, LCC, SSSP

2
Similar Computing Patterns: ISVP (iterative, single-phased and value-propagation-based)

3
The appearance-dominated selection procedure is biased

II Our Proposal: Categorization

- Centrality: PageRank. Personalized PageRank, Degree Centrality, Betweenness Centrality, Closeness Centrality
- Clustering/Community Detection: Local Clustering Coefficient, Louvain, Label Propagation, Minimum Cut Algorithm
- Similarity: Cosine, Jaccard, SimRank
- Community Search: Core Decomposition, K-Truss, Clique, K-ECC, Biclique
- Pattern Matching: Triangle Counting, Subgraph Matching
- Traversal/Path: BFS, DFS, Single Source Shortest Path. Topological Sort, Minimum Spanning Tree, Max Flow, Cycle Detection
- Other: Strongly Connected Components, Weakly Connected Components. Maximum Independent Set, Color

Selection of LDBC

II Our Proposal: Multi-dimensional

Algorithms	Number of Papers	DBLP	Google Scholar	Web of Science	Time Complexity
Label Propagation	39	771	130000	699	$k * m$
Single Source Shortest Path	33	584	17800	282	$m+n * \log n$
K-Clique	31	352	39500	73	$k * m * a^{k-2}$
Core Decomposition	29	179	107000	454	$m+n$
PageRank	28	1012	21700	753	$k * m$
Triangle Counting	27	252	21700	210	$m^{1.5}$
Betweenness Centrality	20	304	32100	283	n^{3}
Louvain	8	299	181000	127	$n * \log n$
$\sqrt{ } \sqrt{ }$	$\sqrt{6}$		$\underbrace{\text { 18100 }}$	\checkmark	$\sqrt{5}$
Categories	Appearances		demic Search E	ines	book Complexity

I Why revisit the benchmark: Datasets

- Selected datasets are narrow in

Characteristics

Real	Gen	Model
Social (Gaming)	SNB	Small-world
Knowledge	Graph500	Power-law

Graphs in real life are more diverse:

* Road/route networks are sparse
* Product-customer graphs are bi-partite
* etc.

Sizes

The largest real-life dataset (twitter-mpi) has only ~2B edges

graph	$\|\mathbf{V}\|$	$\|\mathbf{E}\|$
datagen-9_3-zf	555 M	1.3 B
datagen-sf10k-fb	100 M	18.8 B
graph500-30	450 M	34.0 B

The latest graphalytics challenge includes much larger generated data

I Our Proposal：Gen with real－life characteristics

〔－］阿里云

etc．
Ali Cloud Network Traffic

Graph characteristics Profiling

Massive data generator

I Why revisit the benchmark: Process

- Platform-oriented Process
- Performance: Makespan, Processing time
- Scalability: Speedup
- Robustness: Stress-test, Performance variability
- Our proposal
- Platform-oriented + User-oriented
- User-oriented
- Expressiveness: can user implement certain algorithm
- Productivity: how (easy) can user implement certain algorithm

I Why revisit the benchmark: Software

- Modern but not golden
- Software dependency issues
- Repeated generation of some data
- Hard to deploy in a cluster for large-scale
- Our Proposal:
- Go cloud-native
- Docker image: resolve software dependency issues
- Cloud storage: for archiving the data (without repeatedly generating)
- K8s for easy deployment in a cluster
- etc

| Wait, will this complicate the benchmark?

- More algorithms
- More/Larger datasets
- More metrics to evaluate

II Our Proposal: Benchmark Hierarchies

THANKS

