To Revisit Benchmarking Graph Analytics

A work collaborated by Shanghai Jiao Tong University and Alibaba Damo Academy

Presented by Longbin Lai, on behalf of Prof. Xuemin Lin

LDBC Graphalytics Benchmark

Target platforms and systems

R2

R1

Diverse, representative benchmark elements: Algorithms, Datasets, etc.

R3

Diverse, representative process: Performance, Scalability and Robustness

R4) Include a renewal process

R5) Modern software engineering

[1] Alexandru Losup, LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis on Parallel and Distributed Platforms, VLDB 2016

Why revisit the benchmark: Algorithm

• Selected algorithms are **representative** but not **diverse**

Algorithms: BFS, PR, WCC, CDLP, LCC, SSSP

2

3

Similar Computing Patterns: ISVP (iterative, single-phased and value-propagation-based)

The **appearance-dominated** selection procedure is biased

[2] V Kalavri, V Vlassov, S Haridi, High-level programming abstractions for distributed graph processing, TKDE 2017

Our Proposal: Categorization

- Centrality: PageRank、 Personalized PageRank、 Degree Centrality、 Betweenness Centrality、 Closeness Centrality
- Clustering/Community Detection: Local Clustering Coefficient, Louvain, Label Propagation, Minimum Cut Algorithm
- Similarity: Cosine, Jaccard, SimRank
- Community Search: Core Decomposition、K-Truss、Clique、K-ECC、Biclique
- Pattern Matching: Triangle Counting, Subgraph Matching
- Traversal/Path: BFS、DFS、Single Source Shortest Path、Topological Sort、Minimum Spanning Tree、Max Flow、Cycle Detection
- Other: Strongly Connected Components, Weakly Connected Components, Maximum Independent Set, Color

Selection of LDBC

Our Proposal: Multi-dimensional

Algorithms	Number of Papers	DBLP	Google Scholar	Web of Science	e Time Complexity
Label Propagation	39	771	130000	699	k * m
Single Source Shortest Path	33	584	17800	282	$m + n * \log n$
K-Clique	31	352	39500	73	$k * m * a^{k-2}$
Core Decomposition	29	179	107000	454	m + n
PageRank	28	1012	21700	753	k * m
Triangle Counting	27	252	21700	210	$m^{1.5}$
Betweenness Centrality	20	304	32100	283	n^3
Louvain	8	299	181000	127	$n * \log n$
Δ	$\hat{\Delta}$				仑
Categories	Appearances	Academic Search Engines			Textbook Complexity

Why revisit the benchmark: Datasets

• Selected datasets are narrow in

Characteristics

Real	Gen	Model
Social (Gaming)	SNB	Small-world
Knowledge	Graph500	Power-law

Graphs in real life are more diverse:

- Road/route networks are sparse
- Product-customer graphs are bi-partite

stetc.

<u>Sizes</u>

The largest real-life dataset (twitter-mpi) has only ~2B edges

graph	 V	E
datagen-9_3-zf	555M	1.3B
datagen-sf10k-fb	100M	18.8B
graph500-30	450M	34.0B

The latest graphalytics challenge includes much larger generated data

Our Proposal: Gen with real-life characteristics

Why revisit the benchmark: Process

- Platform-oriented Process
 - Performance: Makespan, Processing time
 - Scalability: Speedup
 - Robustness: Stress-test, Performance variability
- Our proposal
 - Platform-oriented + User-oriented
 - User-oriented
 - Expressiveness: **can** user implement certain algorithm
 - Productivity: **how (easy)** can user implement certain algorithm

Why revisit the benchmark: Software

• Modern but not **golden**

- Software dependency issues
- Repeated generation of some data
- Hard to deploy in a cluster for large-scale
- Our Proposal:
 - Go cloud-native
 - Docker image: resolve software dependency issues
 - Cloud storage: for archiving the data (without repeatedly generating)
 - K8s for easy deployment in a cluster
 - etc

Wait, will this complicate the benchmark?

- More algorithms
- More/Larger datasets
- More metrics to evaluate

Our Proposal: Benchmark Hierarchies

