
Formalizing GQL

presentation by Leonid Libkin

University of Edinburgh and RelationalAI

LDBC TUC 2023

Standards are great but not for academics

Standards are great but not for academics
You want to write a paper about pattern matching and start with the syntax

16.10 <path pattern expression>

Function

Specify a pattern to match a single path in a property graph.

Format
<path pattern expression> ::=

<path term>
| <path multiset alternation>
| <path pattern union>

<path multiset alternation> ::=
<path term> <multiset alternation operator> <path term>
 [{ <multiset alternation operator> <path term> }...]

<path pattern union> ::=
<path term> <vertical bar> <path term> [{ <vertical bar> <path term> }...]

<path term> ::=
<path factor>

| <path concatenation>

<path concatenation> ::=
<path term> <path factor>

<path factor> ::=
<path primary>

| <quantified path primary>
| <questioned path primary>

<quantified path primary> ::=
<path primary> <graph pattern quantifier>

<questioned path primary> ::=
<path primary> <question mark>

NOTE 131— Unlike most regular expression languages, <question mark> is not equivalent to the quantifier {0,1}: the
quantifier {0,1} exposes variables as group, whereas <questionmark> does not change the singleton variables that it exposes
to group. However, <question mark> does expose any singleton variables as conditional singletons.

<path primary> ::=
<element pattern>

| <parenthesized path pattern expression>
| <simplified path pattern expression>

<element pattern> ::=
<node pattern>

| <edge pattern>

<node pattern> ::=
<left paren> <element pattern filler> <right paren>

<element pattern filler> ::=
[<element variable declaration>]
[<is label expression>]
[<element pattern predicate>]

« WG3:W24-022 »

<element variable declaration> ::=

221

IWD 39075:202y(E)
16.10 <path pattern expression>

Standards are great but not for academics
You want to write a paper about pattern matching and start with the syntax

16.10 <path pattern expression>

Function

Specify a pattern to match a single path in a property graph.

Format
<path pattern expression> ::=

<path term>
| <path multiset alternation>
| <path pattern union>

<path multiset alternation> ::=
<path term> <multiset alternation operator> <path term>
 [{ <multiset alternation operator> <path term> }...]

<path pattern union> ::=
<path term> <vertical bar> <path term> [{ <vertical bar> <path term> }...]

<path term> ::=
<path factor>

| <path concatenation>

<path concatenation> ::=
<path term> <path factor>

<path factor> ::=
<path primary>

| <quantified path primary>
| <questioned path primary>

<quantified path primary> ::=
<path primary> <graph pattern quantifier>

<questioned path primary> ::=
<path primary> <question mark>

NOTE 131— Unlike most regular expression languages, <question mark> is not equivalent to the quantifier {0,1}: the
quantifier {0,1} exposes variables as group, whereas <questionmark> does not change the singleton variables that it exposes
to group. However, <question mark> does expose any singleton variables as conditional singletons.

<path primary> ::=
<element pattern>

| <parenthesized path pattern expression>
| <simplified path pattern expression>

<element pattern> ::=
<node pattern>

| <edge pattern>

<node pattern> ::=
<left paren> <element pattern filler> <right paren>

<element pattern filler> ::=
[<element variable declaration>]
[<is label expression>]
[<element pattern predicate>]

« WG3:W24-022 »

<element variable declaration> ::=

221

IWD 39075:202y(E)
16.10 <path pattern expression>

Standards are great but not for academics

[TEMP] <element variable>

<is label expression> ::=
<is or colon> <label expression>

<is or colon> ::=
IS

| <colon>

<element pattern predicate> ::=
<element pattern where clause>

| <element property specification>

<element pattern where clause> ::=
WHERE <search condition>

<element property specification> ::=
<left brace> <property key value pair list> <right brace>

<property key value pair list> ::=
<property key value pair> [{ <comma> <property key value pair> }...]

<property key value pair> ::=
<property name> <colon> <value expression>

<edge pattern> ::=
<full edge pattern>

| <abbreviated edge pattern>

<full edge pattern> ::=
<full edge pointing left>

| <full edge undirected>
| <full edge pointing right>
| <full edge left or undirected>
| <full edge undirected or right>
| <full edge left or right>
| <full edge any direction>

<full edge pointing left> ::=
<left arrow bracket> <element pattern filler> <right bracket minus>

<full edge undirected> ::=
<tilde left bracket> <element pattern filler> <right bracket tilde>

<full edge pointing right> ::=
<minus left bracket> <element pattern filler> <bracket right arrow>

<full edge left or undirected> ::=
<left arrow tilde bracket> <element pattern filler> <right bracket tilde>

<full edge undirected or right> ::=
<tilde left bracket> <element pattern filler> <bracket tilde right arrow>

<full edge left or right> ::=
<left arrow bracket> <element pattern filler> <bracket right arrow>

<full edge any direction> ::=
<minus left bracket> <element pattern filler> <right bracket minus>

** Editor’s Note (number 73) **

In the BNF for <full edge any direction>, the delimiter tokens <~[]~> have been suggested as a synonym for -[]- as part of
Feature GA07, “Undirected edge patterns”. The synonym for the <abbreviated edge pattern> - (<minus sign>) would then be
<~>, the synonym for <simplified defaulting any direction> would use the delimiter tokens <~/ /~> and the synonym for

222

IWD 39075:202y(E)
16.10 <path pattern expression>

You want to write a paper about pattern matching and start with the syntax

16.10 <path pattern expression>

Function

Specify a pattern to match a single path in a property graph.

Format
<path pattern expression> ::=

<path term>
| <path multiset alternation>
| <path pattern union>

<path multiset alternation> ::=
<path term> <multiset alternation operator> <path term>
 [{ <multiset alternation operator> <path term> }...]

<path pattern union> ::=
<path term> <vertical bar> <path term> [{ <vertical bar> <path term> }...]

<path term> ::=
<path factor>

| <path concatenation>

<path concatenation> ::=
<path term> <path factor>

<path factor> ::=
<path primary>

| <quantified path primary>
| <questioned path primary>

<quantified path primary> ::=
<path primary> <graph pattern quantifier>

<questioned path primary> ::=
<path primary> <question mark>

NOTE 131— Unlike most regular expression languages, <question mark> is not equivalent to the quantifier {0,1}: the
quantifier {0,1} exposes variables as group, whereas <questionmark> does not change the singleton variables that it exposes
to group. However, <question mark> does expose any singleton variables as conditional singletons.

<path primary> ::=
<element pattern>

| <parenthesized path pattern expression>
| <simplified path pattern expression>

<element pattern> ::=
<node pattern>

| <edge pattern>

<node pattern> ::=
<left paren> <element pattern filler> <right paren>

<element pattern filler> ::=
[<element variable declaration>]
[<is label expression>]
[<element pattern predicate>]

« WG3:W24-022 »

<element variable declaration> ::=

221

IWD 39075:202y(E)
16.10 <path pattern expression>

Standards are great but not for academics

[TEMP] <element variable>

<is label expression> ::=
<is or colon> <label expression>

<is or colon> ::=
IS

| <colon>

<element pattern predicate> ::=
<element pattern where clause>

| <element property specification>

<element pattern where clause> ::=
WHERE <search condition>

<element property specification> ::=
<left brace> <property key value pair list> <right brace>

<property key value pair list> ::=
<property key value pair> [{ <comma> <property key value pair> }...]

<property key value pair> ::=
<property name> <colon> <value expression>

<edge pattern> ::=
<full edge pattern>

| <abbreviated edge pattern>

<full edge pattern> ::=
<full edge pointing left>

| <full edge undirected>
| <full edge pointing right>
| <full edge left or undirected>
| <full edge undirected or right>
| <full edge left or right>
| <full edge any direction>

<full edge pointing left> ::=
<left arrow bracket> <element pattern filler> <right bracket minus>

<full edge undirected> ::=
<tilde left bracket> <element pattern filler> <right bracket tilde>

<full edge pointing right> ::=
<minus left bracket> <element pattern filler> <bracket right arrow>

<full edge left or undirected> ::=
<left arrow tilde bracket> <element pattern filler> <right bracket tilde>

<full edge undirected or right> ::=
<tilde left bracket> <element pattern filler> <bracket tilde right arrow>

<full edge left or right> ::=
<left arrow bracket> <element pattern filler> <bracket right arrow>

<full edge any direction> ::=
<minus left bracket> <element pattern filler> <right bracket minus>

** Editor’s Note (number 73) **

In the BNF for <full edge any direction>, the delimiter tokens <~[]~> have been suggested as a synonym for -[]- as part of
Feature GA07, “Undirected edge patterns”. The synonym for the <abbreviated edge pattern> - (<minus sign>) would then be
<~>, the synonym for <simplified defaulting any direction> would use the delimiter tokens <~/ /~> and the synonym for

222

IWD 39075:202y(E)
16.10 <path pattern expression>

<simplified override any direction> would use the tokens <~ and > surrounding a label as originally proposed in WG3:MMX-
060. These synonyms might be considered to make the table of edge patterns more harmonious and internally consistent. See
Language Opportunity GQL-212 .

<abbreviated edge pattern> ::=
<left arrow>

| <tilde>
| <right arrow>
| <left arrow tilde>
| <tilde right arrow>
| <left minus right>
| <minus sign>

« WG3:W24-038 deleted one Editor's Note »

<parenthesized path pattern expression> ::=
<left paren>
 [<subpath variable declaration>]
 [<path mode prefix>]

<path pattern expression>
 [<parenthesized path pattern where clause>]
<right paren>

<subpath variable declaration> ::=
<subpath variable> <equals operator>

<parenthesized path pattern where clause> ::=
WHERE <search condition>

Syntax Rules

1) LetRIGHTMINUSbe the following collectionof <token>s: <right bracketminus>, <left arrow>, <slash
minus>, and <minus sign>.

NOTE 132— These are the tokens]-, <-, /-, and -, which expose a minus sign on the right.

2) LetLEFTMINUSbe the following collectionof <token>s: <minus left bracket>, <right arrow>, <minus
slash>, and <minus sign>.

NOTE 133—These are the tokens -[, ->, -/, and -, which expose aminus sign on the left. <minus sign> itself is in both
RIGHTMINUS and LEFTMINUS.

3) A <pathpattern expression> shall not juxtapose a <token> fromRIGHTMINUS followedby a<token>
from LEFTMINUSwithout a <separator> between them.

NOTE 134— Otherwise, the concatenation of the two tokens would include the sequence of two <minus sign>s,
which is a <simple comment introducer>.

4) A <path pattern expression> that contains at the same depth of graph pattern matching a variable
quantifier, a <questioned path primary>, a <path multiset alternation>, or a <path pattern union>
is a possibly variable length path pattern.

5) A <path pattern expression> that is not a possibly variable length path pattern is a fixed length path
pattern.

6) Theminimum path length of certain BNF non-terminals defined in this Subclause is defined
recursively as follows:

a) The minimum path length of a <node pattern> is 0 (zero).

b) The minimum path length of an <edge pattern> is 1 (one).

223

IWD 39075:202y(E)
16.10 <path pattern expression>

You want to write a paper about pattern matching and start with the syntax

16.10 <path pattern expression>

Function

Specify a pattern to match a single path in a property graph.

Format
<path pattern expression> ::=

<path term>
| <path multiset alternation>
| <path pattern union>

<path multiset alternation> ::=
<path term> <multiset alternation operator> <path term>
 [{ <multiset alternation operator> <path term> }...]

<path pattern union> ::=
<path term> <vertical bar> <path term> [{ <vertical bar> <path term> }...]

<path term> ::=
<path factor>

| <path concatenation>

<path concatenation> ::=
<path term> <path factor>

<path factor> ::=
<path primary>

| <quantified path primary>
| <questioned path primary>

<quantified path primary> ::=
<path primary> <graph pattern quantifier>

<questioned path primary> ::=
<path primary> <question mark>

NOTE 131— Unlike most regular expression languages, <question mark> is not equivalent to the quantifier {0,1}: the
quantifier {0,1} exposes variables as group, whereas <questionmark> does not change the singleton variables that it exposes
to group. However, <question mark> does expose any singleton variables as conditional singletons.

<path primary> ::=
<element pattern>

| <parenthesized path pattern expression>
| <simplified path pattern expression>

<element pattern> ::=
<node pattern>

| <edge pattern>

<node pattern> ::=
<left paren> <element pattern filler> <right paren>

<element pattern filler> ::=
[<element variable declaration>]
[<is label expression>]
[<element pattern predicate>]

« WG3:W24-022 »

<element variable declaration> ::=

221

IWD 39075:202y(E)
16.10 <path pattern expression>

Standards are great but not for academics

[TEMP] <element variable>

<is label expression> ::=
<is or colon> <label expression>

<is or colon> ::=
IS

| <colon>

<element pattern predicate> ::=
<element pattern where clause>

| <element property specification>

<element pattern where clause> ::=
WHERE <search condition>

<element property specification> ::=
<left brace> <property key value pair list> <right brace>

<property key value pair list> ::=
<property key value pair> [{ <comma> <property key value pair> }...]

<property key value pair> ::=
<property name> <colon> <value expression>

<edge pattern> ::=
<full edge pattern>

| <abbreviated edge pattern>

<full edge pattern> ::=
<full edge pointing left>

| <full edge undirected>
| <full edge pointing right>
| <full edge left or undirected>
| <full edge undirected or right>
| <full edge left or right>
| <full edge any direction>

<full edge pointing left> ::=
<left arrow bracket> <element pattern filler> <right bracket minus>

<full edge undirected> ::=
<tilde left bracket> <element pattern filler> <right bracket tilde>

<full edge pointing right> ::=
<minus left bracket> <element pattern filler> <bracket right arrow>

<full edge left or undirected> ::=
<left arrow tilde bracket> <element pattern filler> <right bracket tilde>

<full edge undirected or right> ::=
<tilde left bracket> <element pattern filler> <bracket tilde right arrow>

<full edge left or right> ::=
<left arrow bracket> <element pattern filler> <bracket right arrow>

<full edge any direction> ::=
<minus left bracket> <element pattern filler> <right bracket minus>

** Editor’s Note (number 73) **

In the BNF for <full edge any direction>, the delimiter tokens <~[]~> have been suggested as a synonym for -[]- as part of
Feature GA07, “Undirected edge patterns”. The synonym for the <abbreviated edge pattern> - (<minus sign>) would then be
<~>, the synonym for <simplified defaulting any direction> would use the delimiter tokens <~/ /~> and the synonym for

222

IWD 39075:202y(E)
16.10 <path pattern expression>

<simplified override any direction> would use the tokens <~ and > surrounding a label as originally proposed in WG3:MMX-
060. These synonyms might be considered to make the table of edge patterns more harmonious and internally consistent. See
Language Opportunity GQL-212 .

<abbreviated edge pattern> ::=
<left arrow>

| <tilde>
| <right arrow>
| <left arrow tilde>
| <tilde right arrow>
| <left minus right>
| <minus sign>

« WG3:W24-038 deleted one Editor's Note »

<parenthesized path pattern expression> ::=
<left paren>
 [<subpath variable declaration>]
 [<path mode prefix>]

<path pattern expression>
 [<parenthesized path pattern where clause>]
<right paren>

<subpath variable declaration> ::=
<subpath variable> <equals operator>

<parenthesized path pattern where clause> ::=
WHERE <search condition>

Syntax Rules

1) LetRIGHTMINUSbe the following collectionof <token>s: <right bracketminus>, <left arrow>, <slash
minus>, and <minus sign>.

NOTE 132— These are the tokens]-, <-, /-, and -, which expose a minus sign on the right.

2) LetLEFTMINUSbe the following collectionof <token>s: <minus left bracket>, <right arrow>, <minus
slash>, and <minus sign>.

NOTE 133—These are the tokens -[, ->, -/, and -, which expose aminus sign on the left. <minus sign> itself is in both
RIGHTMINUS and LEFTMINUS.

3) A <pathpattern expression> shall not juxtapose a <token> fromRIGHTMINUS followedby a<token>
from LEFTMINUSwithout a <separator> between them.

NOTE 134— Otherwise, the concatenation of the two tokens would include the sequence of two <minus sign>s,
which is a <simple comment introducer>.

4) A <path pattern expression> that contains at the same depth of graph pattern matching a variable
quantifier, a <questioned path primary>, a <path multiset alternation>, or a <path pattern union>
is a possibly variable length path pattern.

5) A <path pattern expression> that is not a possibly variable length path pattern is a fixed length path
pattern.

6) Theminimum path length of certain BNF non-terminals defined in this Subclause is defined
recursively as follows:

a) The minimum path length of a <node pattern> is 0 (zero).

b) The minimum path length of an <edge pattern> is 1 (one).

223

IWD 39075:202y(E)
16.10 <path pattern expression>

c) Theminimum path length of a <path concatenation> is the sum of theminimum path lengths
of its operands.

d) The minimum path length of a <path pattern union> or <path multiset alternation> is the
minimum of the minimum path length of its operands.

e) Theminimumpath length of a <quantified path primary> is the product of theminimumpath
length of the simply contained <path primary> and the value of the <lower bound>.

f) The minimum path length of a <questioned path primary> is 0 (zero).

g) Theminimumpath length of a <parenthesized path pattern expression> is theminimumpath
length of the simply contained <path pattern expression>.

h) IfBNT1 andBNT2 are twoBNFnon-terminals such thatBNT1 ::=BNT2 and theminimumpath
length of BNT2 is defined, then the minimum path length of BNT1 is also defined and is the
same as the minimum path length of BNT2.

7) The <path primary> immediately contained in a <quantified path primary> or <questioned path
primary> shall have minimum path length that is greater than 0 (zero).

8) The<pathprimary> simply contained in a <quantifiedpath primary> shall not contain a <quantified
path primary> at the same depth of graph pattern matching.

** Editor’s Note (number 74) **

It may be possible to permit nested quantifiers. WG3:W01-014 contained a discussion of a way to support aggregates
at different depths of aggregation if there are nested quantifiers. See Language Opportunity GQL-036 .

9) Let PMA be a <path multiset alternation>.

a) A <path term> simply contained in PMA is amultiset alternation operand of PMA.

b) LetNOPMAbe thenumber ofmultiset alternation operands ofPMA. LetOPMA1, ...,OPMANOPMA
be an enumeration of the operands of PMA.

c) Any <subpath variable>s declared by <subpath variable declaration>s simply contained in
the multiset alternation operands of PMA shall be mutually distinct.

d) Let SOPMA1, ..., SOPMANOPMA be implementation-dependent (UV008) <identifier>s that are
mutually distinct and distinct from every <element variable>, <subpath variable> and <path
variable> contained in GP.

e) For every i, 1 (one) ≤ i ≤ NOPMA.

Case:

i) IfOPMAi is a <parenthesized path pattern expression> that simply contains a <subpath
variable declaration>, then let OPMAXi be OPMAi.

ii) Otherwise, let OPMAXi be the <parenthesized path pattern expression>

(SOPMAi = OPMAi)

f) PMA is equivalent to:

OPMAX1 | ... | OPMAXNOPMA

10) A <path term> PPUOP simply contained in a <path pattern union> PSD is a path pattern union
operand of PSD.

224

IWD 39075:202y(E)
16.10 <path pattern expression>

You want to write a paper about pattern matching and start with the syntax

16.10 <path pattern expression>

Function

Specify a pattern to match a single path in a property graph.

Format
<path pattern expression> ::=

<path term>
| <path multiset alternation>
| <path pattern union>

<path multiset alternation> ::=
<path term> <multiset alternation operator> <path term>
 [{ <multiset alternation operator> <path term> }...]

<path pattern union> ::=
<path term> <vertical bar> <path term> [{ <vertical bar> <path term> }...]

<path term> ::=
<path factor>

| <path concatenation>

<path concatenation> ::=
<path term> <path factor>

<path factor> ::=
<path primary>

| <quantified path primary>
| <questioned path primary>

<quantified path primary> ::=
<path primary> <graph pattern quantifier>

<questioned path primary> ::=
<path primary> <question mark>

NOTE 131— Unlike most regular expression languages, <question mark> is not equivalent to the quantifier {0,1}: the
quantifier {0,1} exposes variables as group, whereas <questionmark> does not change the singleton variables that it exposes
to group. However, <question mark> does expose any singleton variables as conditional singletons.

<path primary> ::=
<element pattern>

| <parenthesized path pattern expression>
| <simplified path pattern expression>

<element pattern> ::=
<node pattern>

| <edge pattern>

<node pattern> ::=
<left paren> <element pattern filler> <right paren>

<element pattern filler> ::=
[<element variable declaration>]
[<is label expression>]
[<element pattern predicate>]

« WG3:W24-022 »

<element variable declaration> ::=

221

IWD 39075:202y(E)
16.10 <path pattern expression>

Standards are great but not for academics

[TEMP] <element variable>

<is label expression> ::=
<is or colon> <label expression>

<is or colon> ::=
IS

| <colon>

<element pattern predicate> ::=
<element pattern where clause>

| <element property specification>

<element pattern where clause> ::=
WHERE <search condition>

<element property specification> ::=
<left brace> <property key value pair list> <right brace>

<property key value pair list> ::=
<property key value pair> [{ <comma> <property key value pair> }...]

<property key value pair> ::=
<property name> <colon> <value expression>

<edge pattern> ::=
<full edge pattern>

| <abbreviated edge pattern>

<full edge pattern> ::=
<full edge pointing left>

| <full edge undirected>
| <full edge pointing right>
| <full edge left or undirected>
| <full edge undirected or right>
| <full edge left or right>
| <full edge any direction>

<full edge pointing left> ::=
<left arrow bracket> <element pattern filler> <right bracket minus>

<full edge undirected> ::=
<tilde left bracket> <element pattern filler> <right bracket tilde>

<full edge pointing right> ::=
<minus left bracket> <element pattern filler> <bracket right arrow>

<full edge left or undirected> ::=
<left arrow tilde bracket> <element pattern filler> <right bracket tilde>

<full edge undirected or right> ::=
<tilde left bracket> <element pattern filler> <bracket tilde right arrow>

<full edge left or right> ::=
<left arrow bracket> <element pattern filler> <bracket right arrow>

<full edge any direction> ::=
<minus left bracket> <element pattern filler> <right bracket minus>

** Editor’s Note (number 73) **

In the BNF for <full edge any direction>, the delimiter tokens <~[]~> have been suggested as a synonym for -[]- as part of
Feature GA07, “Undirected edge patterns”. The synonym for the <abbreviated edge pattern> - (<minus sign>) would then be
<~>, the synonym for <simplified defaulting any direction> would use the delimiter tokens <~/ /~> and the synonym for

222

IWD 39075:202y(E)
16.10 <path pattern expression>

<simplified override any direction> would use the tokens <~ and > surrounding a label as originally proposed in WG3:MMX-
060. These synonyms might be considered to make the table of edge patterns more harmonious and internally consistent. See
Language Opportunity GQL-212 .

<abbreviated edge pattern> ::=
<left arrow>

| <tilde>
| <right arrow>
| <left arrow tilde>
| <tilde right arrow>
| <left minus right>
| <minus sign>

« WG3:W24-038 deleted one Editor's Note »

<parenthesized path pattern expression> ::=
<left paren>
 [<subpath variable declaration>]
 [<path mode prefix>]

<path pattern expression>
 [<parenthesized path pattern where clause>]
<right paren>

<subpath variable declaration> ::=
<subpath variable> <equals operator>

<parenthesized path pattern where clause> ::=
WHERE <search condition>

Syntax Rules

1) LetRIGHTMINUSbe the following collectionof <token>s: <right bracketminus>, <left arrow>, <slash
minus>, and <minus sign>.

NOTE 132— These are the tokens]-, <-, /-, and -, which expose a minus sign on the right.

2) LetLEFTMINUSbe the following collectionof <token>s: <minus left bracket>, <right arrow>, <minus
slash>, and <minus sign>.

NOTE 133—These are the tokens -[, ->, -/, and -, which expose aminus sign on the left. <minus sign> itself is in both
RIGHTMINUS and LEFTMINUS.

3) A <pathpattern expression> shall not juxtapose a <token> fromRIGHTMINUS followedby a<token>
from LEFTMINUSwithout a <separator> between them.

NOTE 134— Otherwise, the concatenation of the two tokens would include the sequence of two <minus sign>s,
which is a <simple comment introducer>.

4) A <path pattern expression> that contains at the same depth of graph pattern matching a variable
quantifier, a <questioned path primary>, a <path multiset alternation>, or a <path pattern union>
is a possibly variable length path pattern.

5) A <path pattern expression> that is not a possibly variable length path pattern is a fixed length path
pattern.

6) Theminimum path length of certain BNF non-terminals defined in this Subclause is defined
recursively as follows:

a) The minimum path length of a <node pattern> is 0 (zero).

b) The minimum path length of an <edge pattern> is 1 (one).

223

IWD 39075:202y(E)
16.10 <path pattern expression>

c) Theminimum path length of a <path concatenation> is the sum of theminimum path lengths
of its operands.

d) The minimum path length of a <path pattern union> or <path multiset alternation> is the
minimum of the minimum path length of its operands.

e) Theminimumpath length of a <quantified path primary> is the product of theminimumpath
length of the simply contained <path primary> and the value of the <lower bound>.

f) The minimum path length of a <questioned path primary> is 0 (zero).

g) Theminimumpath length of a <parenthesized path pattern expression> is theminimumpath
length of the simply contained <path pattern expression>.

h) IfBNT1 andBNT2 are twoBNFnon-terminals such thatBNT1 ::=BNT2 and theminimumpath
length of BNT2 is defined, then the minimum path length of BNT1 is also defined and is the
same as the minimum path length of BNT2.

7) The <path primary> immediately contained in a <quantified path primary> or <questioned path
primary> shall have minimum path length that is greater than 0 (zero).

8) The<pathprimary> simply contained in a <quantifiedpath primary> shall not contain a <quantified
path primary> at the same depth of graph pattern matching.

** Editor’s Note (number 74) **

It may be possible to permit nested quantifiers. WG3:W01-014 contained a discussion of a way to support aggregates
at different depths of aggregation if there are nested quantifiers. See Language Opportunity GQL-036 .

9) Let PMA be a <path multiset alternation>.

a) A <path term> simply contained in PMA is amultiset alternation operand of PMA.

b) LetNOPMAbe thenumber ofmultiset alternation operands ofPMA. LetOPMA1, ...,OPMANOPMA
be an enumeration of the operands of PMA.

c) Any <subpath variable>s declared by <subpath variable declaration>s simply contained in
the multiset alternation operands of PMA shall be mutually distinct.

d) Let SOPMA1, ..., SOPMANOPMA be implementation-dependent (UV008) <identifier>s that are
mutually distinct and distinct from every <element variable>, <subpath variable> and <path
variable> contained in GP.

e) For every i, 1 (one) ≤ i ≤ NOPMA.

Case:

i) IfOPMAi is a <parenthesized path pattern expression> that simply contains a <subpath
variable declaration>, then let OPMAXi be OPMAi.

ii) Otherwise, let OPMAXi be the <parenthesized path pattern expression>

(SOPMAi = OPMAi)

f) PMA is equivalent to:

OPMAX1 | ... | OPMAXNOPMA

10) A <path term> PPUOP simply contained in a <path pattern union> PSD is a path pattern union
operand of PSD.

224

IWD 39075:202y(E)
16.10 <path pattern expression>

** Editor’s Note (number 75) **

Path pattern union is not defined using left recursion. WG3:SXM-052 believed that it should be possible to support left
recursion but declined to do so for expediency. It is a Language Opportunity to support left recursion. See Language
Opportunity GQL-025 .

PPUOP shall not contain a reference to an element variable that is not declared in PPUOP or outside
of PSD.

11) An <element pattern> EP that contains an <element pattern where clause> EPWC is transformed
as follows:

a) Let EPF be the <element pattern filler> simply contained in EP.

b) Let PREFIX be the <delimiter token> contained in EP before EPF and let SUFFIX be the
<delimiter token> contained in EP after EPF.

c) LetEV be the <element variable> simply contained inEPF. Let ILE be the <is label expression>
contained in EPF, if any; otherwise, let ILE be the zero-length string.

d) EP is replaced by

(PREFIX EV ILE SUFFIX EPWC)

12) An <element pattern> that does not contain an <element variable declaration>, an <is label
expression>, or an <element pattern predicate> is said to be empty.

13) Each <path pattern expression> is transformed in the following steps:

a) If the <path primary> immediately contained in a <quantified path primary> or <questioned
path primary> is an <edge pattern> EP, then EP is replaced by

(EP)

NOTE 135— For example,

->*

becomes:

(->) {0,}

which in later transformations becomes:

(() -> ()) {0,}

b) If two successive <element pattern>s contained in a <path concatenation> at the same depth
of graph pattern matching are <edge pattern>s, then an implicit empty <node pattern> is
inserted between them.

c) If an edge pattern EP contained in a <path term> PST at the same depth of graph pattern
matching is not preceded by a <node pattern> contained in PST at the same depth of graph
pattern matching, then an implicit empty <node pattern> VP is inserted in PST immediately
prior to EP.

d) If an edge pattern EP contained in a <path term> PST at the same depth of graph pattern
matching is not followed by a <node pattern> contained in PST at the same depth of graph
pattern matching, than an implicit empty <node pattern> VP is inserted in PST immediately
after EP.

NOTE 136— As a result of the preceding transformations, a fixed length path pattern has an odd number of
<element pattern>s, beginning and ending with <node pattern>s, and alternating between <node pattern>s
and <edge pattern>s.

225

IWD 39075:202y(E)
16.10 <path pattern expression>

You want to write a paper about pattern matching and start with the syntax

16.10 <path pattern expression>

Function

Specify a pattern to match a single path in a property graph.

Format
<path pattern expression> ::=

<path term>
| <path multiset alternation>
| <path pattern union>

<path multiset alternation> ::=
<path term> <multiset alternation operator> <path term>
 [{ <multiset alternation operator> <path term> }...]

<path pattern union> ::=
<path term> <vertical bar> <path term> [{ <vertical bar> <path term> }...]

<path term> ::=
<path factor>

| <path concatenation>

<path concatenation> ::=
<path term> <path factor>

<path factor> ::=
<path primary>

| <quantified path primary>
| <questioned path primary>

<quantified path primary> ::=
<path primary> <graph pattern quantifier>

<questioned path primary> ::=
<path primary> <question mark>

NOTE 131— Unlike most regular expression languages, <question mark> is not equivalent to the quantifier {0,1}: the
quantifier {0,1} exposes variables as group, whereas <questionmark> does not change the singleton variables that it exposes
to group. However, <question mark> does expose any singleton variables as conditional singletons.

<path primary> ::=
<element pattern>

| <parenthesized path pattern expression>
| <simplified path pattern expression>

<element pattern> ::=
<node pattern>

| <edge pattern>

<node pattern> ::=
<left paren> <element pattern filler> <right paren>

<element pattern filler> ::=
[<element variable declaration>]
[<is label expression>]
[<element pattern predicate>]

« WG3:W24-022 »

<element variable declaration> ::=

221

IWD 39075:202y(E)
16.10 <path pattern expression>

Standards are great but not for academics

[TEMP] <element variable>

<is label expression> ::=
<is or colon> <label expression>

<is or colon> ::=
IS

| <colon>

<element pattern predicate> ::=
<element pattern where clause>

| <element property specification>

<element pattern where clause> ::=
WHERE <search condition>

<element property specification> ::=
<left brace> <property key value pair list> <right brace>

<property key value pair list> ::=
<property key value pair> [{ <comma> <property key value pair> }...]

<property key value pair> ::=
<property name> <colon> <value expression>

<edge pattern> ::=
<full edge pattern>

| <abbreviated edge pattern>

<full edge pattern> ::=
<full edge pointing left>

| <full edge undirected>
| <full edge pointing right>
| <full edge left or undirected>
| <full edge undirected or right>
| <full edge left or right>
| <full edge any direction>

<full edge pointing left> ::=
<left arrow bracket> <element pattern filler> <right bracket minus>

<full edge undirected> ::=
<tilde left bracket> <element pattern filler> <right bracket tilde>

<full edge pointing right> ::=
<minus left bracket> <element pattern filler> <bracket right arrow>

<full edge left or undirected> ::=
<left arrow tilde bracket> <element pattern filler> <right bracket tilde>

<full edge undirected or right> ::=
<tilde left bracket> <element pattern filler> <bracket tilde right arrow>

<full edge left or right> ::=
<left arrow bracket> <element pattern filler> <bracket right arrow>

<full edge any direction> ::=
<minus left bracket> <element pattern filler> <right bracket minus>

** Editor’s Note (number 73) **

In the BNF for <full edge any direction>, the delimiter tokens <~[]~> have been suggested as a synonym for -[]- as part of
Feature GA07, “Undirected edge patterns”. The synonym for the <abbreviated edge pattern> - (<minus sign>) would then be
<~>, the synonym for <simplified defaulting any direction> would use the delimiter tokens <~/ /~> and the synonym for

222

IWD 39075:202y(E)
16.10 <path pattern expression>

<simplified override any direction> would use the tokens <~ and > surrounding a label as originally proposed in WG3:MMX-
060. These synonyms might be considered to make the table of edge patterns more harmonious and internally consistent. See
Language Opportunity GQL-212 .

<abbreviated edge pattern> ::=
<left arrow>

| <tilde>
| <right arrow>
| <left arrow tilde>
| <tilde right arrow>
| <left minus right>
| <minus sign>

« WG3:W24-038 deleted one Editor's Note »

<parenthesized path pattern expression> ::=
<left paren>
 [<subpath variable declaration>]
 [<path mode prefix>]

<path pattern expression>
 [<parenthesized path pattern where clause>]
<right paren>

<subpath variable declaration> ::=
<subpath variable> <equals operator>

<parenthesized path pattern where clause> ::=
WHERE <search condition>

Syntax Rules

1) LetRIGHTMINUSbe the following collectionof <token>s: <right bracketminus>, <left arrow>, <slash
minus>, and <minus sign>.

NOTE 132— These are the tokens]-, <-, /-, and -, which expose a minus sign on the right.

2) LetLEFTMINUSbe the following collectionof <token>s: <minus left bracket>, <right arrow>, <minus
slash>, and <minus sign>.

NOTE 133—These are the tokens -[, ->, -/, and -, which expose aminus sign on the left. <minus sign> itself is in both
RIGHTMINUS and LEFTMINUS.

3) A <pathpattern expression> shall not juxtapose a <token> fromRIGHTMINUS followedby a<token>
from LEFTMINUSwithout a <separator> between them.

NOTE 134— Otherwise, the concatenation of the two tokens would include the sequence of two <minus sign>s,
which is a <simple comment introducer>.

4) A <path pattern expression> that contains at the same depth of graph pattern matching a variable
quantifier, a <questioned path primary>, a <path multiset alternation>, or a <path pattern union>
is a possibly variable length path pattern.

5) A <path pattern expression> that is not a possibly variable length path pattern is a fixed length path
pattern.

6) Theminimum path length of certain BNF non-terminals defined in this Subclause is defined
recursively as follows:

a) The minimum path length of a <node pattern> is 0 (zero).

b) The minimum path length of an <edge pattern> is 1 (one).

223

IWD 39075:202y(E)
16.10 <path pattern expression>

c) Theminimum path length of a <path concatenation> is the sum of theminimum path lengths
of its operands.

d) The minimum path length of a <path pattern union> or <path multiset alternation> is the
minimum of the minimum path length of its operands.

e) Theminimumpath length of a <quantified path primary> is the product of theminimumpath
length of the simply contained <path primary> and the value of the <lower bound>.

f) The minimum path length of a <questioned path primary> is 0 (zero).

g) Theminimumpath length of a <parenthesized path pattern expression> is theminimumpath
length of the simply contained <path pattern expression>.

h) IfBNT1 andBNT2 are twoBNFnon-terminals such thatBNT1 ::=BNT2 and theminimumpath
length of BNT2 is defined, then the minimum path length of BNT1 is also defined and is the
same as the minimum path length of BNT2.

7) The <path primary> immediately contained in a <quantified path primary> or <questioned path
primary> shall have minimum path length that is greater than 0 (zero).

8) The<pathprimary> simply contained in a <quantifiedpath primary> shall not contain a <quantified
path primary> at the same depth of graph pattern matching.

** Editor’s Note (number 74) **

It may be possible to permit nested quantifiers. WG3:W01-014 contained a discussion of a way to support aggregates
at different depths of aggregation if there are nested quantifiers. See Language Opportunity GQL-036 .

9) Let PMA be a <path multiset alternation>.

a) A <path term> simply contained in PMA is amultiset alternation operand of PMA.

b) LetNOPMAbe thenumber ofmultiset alternation operands ofPMA. LetOPMA1, ...,OPMANOPMA
be an enumeration of the operands of PMA.

c) Any <subpath variable>s declared by <subpath variable declaration>s simply contained in
the multiset alternation operands of PMA shall be mutually distinct.

d) Let SOPMA1, ..., SOPMANOPMA be implementation-dependent (UV008) <identifier>s that are
mutually distinct and distinct from every <element variable>, <subpath variable> and <path
variable> contained in GP.

e) For every i, 1 (one) ≤ i ≤ NOPMA.

Case:

i) IfOPMAi is a <parenthesized path pattern expression> that simply contains a <subpath
variable declaration>, then let OPMAXi be OPMAi.

ii) Otherwise, let OPMAXi be the <parenthesized path pattern expression>

(SOPMAi = OPMAi)

f) PMA is equivalent to:

OPMAX1 | ... | OPMAXNOPMA

10) A <path term> PPUOP simply contained in a <path pattern union> PSD is a path pattern union
operand of PSD.

224

IWD 39075:202y(E)
16.10 <path pattern expression>

** Editor’s Note (number 75) **

Path pattern union is not defined using left recursion. WG3:SXM-052 believed that it should be possible to support left
recursion but declined to do so for expediency. It is a Language Opportunity to support left recursion. See Language
Opportunity GQL-025 .

PPUOP shall not contain a reference to an element variable that is not declared in PPUOP or outside
of PSD.

11) An <element pattern> EP that contains an <element pattern where clause> EPWC is transformed
as follows:

a) Let EPF be the <element pattern filler> simply contained in EP.

b) Let PREFIX be the <delimiter token> contained in EP before EPF and let SUFFIX be the
<delimiter token> contained in EP after EPF.

c) LetEV be the <element variable> simply contained inEPF. Let ILE be the <is label expression>
contained in EPF, if any; otherwise, let ILE be the zero-length string.

d) EP is replaced by

(PREFIX EV ILE SUFFIX EPWC)

12) An <element pattern> that does not contain an <element variable declaration>, an <is label
expression>, or an <element pattern predicate> is said to be empty.

13) Each <path pattern expression> is transformed in the following steps:

a) If the <path primary> immediately contained in a <quantified path primary> or <questioned
path primary> is an <edge pattern> EP, then EP is replaced by

(EP)

NOTE 135— For example,

->*

becomes:

(->) {0,}

which in later transformations becomes:

(() -> ()) {0,}

b) If two successive <element pattern>s contained in a <path concatenation> at the same depth
of graph pattern matching are <edge pattern>s, then an implicit empty <node pattern> is
inserted between them.

c) If an edge pattern EP contained in a <path term> PST at the same depth of graph pattern
matching is not preceded by a <node pattern> contained in PST at the same depth of graph
pattern matching, then an implicit empty <node pattern> VP is inserted in PST immediately
prior to EP.

d) If an edge pattern EP contained in a <path term> PST at the same depth of graph pattern
matching is not followed by a <node pattern> contained in PST at the same depth of graph
pattern matching, than an implicit empty <node pattern> VP is inserted in PST immediately
after EP.

NOTE 136— As a result of the preceding transformations, a fixed length path pattern has an odd number of
<element pattern>s, beginning and ending with <node pattern>s, and alternating between <node pattern>s
and <edge pattern>s.

225

IWD 39075:202y(E)
16.10 <path pattern expression>

h) IfBNF1 andBNF2 are twoBNFnon-terminals such thatBNF1 ::=BNF2 and theminimumnode
count of BNF2 is defined, then the minimum node count of BNF1 is also defined and is the
same as the minimum node count of BNF2.

15) The <path pattern expression> simply contained in a <path pattern> shall have a minimum node
count that is greater than 0 (zero).

NOTE 137— The minimum node count is computed after the syntactic transform that adds implicit node patterns.
Thus a single <edge pattern> is a permitted <path pattern> because it implies two <node pattern>s.

« WG3:W24-022 »

16) An<element variable>EV contained in an<element variable declaration>GPVD is said to bedeclared
by GPVD, and by the <element pattern> EP that simply contains GPVD. The <element variable> is
the name of an element variable, which is also declared by GPVD and EP. If GPVD simply contains
TEMP, then EV is a temporary element variable. EV is a primary variable.

NOTE 138— Element bindings to temporary element variables are removed prior to set-theoretic deduplication of
matches. SeeGR10) of Subclause16.8, “<graphpattern>” andGR14) of Subclause21.2, “Machinery for graphpattern
matching”.

17) Prior to the application of syntactic transformations, conforming GQL-language shall not contain
an <element variable declaration> that immediately contains TEMP.

18) An element variable that is declared by a <node pattern> is a node variable. An element variable
that is declared by an <edge pattern> is an edge variable.

« WG3:W24-022 »

19) The scope of an <element variable> EV that is declared by an <element pattern> EP is defined as
follows. If EV is a temporary element variable, then the scope of EV is the innermost <path term>
containingEP; otherwise, the scope ofEV is the innermost <graphpattern binding table> containing
EP.

20) A <subpath variable> SV contained in a <subpath variable declaration> SVD is said to be declared
by SVD, and by the <parenthesized path pattern expression> PPPE that simply contains SVD. SV is
the name of a subpath variable, which is also declared by SVD and PPPE.

21) If EP is an <element pattern> that contains an <element patternwhere clause> EPWC, then EP shall
simply contain an <element variable declaration> GPVD.

22) If EV is an element variable or subpath variable, and BNT is an instance of a BNF non-terminal, then
the terminology “BNT exposesEV” is defined as follows. The full terminology is one of the following:
“BNT exposesEV as an unconditional singleton variable”, “BNT exposesEV as a conditional singleton
variable”, “BNT exposes EV as an effectively bounded group variable” or “BNT exposes EV as an
effectively unbounded group variable”. The terms “unconditional singleton variable”, “conditional
singleton variable”, “effectively boundedgroupvariable”, and “effectively unboundedgroupvariable”
are called the degree of exposure.

a) An <element pattern>EP that declares an element variableEV exposesEV as an unconditional
singleton.

b) A <parenthesized path pattern expression> PPPE that simply contains a <subpath variable
declaration> that declares EV exposes EV as an unconditional singleton variable. PPPE shall
not contain another <parenthesized path pattern expression> that declares EV.

c) If a <path concatenation> PPC declares EV then let PT be the <path term> and let PF be the
<path factor> simply contained in PPC.

Case:

i) If EV is exposed as an unconditional singleton by both PT and PF, then EV is exposed
as an unconditional singleton by PPC. EV shall not be a subpath variable.

227

IWD 39075:202y(E)
16.10 <path pattern expression>

You want to write a paper about pattern matching and start with the syntax

16.10 <path pattern expression>

Function

Specify a pattern to match a single path in a property graph.

Format
<path pattern expression> ::=

<path term>
| <path multiset alternation>
| <path pattern union>

<path multiset alternation> ::=
<path term> <multiset alternation operator> <path term>
 [{ <multiset alternation operator> <path term> }...]

<path pattern union> ::=
<path term> <vertical bar> <path term> [{ <vertical bar> <path term> }...]

<path term> ::=
<path factor>

| <path concatenation>

<path concatenation> ::=
<path term> <path factor>

<path factor> ::=
<path primary>

| <quantified path primary>
| <questioned path primary>

<quantified path primary> ::=
<path primary> <graph pattern quantifier>

<questioned path primary> ::=
<path primary> <question mark>

NOTE 131— Unlike most regular expression languages, <question mark> is not equivalent to the quantifier {0,1}: the
quantifier {0,1} exposes variables as group, whereas <questionmark> does not change the singleton variables that it exposes
to group. However, <question mark> does expose any singleton variables as conditional singletons.

<path primary> ::=
<element pattern>

| <parenthesized path pattern expression>
| <simplified path pattern expression>

<element pattern> ::=
<node pattern>

| <edge pattern>

<node pattern> ::=
<left paren> <element pattern filler> <right paren>

<element pattern filler> ::=
[<element variable declaration>]
[<is label expression>]
[<element pattern predicate>]

« WG3:W24-022 »

<element variable declaration> ::=

221

IWD 39075:202y(E)
16.10 <path pattern expression>

Standards are great but not for academics

[TEMP] <element variable>

<is label expression> ::=
<is or colon> <label expression>

<is or colon> ::=
IS

| <colon>

<element pattern predicate> ::=
<element pattern where clause>

| <element property specification>

<element pattern where clause> ::=
WHERE <search condition>

<element property specification> ::=
<left brace> <property key value pair list> <right brace>

<property key value pair list> ::=
<property key value pair> [{ <comma> <property key value pair> }...]

<property key value pair> ::=
<property name> <colon> <value expression>

<edge pattern> ::=
<full edge pattern>

| <abbreviated edge pattern>

<full edge pattern> ::=
<full edge pointing left>

| <full edge undirected>
| <full edge pointing right>
| <full edge left or undirected>
| <full edge undirected or right>
| <full edge left or right>
| <full edge any direction>

<full edge pointing left> ::=
<left arrow bracket> <element pattern filler> <right bracket minus>

<full edge undirected> ::=
<tilde left bracket> <element pattern filler> <right bracket tilde>

<full edge pointing right> ::=
<minus left bracket> <element pattern filler> <bracket right arrow>

<full edge left or undirected> ::=
<left arrow tilde bracket> <element pattern filler> <right bracket tilde>

<full edge undirected or right> ::=
<tilde left bracket> <element pattern filler> <bracket tilde right arrow>

<full edge left or right> ::=
<left arrow bracket> <element pattern filler> <bracket right arrow>

<full edge any direction> ::=
<minus left bracket> <element pattern filler> <right bracket minus>

** Editor’s Note (number 73) **

In the BNF for <full edge any direction>, the delimiter tokens <~[]~> have been suggested as a synonym for -[]- as part of
Feature GA07, “Undirected edge patterns”. The synonym for the <abbreviated edge pattern> - (<minus sign>) would then be
<~>, the synonym for <simplified defaulting any direction> would use the delimiter tokens <~/ /~> and the synonym for

222

IWD 39075:202y(E)
16.10 <path pattern expression>

<simplified override any direction> would use the tokens <~ and > surrounding a label as originally proposed in WG3:MMX-
060. These synonyms might be considered to make the table of edge patterns more harmonious and internally consistent. See
Language Opportunity GQL-212 .

<abbreviated edge pattern> ::=
<left arrow>

| <tilde>
| <right arrow>
| <left arrow tilde>
| <tilde right arrow>
| <left minus right>
| <minus sign>

« WG3:W24-038 deleted one Editor's Note »

<parenthesized path pattern expression> ::=
<left paren>
 [<subpath variable declaration>]
 [<path mode prefix>]

<path pattern expression>
 [<parenthesized path pattern where clause>]
<right paren>

<subpath variable declaration> ::=
<subpath variable> <equals operator>

<parenthesized path pattern where clause> ::=
WHERE <search condition>

Syntax Rules

1) LetRIGHTMINUSbe the following collectionof <token>s: <right bracketminus>, <left arrow>, <slash
minus>, and <minus sign>.

NOTE 132— These are the tokens]-, <-, /-, and -, which expose a minus sign on the right.

2) LetLEFTMINUSbe the following collectionof <token>s: <minus left bracket>, <right arrow>, <minus
slash>, and <minus sign>.

NOTE 133—These are the tokens -[, ->, -/, and -, which expose aminus sign on the left. <minus sign> itself is in both
RIGHTMINUS and LEFTMINUS.

3) A <pathpattern expression> shall not juxtapose a <token> fromRIGHTMINUS followedby a<token>
from LEFTMINUSwithout a <separator> between them.

NOTE 134— Otherwise, the concatenation of the two tokens would include the sequence of two <minus sign>s,
which is a <simple comment introducer>.

4) A <path pattern expression> that contains at the same depth of graph pattern matching a variable
quantifier, a <questioned path primary>, a <path multiset alternation>, or a <path pattern union>
is a possibly variable length path pattern.

5) A <path pattern expression> that is not a possibly variable length path pattern is a fixed length path
pattern.

6) Theminimum path length of certain BNF non-terminals defined in this Subclause is defined
recursively as follows:

a) The minimum path length of a <node pattern> is 0 (zero).

b) The minimum path length of an <edge pattern> is 1 (one).

223

IWD 39075:202y(E)
16.10 <path pattern expression>

c) Theminimum path length of a <path concatenation> is the sum of theminimum path lengths
of its operands.

d) The minimum path length of a <path pattern union> or <path multiset alternation> is the
minimum of the minimum path length of its operands.

e) Theminimumpath length of a <quantified path primary> is the product of theminimumpath
length of the simply contained <path primary> and the value of the <lower bound>.

f) The minimum path length of a <questioned path primary> is 0 (zero).

g) Theminimumpath length of a <parenthesized path pattern expression> is theminimumpath
length of the simply contained <path pattern expression>.

h) IfBNT1 andBNT2 are twoBNFnon-terminals such thatBNT1 ::=BNT2 and theminimumpath
length of BNT2 is defined, then the minimum path length of BNT1 is also defined and is the
same as the minimum path length of BNT2.

7) The <path primary> immediately contained in a <quantified path primary> or <questioned path
primary> shall have minimum path length that is greater than 0 (zero).

8) The<pathprimary> simply contained in a <quantifiedpath primary> shall not contain a <quantified
path primary> at the same depth of graph pattern matching.

** Editor’s Note (number 74) **

It may be possible to permit nested quantifiers. WG3:W01-014 contained a discussion of a way to support aggregates
at different depths of aggregation if there are nested quantifiers. See Language Opportunity GQL-036 .

9) Let PMA be a <path multiset alternation>.

a) A <path term> simply contained in PMA is amultiset alternation operand of PMA.

b) LetNOPMAbe thenumber ofmultiset alternation operands ofPMA. LetOPMA1, ...,OPMANOPMA
be an enumeration of the operands of PMA.

c) Any <subpath variable>s declared by <subpath variable declaration>s simply contained in
the multiset alternation operands of PMA shall be mutually distinct.

d) Let SOPMA1, ..., SOPMANOPMA be implementation-dependent (UV008) <identifier>s that are
mutually distinct and distinct from every <element variable>, <subpath variable> and <path
variable> contained in GP.

e) For every i, 1 (one) ≤ i ≤ NOPMA.

Case:

i) IfOPMAi is a <parenthesized path pattern expression> that simply contains a <subpath
variable declaration>, then let OPMAXi be OPMAi.

ii) Otherwise, let OPMAXi be the <parenthesized path pattern expression>

(SOPMAi = OPMAi)

f) PMA is equivalent to:

OPMAX1 | ... | OPMAXNOPMA

10) A <path term> PPUOP simply contained in a <path pattern union> PSD is a path pattern union
operand of PSD.

224

IWD 39075:202y(E)
16.10 <path pattern expression>

** Editor’s Note (number 75) **

Path pattern union is not defined using left recursion. WG3:SXM-052 believed that it should be possible to support left
recursion but declined to do so for expediency. It is a Language Opportunity to support left recursion. See Language
Opportunity GQL-025 .

PPUOP shall not contain a reference to an element variable that is not declared in PPUOP or outside
of PSD.

11) An <element pattern> EP that contains an <element pattern where clause> EPWC is transformed
as follows:

a) Let EPF be the <element pattern filler> simply contained in EP.

b) Let PREFIX be the <delimiter token> contained in EP before EPF and let SUFFIX be the
<delimiter token> contained in EP after EPF.

c) LetEV be the <element variable> simply contained inEPF. Let ILE be the <is label expression>
contained in EPF, if any; otherwise, let ILE be the zero-length string.

d) EP is replaced by

(PREFIX EV ILE SUFFIX EPWC)

12) An <element pattern> that does not contain an <element variable declaration>, an <is label
expression>, or an <element pattern predicate> is said to be empty.

13) Each <path pattern expression> is transformed in the following steps:

a) If the <path primary> immediately contained in a <quantified path primary> or <questioned
path primary> is an <edge pattern> EP, then EP is replaced by

(EP)

NOTE 135— For example,

->*

becomes:

(->) {0,}

which in later transformations becomes:

(() -> ()) {0,}

b) If two successive <element pattern>s contained in a <path concatenation> at the same depth
of graph pattern matching are <edge pattern>s, then an implicit empty <node pattern> is
inserted between them.

c) If an edge pattern EP contained in a <path term> PST at the same depth of graph pattern
matching is not preceded by a <node pattern> contained in PST at the same depth of graph
pattern matching, then an implicit empty <node pattern> VP is inserted in PST immediately
prior to EP.

d) If an edge pattern EP contained in a <path term> PST at the same depth of graph pattern
matching is not followed by a <node pattern> contained in PST at the same depth of graph
pattern matching, than an implicit empty <node pattern> VP is inserted in PST immediately
after EP.

NOTE 136— As a result of the preceding transformations, a fixed length path pattern has an odd number of
<element pattern>s, beginning and ending with <node pattern>s, and alternating between <node pattern>s
and <edge pattern>s.

225

IWD 39075:202y(E)
16.10 <path pattern expression>

h) IfBNF1 andBNF2 are twoBNFnon-terminals such thatBNF1 ::=BNF2 and theminimumnode
count of BNF2 is defined, then the minimum node count of BNF1 is also defined and is the
same as the minimum node count of BNF2.

15) The <path pattern expression> simply contained in a <path pattern> shall have a minimum node
count that is greater than 0 (zero).

NOTE 137— The minimum node count is computed after the syntactic transform that adds implicit node patterns.
Thus a single <edge pattern> is a permitted <path pattern> because it implies two <node pattern>s.

« WG3:W24-022 »

16) An<element variable>EV contained in an<element variable declaration>GPVD is said to bedeclared
by GPVD, and by the <element pattern> EP that simply contains GPVD. The <element variable> is
the name of an element variable, which is also declared by GPVD and EP. If GPVD simply contains
TEMP, then EV is a temporary element variable. EV is a primary variable.

NOTE 138— Element bindings to temporary element variables are removed prior to set-theoretic deduplication of
matches. SeeGR10) of Subclause16.8, “<graphpattern>” andGR14) of Subclause21.2, “Machinery for graphpattern
matching”.

17) Prior to the application of syntactic transformations, conforming GQL-language shall not contain
an <element variable declaration> that immediately contains TEMP.

18) An element variable that is declared by a <node pattern> is a node variable. An element variable
that is declared by an <edge pattern> is an edge variable.

« WG3:W24-022 »

19) The scope of an <element variable> EV that is declared by an <element pattern> EP is defined as
follows. If EV is a temporary element variable, then the scope of EV is the innermost <path term>
containingEP; otherwise, the scope ofEV is the innermost <graphpattern binding table> containing
EP.

20) A <subpath variable> SV contained in a <subpath variable declaration> SVD is said to be declared
by SVD, and by the <parenthesized path pattern expression> PPPE that simply contains SVD. SV is
the name of a subpath variable, which is also declared by SVD and PPPE.

21) If EP is an <element pattern> that contains an <element patternwhere clause> EPWC, then EP shall
simply contain an <element variable declaration> GPVD.

22) If EV is an element variable or subpath variable, and BNT is an instance of a BNF non-terminal, then
the terminology “BNT exposesEV” is defined as follows. The full terminology is one of the following:
“BNT exposesEV as an unconditional singleton variable”, “BNT exposesEV as a conditional singleton
variable”, “BNT exposes EV as an effectively bounded group variable” or “BNT exposes EV as an
effectively unbounded group variable”. The terms “unconditional singleton variable”, “conditional
singleton variable”, “effectively boundedgroupvariable”, and “effectively unboundedgroupvariable”
are called the degree of exposure.

a) An <element pattern>EP that declares an element variableEV exposesEV as an unconditional
singleton.

b) A <parenthesized path pattern expression> PPPE that simply contains a <subpath variable
declaration> that declares EV exposes EV as an unconditional singleton variable. PPPE shall
not contain another <parenthesized path pattern expression> that declares EV.

c) If a <path concatenation> PPC declares EV then let PT be the <path term> and let PF be the
<path factor> simply contained in PPC.

Case:

i) If EV is exposed as an unconditional singleton by both PT and PF, then EV is exposed
as an unconditional singleton by PPC. EV shall not be a subpath variable.

227

IWD 39075:202y(E)
16.10 <path pattern expression>

h) IfBNF1 andBNF2 are twoBNFnon-terminals such thatBNF1 ::=BNF2 and theminimumnode
count of BNF2 is defined, then the minimum node count of BNF1 is also defined and is the
same as the minimum node count of BNF2.

15) The <path pattern expression> simply contained in a <path pattern> shall have a minimum node
count that is greater than 0 (zero).

NOTE 137— The minimum node count is computed after the syntactic transform that adds implicit node patterns.
Thus a single <edge pattern> is a permitted <path pattern> because it implies two <node pattern>s.

« WG3:W24-022 »

16) An<element variable>EV contained in an<element variable declaration>GPVD is said to bedeclared
by GPVD, and by the <element pattern> EP that simply contains GPVD. The <element variable> is
the name of an element variable, which is also declared by GPVD and EP. If GPVD simply contains
TEMP, then EV is a temporary element variable. EV is a primary variable.

NOTE 138— Element bindings to temporary element variables are removed prior to set-theoretic deduplication of
matches. SeeGR10) of Subclause16.8, “<graphpattern>” andGR14) of Subclause21.2, “Machinery for graphpattern
matching”.

17) Prior to the application of syntactic transformations, conforming GQL-language shall not contain
an <element variable declaration> that immediately contains TEMP.

18) An element variable that is declared by a <node pattern> is a node variable. An element variable
that is declared by an <edge pattern> is an edge variable.

« WG3:W24-022 »

19) The scope of an <element variable> EV that is declared by an <element pattern> EP is defined as
follows. If EV is a temporary element variable, then the scope of EV is the innermost <path term>
containingEP; otherwise, the scope ofEV is the innermost <graphpattern binding table> containing
EP.

20) A <subpath variable> SV contained in a <subpath variable declaration> SVD is said to be declared
by SVD, and by the <parenthesized path pattern expression> PPPE that simply contains SVD. SV is
the name of a subpath variable, which is also declared by SVD and PPPE.

21) If EP is an <element pattern> that contains an <element patternwhere clause> EPWC, then EP shall
simply contain an <element variable declaration> GPVD.

22) If EV is an element variable or subpath variable, and BNT is an instance of a BNF non-terminal, then
the terminology “BNT exposesEV” is defined as follows. The full terminology is one of the following:
“BNT exposesEV as an unconditional singleton variable”, “BNT exposesEV as a conditional singleton
variable”, “BNT exposes EV as an effectively bounded group variable” or “BNT exposes EV as an
effectively unbounded group variable”. The terms “unconditional singleton variable”, “conditional
singleton variable”, “effectively boundedgroupvariable”, and “effectively unboundedgroupvariable”
are called the degree of exposure.

a) An <element pattern>EP that declares an element variableEV exposesEV as an unconditional
singleton.

b) A <parenthesized path pattern expression> PPPE that simply contains a <subpath variable
declaration> that declares EV exposes EV as an unconditional singleton variable. PPPE shall
not contain another <parenthesized path pattern expression> that declares EV.

c) If a <path concatenation> PPC declares EV then let PT be the <path term> and let PF be the
<path factor> simply contained in PPC.

Case:

i) If EV is exposed as an unconditional singleton by both PT and PF, then EV is exposed
as an unconditional singleton by PPC. EV shall not be a subpath variable.

227

IWD 39075:202y(E)
16.10 <path pattern expression>

You want to write a paper about pattern matching and start with the syntax

16.10 <path pattern expression>

Function

Specify a pattern to match a single path in a property graph.

Format
<path pattern expression> ::=

<path term>
| <path multiset alternation>
| <path pattern union>

<path multiset alternation> ::=
<path term> <multiset alternation operator> <path term>
 [{ <multiset alternation operator> <path term> }...]

<path pattern union> ::=
<path term> <vertical bar> <path term> [{ <vertical bar> <path term> }...]

<path term> ::=
<path factor>

| <path concatenation>

<path concatenation> ::=
<path term> <path factor>

<path factor> ::=
<path primary>

| <quantified path primary>
| <questioned path primary>

<quantified path primary> ::=
<path primary> <graph pattern quantifier>

<questioned path primary> ::=
<path primary> <question mark>

NOTE 131— Unlike most regular expression languages, <question mark> is not equivalent to the quantifier {0,1}: the
quantifier {0,1} exposes variables as group, whereas <questionmark> does not change the singleton variables that it exposes
to group. However, <question mark> does expose any singleton variables as conditional singletons.

<path primary> ::=
<element pattern>

| <parenthesized path pattern expression>
| <simplified path pattern expression>

<element pattern> ::=
<node pattern>

| <edge pattern>

<node pattern> ::=
<left paren> <element pattern filler> <right paren>

<element pattern filler> ::=
[<element variable declaration>]
[<is label expression>]
[<element pattern predicate>]

« WG3:W24-022 »

<element variable declaration> ::=

221

IWD 39075:202y(E)
16.10 <path pattern expression>

Standards are great but not for academics

[TEMP] <element variable>

<is label expression> ::=
<is or colon> <label expression>

<is or colon> ::=
IS

| <colon>

<element pattern predicate> ::=
<element pattern where clause>

| <element property specification>

<element pattern where clause> ::=
WHERE <search condition>

<element property specification> ::=
<left brace> <property key value pair list> <right brace>

<property key value pair list> ::=
<property key value pair> [{ <comma> <property key value pair> }...]

<property key value pair> ::=
<property name> <colon> <value expression>

<edge pattern> ::=
<full edge pattern>

| <abbreviated edge pattern>

<full edge pattern> ::=
<full edge pointing left>

| <full edge undirected>
| <full edge pointing right>
| <full edge left or undirected>
| <full edge undirected or right>
| <full edge left or right>
| <full edge any direction>

<full edge pointing left> ::=
<left arrow bracket> <element pattern filler> <right bracket minus>

<full edge undirected> ::=
<tilde left bracket> <element pattern filler> <right bracket tilde>

<full edge pointing right> ::=
<minus left bracket> <element pattern filler> <bracket right arrow>

<full edge left or undirected> ::=
<left arrow tilde bracket> <element pattern filler> <right bracket tilde>

<full edge undirected or right> ::=
<tilde left bracket> <element pattern filler> <bracket tilde right arrow>

<full edge left or right> ::=
<left arrow bracket> <element pattern filler> <bracket right arrow>

<full edge any direction> ::=
<minus left bracket> <element pattern filler> <right bracket minus>

** Editor’s Note (number 73) **

In the BNF for <full edge any direction>, the delimiter tokens <~[]~> have been suggested as a synonym for -[]- as part of
Feature GA07, “Undirected edge patterns”. The synonym for the <abbreviated edge pattern> - (<minus sign>) would then be
<~>, the synonym for <simplified defaulting any direction> would use the delimiter tokens <~/ /~> and the synonym for

222

IWD 39075:202y(E)
16.10 <path pattern expression>

<simplified override any direction> would use the tokens <~ and > surrounding a label as originally proposed in WG3:MMX-
060. These synonyms might be considered to make the table of edge patterns more harmonious and internally consistent. See
Language Opportunity GQL-212 .

<abbreviated edge pattern> ::=
<left arrow>

| <tilde>
| <right arrow>
| <left arrow tilde>
| <tilde right arrow>
| <left minus right>
| <minus sign>

« WG3:W24-038 deleted one Editor's Note »

<parenthesized path pattern expression> ::=
<left paren>
 [<subpath variable declaration>]
 [<path mode prefix>]

<path pattern expression>
 [<parenthesized path pattern where clause>]
<right paren>

<subpath variable declaration> ::=
<subpath variable> <equals operator>

<parenthesized path pattern where clause> ::=
WHERE <search condition>

Syntax Rules

1) LetRIGHTMINUSbe the following collectionof <token>s: <right bracketminus>, <left arrow>, <slash
minus>, and <minus sign>.

NOTE 132— These are the tokens]-, <-, /-, and -, which expose a minus sign on the right.

2) LetLEFTMINUSbe the following collectionof <token>s: <minus left bracket>, <right arrow>, <minus
slash>, and <minus sign>.

NOTE 133—These are the tokens -[, ->, -/, and -, which expose aminus sign on the left. <minus sign> itself is in both
RIGHTMINUS and LEFTMINUS.

3) A <pathpattern expression> shall not juxtapose a <token> fromRIGHTMINUS followedby a<token>
from LEFTMINUSwithout a <separator> between them.

NOTE 134— Otherwise, the concatenation of the two tokens would include the sequence of two <minus sign>s,
which is a <simple comment introducer>.

4) A <path pattern expression> that contains at the same depth of graph pattern matching a variable
quantifier, a <questioned path primary>, a <path multiset alternation>, or a <path pattern union>
is a possibly variable length path pattern.

5) A <path pattern expression> that is not a possibly variable length path pattern is a fixed length path
pattern.

6) Theminimum path length of certain BNF non-terminals defined in this Subclause is defined
recursively as follows:

a) The minimum path length of a <node pattern> is 0 (zero).

b) The minimum path length of an <edge pattern> is 1 (one).

223

IWD 39075:202y(E)
16.10 <path pattern expression>

c) Theminimum path length of a <path concatenation> is the sum of theminimum path lengths
of its operands.

d) The minimum path length of a <path pattern union> or <path multiset alternation> is the
minimum of the minimum path length of its operands.

e) Theminimumpath length of a <quantified path primary> is the product of theminimumpath
length of the simply contained <path primary> and the value of the <lower bound>.

f) The minimum path length of a <questioned path primary> is 0 (zero).

g) Theminimumpath length of a <parenthesized path pattern expression> is theminimumpath
length of the simply contained <path pattern expression>.

h) IfBNT1 andBNT2 are twoBNFnon-terminals such thatBNT1 ::=BNT2 and theminimumpath
length of BNT2 is defined, then the minimum path length of BNT1 is also defined and is the
same as the minimum path length of BNT2.

7) The <path primary> immediately contained in a <quantified path primary> or <questioned path
primary> shall have minimum path length that is greater than 0 (zero).

8) The<pathprimary> simply contained in a <quantifiedpath primary> shall not contain a <quantified
path primary> at the same depth of graph pattern matching.

** Editor’s Note (number 74) **

It may be possible to permit nested quantifiers. WG3:W01-014 contained a discussion of a way to support aggregates
at different depths of aggregation if there are nested quantifiers. See Language Opportunity GQL-036 .

9) Let PMA be a <path multiset alternation>.

a) A <path term> simply contained in PMA is amultiset alternation operand of PMA.

b) LetNOPMAbe thenumber ofmultiset alternation operands ofPMA. LetOPMA1, ...,OPMANOPMA
be an enumeration of the operands of PMA.

c) Any <subpath variable>s declared by <subpath variable declaration>s simply contained in
the multiset alternation operands of PMA shall be mutually distinct.

d) Let SOPMA1, ..., SOPMANOPMA be implementation-dependent (UV008) <identifier>s that are
mutually distinct and distinct from every <element variable>, <subpath variable> and <path
variable> contained in GP.

e) For every i, 1 (one) ≤ i ≤ NOPMA.

Case:

i) IfOPMAi is a <parenthesized path pattern expression> that simply contains a <subpath
variable declaration>, then let OPMAXi be OPMAi.

ii) Otherwise, let OPMAXi be the <parenthesized path pattern expression>

(SOPMAi = OPMAi)

f) PMA is equivalent to:

OPMAX1 | ... | OPMAXNOPMA

10) A <path term> PPUOP simply contained in a <path pattern union> PSD is a path pattern union
operand of PSD.

224

IWD 39075:202y(E)
16.10 <path pattern expression>

** Editor’s Note (number 75) **

Path pattern union is not defined using left recursion. WG3:SXM-052 believed that it should be possible to support left
recursion but declined to do so for expediency. It is a Language Opportunity to support left recursion. See Language
Opportunity GQL-025 .

PPUOP shall not contain a reference to an element variable that is not declared in PPUOP or outside
of PSD.

11) An <element pattern> EP that contains an <element pattern where clause> EPWC is transformed
as follows:

a) Let EPF be the <element pattern filler> simply contained in EP.

b) Let PREFIX be the <delimiter token> contained in EP before EPF and let SUFFIX be the
<delimiter token> contained in EP after EPF.

c) LetEV be the <element variable> simply contained inEPF. Let ILE be the <is label expression>
contained in EPF, if any; otherwise, let ILE be the zero-length string.

d) EP is replaced by

(PREFIX EV ILE SUFFIX EPWC)

12) An <element pattern> that does not contain an <element variable declaration>, an <is label
expression>, or an <element pattern predicate> is said to be empty.

13) Each <path pattern expression> is transformed in the following steps:

a) If the <path primary> immediately contained in a <quantified path primary> or <questioned
path primary> is an <edge pattern> EP, then EP is replaced by

(EP)

NOTE 135— For example,

->*

becomes:

(->) {0,}

which in later transformations becomes:

(() -> ()) {0,}

b) If two successive <element pattern>s contained in a <path concatenation> at the same depth
of graph pattern matching are <edge pattern>s, then an implicit empty <node pattern> is
inserted between them.

c) If an edge pattern EP contained in a <path term> PST at the same depth of graph pattern
matching is not preceded by a <node pattern> contained in PST at the same depth of graph
pattern matching, then an implicit empty <node pattern> VP is inserted in PST immediately
prior to EP.

d) If an edge pattern EP contained in a <path term> PST at the same depth of graph pattern
matching is not followed by a <node pattern> contained in PST at the same depth of graph
pattern matching, than an implicit empty <node pattern> VP is inserted in PST immediately
after EP.

NOTE 136— As a result of the preceding transformations, a fixed length path pattern has an odd number of
<element pattern>s, beginning and ending with <node pattern>s, and alternating between <node pattern>s
and <edge pattern>s.

225

IWD 39075:202y(E)
16.10 <path pattern expression>

h) IfBNF1 andBNF2 are twoBNFnon-terminals such thatBNF1 ::=BNF2 and theminimumnode
count of BNF2 is defined, then the minimum node count of BNF1 is also defined and is the
same as the minimum node count of BNF2.

15) The <path pattern expression> simply contained in a <path pattern> shall have a minimum node
count that is greater than 0 (zero).

NOTE 137— The minimum node count is computed after the syntactic transform that adds implicit node patterns.
Thus a single <edge pattern> is a permitted <path pattern> because it implies two <node pattern>s.

« WG3:W24-022 »

16) An<element variable>EV contained in an<element variable declaration>GPVD is said to bedeclared
by GPVD, and by the <element pattern> EP that simply contains GPVD. The <element variable> is
the name of an element variable, which is also declared by GPVD and EP. If GPVD simply contains
TEMP, then EV is a temporary element variable. EV is a primary variable.

NOTE 138— Element bindings to temporary element variables are removed prior to set-theoretic deduplication of
matches. SeeGR10) of Subclause16.8, “<graphpattern>” andGR14) of Subclause21.2, “Machinery for graphpattern
matching”.

17) Prior to the application of syntactic transformations, conforming GQL-language shall not contain
an <element variable declaration> that immediately contains TEMP.

18) An element variable that is declared by a <node pattern> is a node variable. An element variable
that is declared by an <edge pattern> is an edge variable.

« WG3:W24-022 »

19) The scope of an <element variable> EV that is declared by an <element pattern> EP is defined as
follows. If EV is a temporary element variable, then the scope of EV is the innermost <path term>
containingEP; otherwise, the scope ofEV is the innermost <graphpattern binding table> containing
EP.

20) A <subpath variable> SV contained in a <subpath variable declaration> SVD is said to be declared
by SVD, and by the <parenthesized path pattern expression> PPPE that simply contains SVD. SV is
the name of a subpath variable, which is also declared by SVD and PPPE.

21) If EP is an <element pattern> that contains an <element patternwhere clause> EPWC, then EP shall
simply contain an <element variable declaration> GPVD.

22) If EV is an element variable or subpath variable, and BNT is an instance of a BNF non-terminal, then
the terminology “BNT exposesEV” is defined as follows. The full terminology is one of the following:
“BNT exposesEV as an unconditional singleton variable”, “BNT exposesEV as a conditional singleton
variable”, “BNT exposes EV as an effectively bounded group variable” or “BNT exposes EV as an
effectively unbounded group variable”. The terms “unconditional singleton variable”, “conditional
singleton variable”, “effectively boundedgroupvariable”, and “effectively unboundedgroupvariable”
are called the degree of exposure.

a) An <element pattern>EP that declares an element variableEV exposesEV as an unconditional
singleton.

b) A <parenthesized path pattern expression> PPPE that simply contains a <subpath variable
declaration> that declares EV exposes EV as an unconditional singleton variable. PPPE shall
not contain another <parenthesized path pattern expression> that declares EV.

c) If a <path concatenation> PPC declares EV then let PT be the <path term> and let PF be the
<path factor> simply contained in PPC.

Case:

i) If EV is exposed as an unconditional singleton by both PT and PF, then EV is exposed
as an unconditional singleton by PPC. EV shall not be a subpath variable.

227

IWD 39075:202y(E)
16.10 <path pattern expression>

h) IfBNF1 andBNF2 are twoBNFnon-terminals such thatBNF1 ::=BNF2 and theminimumnode
count of BNF2 is defined, then the minimum node count of BNF1 is also defined and is the
same as the minimum node count of BNF2.

15) The <path pattern expression> simply contained in a <path pattern> shall have a minimum node
count that is greater than 0 (zero).

NOTE 137— The minimum node count is computed after the syntactic transform that adds implicit node patterns.
Thus a single <edge pattern> is a permitted <path pattern> because it implies two <node pattern>s.

« WG3:W24-022 »

16) An<element variable>EV contained in an<element variable declaration>GPVD is said to bedeclared
by GPVD, and by the <element pattern> EP that simply contains GPVD. The <element variable> is
the name of an element variable, which is also declared by GPVD and EP. If GPVD simply contains
TEMP, then EV is a temporary element variable. EV is a primary variable.

NOTE 138— Element bindings to temporary element variables are removed prior to set-theoretic deduplication of
matches. SeeGR10) of Subclause16.8, “<graphpattern>” andGR14) of Subclause21.2, “Machinery for graphpattern
matching”.

17) Prior to the application of syntactic transformations, conforming GQL-language shall not contain
an <element variable declaration> that immediately contains TEMP.

18) An element variable that is declared by a <node pattern> is a node variable. An element variable
that is declared by an <edge pattern> is an edge variable.

« WG3:W24-022 »

19) The scope of an <element variable> EV that is declared by an <element pattern> EP is defined as
follows. If EV is a temporary element variable, then the scope of EV is the innermost <path term>
containingEP; otherwise, the scope ofEV is the innermost <graphpattern binding table> containing
EP.

20) A <subpath variable> SV contained in a <subpath variable declaration> SVD is said to be declared
by SVD, and by the <parenthesized path pattern expression> PPPE that simply contains SVD. SV is
the name of a subpath variable, which is also declared by SVD and PPPE.

21) If EP is an <element pattern> that contains an <element patternwhere clause> EPWC, then EP shall
simply contain an <element variable declaration> GPVD.

22) If EV is an element variable or subpath variable, and BNT is an instance of a BNF non-terminal, then
the terminology “BNT exposesEV” is defined as follows. The full terminology is one of the following:
“BNT exposesEV as an unconditional singleton variable”, “BNT exposesEV as a conditional singleton
variable”, “BNT exposes EV as an effectively bounded group variable” or “BNT exposes EV as an
effectively unbounded group variable”. The terms “unconditional singleton variable”, “conditional
singleton variable”, “effectively boundedgroupvariable”, and “effectively unboundedgroupvariable”
are called the degree of exposure.

a) An <element pattern>EP that declares an element variableEV exposesEV as an unconditional
singleton.

b) A <parenthesized path pattern expression> PPPE that simply contains a <subpath variable
declaration> that declares EV exposes EV as an unconditional singleton variable. PPPE shall
not contain another <parenthesized path pattern expression> that declares EV.

c) If a <path concatenation> PPC declares EV then let PT be the <path term> and let PF be the
<path factor> simply contained in PPC.

Case:

i) If EV is exposed as an unconditional singleton by both PT and PF, then EV is exposed
as an unconditional singleton by PPC. EV shall not be a subpath variable.

227

IWD 39075:202y(E)
16.10 <path pattern expression>

NOTE139—This case expresses an implicit join onEVwithinPPC. Implicit joins between conditional
singleton variables, group variables, or subpath variables are forbidden.

ii) Otherwise, EV shall only be exposed by one of PT or PF. In this case EV is exposed by
PPC in the same degree that it is exposed by PT or PF.

d) If a <path pattern union> or <path multiset alternation> PA declares EV, then

Case:

i) If every operand of PA exposes EV as an unconditional singleton variable, then PA
exposes EV as an unconditional singleton variable.

ii) If at least one operand of PA exposes EV as an effectively unbounded group variable,
then PA exposes EV as an effectively unbounded group variable.

iii) If at least one operand of PA exposes EV as an effectively bounded group variable, then
PA exposes EV as an effectively bounded group variable.

iv) Otherwise, PA exposes EV as a conditional singleton variable.

e) If a <quantified path primary> QPP declares EV, then let PP be the <path primary> simply
contained in QPP.

Case:

i) If QPP contains a <graph pattern quantifier> that is a <fixed quantifier> or a <general
quantifier> that contains an <upper bound> andPPdoes not exposeEV as an effectively
unbounded group variable, then QPP exposes EV as an effectively bounded group
variable.

ii) If QPP is contained at the same depth of graph pattern matching in a restrictive <par-
enthesized path pattern expression>, then QPP exposes EV as an effectively bounded
group variable.

NOTE 140— The preceding definition is applied after the syntactic transformation to insure that
every <path mode prefix> is at the head of a <parenthesized path pattern expression>.

iii) Otherwise, QPP exposes EV as an effectively unbounded group variable.

f) If a <questioned path primary> QUPP declares EV, then let PP be the <path primary> simply
contained in QUPP.

Case:

i) If PP exposes EV as a group variable, then QUPP exposes EV as a group variable with
the same degree of exposure.

ii) Otherwise, QUPP exposes EV as a conditional singleton variable.

g) A<parenthesizedpathpattern expression>exposes the samevariables as the simply contained
<path pattern expression>, in the same degree of exposure.

NOTE141—Arestrictive<pathmode>declaredbya<parenthesizedpathpatternexpression>makesvariables
effectively bounded, but it does so even for proper subexpressions within the scope of the <path mode> and
has already been handled by the rules for <quantified path primary>.

h) If a <path pattern> PP declares EV, then let PPE be the simply contained <path pattern
expression>.

Case:

i) IfPPE exposesEV as anunconditional singleton, a conditional singleton, or an effectively
bounded group variable, then PP exposes EVwith the same degree of exposure.

228

IWD 39075:202y(E)
16.10 <path pattern expression>

You want to write a paper about pattern matching and start with the syntax

16.10 <path pattern expression>

Function

Specify a pattern to match a single path in a property graph.

Format
<path pattern expression> ::=

<path term>
| <path multiset alternation>
| <path pattern union>

<path multiset alternation> ::=
<path term> <multiset alternation operator> <path term>
 [{ <multiset alternation operator> <path term> }...]

<path pattern union> ::=
<path term> <vertical bar> <path term> [{ <vertical bar> <path term> }...]

<path term> ::=
<path factor>

| <path concatenation>

<path concatenation> ::=
<path term> <path factor>

<path factor> ::=
<path primary>

| <quantified path primary>
| <questioned path primary>

<quantified path primary> ::=
<path primary> <graph pattern quantifier>

<questioned path primary> ::=
<path primary> <question mark>

NOTE 131— Unlike most regular expression languages, <question mark> is not equivalent to the quantifier {0,1}: the
quantifier {0,1} exposes variables as group, whereas <questionmark> does not change the singleton variables that it exposes
to group. However, <question mark> does expose any singleton variables as conditional singletons.

<path primary> ::=
<element pattern>

| <parenthesized path pattern expression>
| <simplified path pattern expression>

<element pattern> ::=
<node pattern>

| <edge pattern>

<node pattern> ::=
<left paren> <element pattern filler> <right paren>

<element pattern filler> ::=
[<element variable declaration>]
[<is label expression>]
[<element pattern predicate>]

« WG3:W24-022 »

<element variable declaration> ::=

221

IWD 39075:202y(E)
16.10 <path pattern expression>

Standards are great but not for academics

[TEMP] <element variable>

<is label expression> ::=
<is or colon> <label expression>

<is or colon> ::=
IS

| <colon>

<element pattern predicate> ::=
<element pattern where clause>

| <element property specification>

<element pattern where clause> ::=
WHERE <search condition>

<element property specification> ::=
<left brace> <property key value pair list> <right brace>

<property key value pair list> ::=
<property key value pair> [{ <comma> <property key value pair> }...]

<property key value pair> ::=
<property name> <colon> <value expression>

<edge pattern> ::=
<full edge pattern>

| <abbreviated edge pattern>

<full edge pattern> ::=
<full edge pointing left>

| <full edge undirected>
| <full edge pointing right>
| <full edge left or undirected>
| <full edge undirected or right>
| <full edge left or right>
| <full edge any direction>

<full edge pointing left> ::=
<left arrow bracket> <element pattern filler> <right bracket minus>

<full edge undirected> ::=
<tilde left bracket> <element pattern filler> <right bracket tilde>

<full edge pointing right> ::=
<minus left bracket> <element pattern filler> <bracket right arrow>

<full edge left or undirected> ::=
<left arrow tilde bracket> <element pattern filler> <right bracket tilde>

<full edge undirected or right> ::=
<tilde left bracket> <element pattern filler> <bracket tilde right arrow>

<full edge left or right> ::=
<left arrow bracket> <element pattern filler> <bracket right arrow>

<full edge any direction> ::=
<minus left bracket> <element pattern filler> <right bracket minus>

** Editor’s Note (number 73) **

In the BNF for <full edge any direction>, the delimiter tokens <~[]~> have been suggested as a synonym for -[]- as part of
Feature GA07, “Undirected edge patterns”. The synonym for the <abbreviated edge pattern> - (<minus sign>) would then be
<~>, the synonym for <simplified defaulting any direction> would use the delimiter tokens <~/ /~> and the synonym for

222

IWD 39075:202y(E)
16.10 <path pattern expression>

<simplified override any direction> would use the tokens <~ and > surrounding a label as originally proposed in WG3:MMX-
060. These synonyms might be considered to make the table of edge patterns more harmonious and internally consistent. See
Language Opportunity GQL-212 .

<abbreviated edge pattern> ::=
<left arrow>

| <tilde>
| <right arrow>
| <left arrow tilde>
| <tilde right arrow>
| <left minus right>
| <minus sign>

« WG3:W24-038 deleted one Editor's Note »

<parenthesized path pattern expression> ::=
<left paren>
 [<subpath variable declaration>]
 [<path mode prefix>]

<path pattern expression>
 [<parenthesized path pattern where clause>]
<right paren>

<subpath variable declaration> ::=
<subpath variable> <equals operator>

<parenthesized path pattern where clause> ::=
WHERE <search condition>

Syntax Rules

1) LetRIGHTMINUSbe the following collectionof <token>s: <right bracketminus>, <left arrow>, <slash
minus>, and <minus sign>.

NOTE 132— These are the tokens]-, <-, /-, and -, which expose a minus sign on the right.

2) LetLEFTMINUSbe the following collectionof <token>s: <minus left bracket>, <right arrow>, <minus
slash>, and <minus sign>.

NOTE 133—These are the tokens -[, ->, -/, and -, which expose aminus sign on the left. <minus sign> itself is in both
RIGHTMINUS and LEFTMINUS.

3) A <pathpattern expression> shall not juxtapose a <token> fromRIGHTMINUS followedby a<token>
from LEFTMINUSwithout a <separator> between them.

NOTE 134— Otherwise, the concatenation of the two tokens would include the sequence of two <minus sign>s,
which is a <simple comment introducer>.

4) A <path pattern expression> that contains at the same depth of graph pattern matching a variable
quantifier, a <questioned path primary>, a <path multiset alternation>, or a <path pattern union>
is a possibly variable length path pattern.

5) A <path pattern expression> that is not a possibly variable length path pattern is a fixed length path
pattern.

6) Theminimum path length of certain BNF non-terminals defined in this Subclause is defined
recursively as follows:

a) The minimum path length of a <node pattern> is 0 (zero).

b) The minimum path length of an <edge pattern> is 1 (one).

223

IWD 39075:202y(E)
16.10 <path pattern expression>

c) Theminimum path length of a <path concatenation> is the sum of theminimum path lengths
of its operands.

d) The minimum path length of a <path pattern union> or <path multiset alternation> is the
minimum of the minimum path length of its operands.

e) Theminimumpath length of a <quantified path primary> is the product of theminimumpath
length of the simply contained <path primary> and the value of the <lower bound>.

f) The minimum path length of a <questioned path primary> is 0 (zero).

g) Theminimumpath length of a <parenthesized path pattern expression> is theminimumpath
length of the simply contained <path pattern expression>.

h) IfBNT1 andBNT2 are twoBNFnon-terminals such thatBNT1 ::=BNT2 and theminimumpath
length of BNT2 is defined, then the minimum path length of BNT1 is also defined and is the
same as the minimum path length of BNT2.

7) The <path primary> immediately contained in a <quantified path primary> or <questioned path
primary> shall have minimum path length that is greater than 0 (zero).

8) The<pathprimary> simply contained in a <quantifiedpath primary> shall not contain a <quantified
path primary> at the same depth of graph pattern matching.

** Editor’s Note (number 74) **

It may be possible to permit nested quantifiers. WG3:W01-014 contained a discussion of a way to support aggregates
at different depths of aggregation if there are nested quantifiers. See Language Opportunity GQL-036 .

9) Let PMA be a <path multiset alternation>.

a) A <path term> simply contained in PMA is amultiset alternation operand of PMA.

b) LetNOPMAbe thenumber ofmultiset alternation operands ofPMA. LetOPMA1, ...,OPMANOPMA
be an enumeration of the operands of PMA.

c) Any <subpath variable>s declared by <subpath variable declaration>s simply contained in
the multiset alternation operands of PMA shall be mutually distinct.

d) Let SOPMA1, ..., SOPMANOPMA be implementation-dependent (UV008) <identifier>s that are
mutually distinct and distinct from every <element variable>, <subpath variable> and <path
variable> contained in GP.

e) For every i, 1 (one) ≤ i ≤ NOPMA.

Case:

i) IfOPMAi is a <parenthesized path pattern expression> that simply contains a <subpath
variable declaration>, then let OPMAXi be OPMAi.

ii) Otherwise, let OPMAXi be the <parenthesized path pattern expression>

(SOPMAi = OPMAi)

f) PMA is equivalent to:

OPMAX1 | ... | OPMAXNOPMA

10) A <path term> PPUOP simply contained in a <path pattern union> PSD is a path pattern union
operand of PSD.

224

IWD 39075:202y(E)
16.10 <path pattern expression>

** Editor’s Note (number 75) **

Path pattern union is not defined using left recursion. WG3:SXM-052 believed that it should be possible to support left
recursion but declined to do so for expediency. It is a Language Opportunity to support left recursion. See Language
Opportunity GQL-025 .

PPUOP shall not contain a reference to an element variable that is not declared in PPUOP or outside
of PSD.

11) An <element pattern> EP that contains an <element pattern where clause> EPWC is transformed
as follows:

a) Let EPF be the <element pattern filler> simply contained in EP.

b) Let PREFIX be the <delimiter token> contained in EP before EPF and let SUFFIX be the
<delimiter token> contained in EP after EPF.

c) LetEV be the <element variable> simply contained inEPF. Let ILE be the <is label expression>
contained in EPF, if any; otherwise, let ILE be the zero-length string.

d) EP is replaced by

(PREFIX EV ILE SUFFIX EPWC)

12) An <element pattern> that does not contain an <element variable declaration>, an <is label
expression>, or an <element pattern predicate> is said to be empty.

13) Each <path pattern expression> is transformed in the following steps:

a) If the <path primary> immediately contained in a <quantified path primary> or <questioned
path primary> is an <edge pattern> EP, then EP is replaced by

(EP)

NOTE 135— For example,

->*

becomes:

(->) {0,}

which in later transformations becomes:

(() -> ()) {0,}

b) If two successive <element pattern>s contained in a <path concatenation> at the same depth
of graph pattern matching are <edge pattern>s, then an implicit empty <node pattern> is
inserted between them.

c) If an edge pattern EP contained in a <path term> PST at the same depth of graph pattern
matching is not preceded by a <node pattern> contained in PST at the same depth of graph
pattern matching, then an implicit empty <node pattern> VP is inserted in PST immediately
prior to EP.

d) If an edge pattern EP contained in a <path term> PST at the same depth of graph pattern
matching is not followed by a <node pattern> contained in PST at the same depth of graph
pattern matching, than an implicit empty <node pattern> VP is inserted in PST immediately
after EP.

NOTE 136— As a result of the preceding transformations, a fixed length path pattern has an odd number of
<element pattern>s, beginning and ending with <node pattern>s, and alternating between <node pattern>s
and <edge pattern>s.

225

IWD 39075:202y(E)
16.10 <path pattern expression>

h) IfBNF1 andBNF2 are twoBNFnon-terminals such thatBNF1 ::=BNF2 and theminimumnode
count of BNF2 is defined, then the minimum node count of BNF1 is also defined and is the
same as the minimum node count of BNF2.

15) The <path pattern expression> simply contained in a <path pattern> shall have a minimum node
count that is greater than 0 (zero).

NOTE 137— The minimum node count is computed after the syntactic transform that adds implicit node patterns.
Thus a single <edge pattern> is a permitted <path pattern> because it implies two <node pattern>s.

« WG3:W24-022 »

16) An<element variable>EV contained in an<element variable declaration>GPVD is said to bedeclared
by GPVD, and by the <element pattern> EP that simply contains GPVD. The <element variable> is
the name of an element variable, which is also declared by GPVD and EP. If GPVD simply contains
TEMP, then EV is a temporary element variable. EV is a primary variable.

NOTE 138— Element bindings to temporary element variables are removed prior to set-theoretic deduplication of
matches. SeeGR10) of Subclause16.8, “<graphpattern>” andGR14) of Subclause21.2, “Machinery for graphpattern
matching”.

17) Prior to the application of syntactic transformations, conforming GQL-language shall not contain
an <element variable declaration> that immediately contains TEMP.

18) An element variable that is declared by a <node pattern> is a node variable. An element variable
that is declared by an <edge pattern> is an edge variable.

« WG3:W24-022 »

19) The scope of an <element variable> EV that is declared by an <element pattern> EP is defined as
follows. If EV is a temporary element variable, then the scope of EV is the innermost <path term>
containingEP; otherwise, the scope ofEV is the innermost <graphpattern binding table> containing
EP.

20) A <subpath variable> SV contained in a <subpath variable declaration> SVD is said to be declared
by SVD, and by the <parenthesized path pattern expression> PPPE that simply contains SVD. SV is
the name of a subpath variable, which is also declared by SVD and PPPE.

21) If EP is an <element pattern> that contains an <element patternwhere clause> EPWC, then EP shall
simply contain an <element variable declaration> GPVD.

22) If EV is an element variable or subpath variable, and BNT is an instance of a BNF non-terminal, then
the terminology “BNT exposesEV” is defined as follows. The full terminology is one of the following:
“BNT exposesEV as an unconditional singleton variable”, “BNT exposesEV as a conditional singleton
variable”, “BNT exposes EV as an effectively bounded group variable” or “BNT exposes EV as an
effectively unbounded group variable”. The terms “unconditional singleton variable”, “conditional
singleton variable”, “effectively boundedgroupvariable”, and “effectively unboundedgroupvariable”
are called the degree of exposure.

a) An <element pattern>EP that declares an element variableEV exposesEV as an unconditional
singleton.

b) A <parenthesized path pattern expression> PPPE that simply contains a <subpath variable
declaration> that declares EV exposes EV as an unconditional singleton variable. PPPE shall
not contain another <parenthesized path pattern expression> that declares EV.

c) If a <path concatenation> PPC declares EV then let PT be the <path term> and let PF be the
<path factor> simply contained in PPC.

Case:

i) If EV is exposed as an unconditional singleton by both PT and PF, then EV is exposed
as an unconditional singleton by PPC. EV shall not be a subpath variable.

227

IWD 39075:202y(E)
16.10 <path pattern expression>

h) IfBNF1 andBNF2 are twoBNFnon-terminals such thatBNF1 ::=BNF2 and theminimumnode
count of BNF2 is defined, then the minimum node count of BNF1 is also defined and is the
same as the minimum node count of BNF2.

15) The <path pattern expression> simply contained in a <path pattern> shall have a minimum node
count that is greater than 0 (zero).

NOTE 137— The minimum node count is computed after the syntactic transform that adds implicit node patterns.
Thus a single <edge pattern> is a permitted <path pattern> because it implies two <node pattern>s.

« WG3:W24-022 »

16) An<element variable>EV contained in an<element variable declaration>GPVD is said to bedeclared
by GPVD, and by the <element pattern> EP that simply contains GPVD. The <element variable> is
the name of an element variable, which is also declared by GPVD and EP. If GPVD simply contains
TEMP, then EV is a temporary element variable. EV is a primary variable.

NOTE 138— Element bindings to temporary element variables are removed prior to set-theoretic deduplication of
matches. SeeGR10) of Subclause16.8, “<graphpattern>” andGR14) of Subclause21.2, “Machinery for graphpattern
matching”.

17) Prior to the application of syntactic transformations, conforming GQL-language shall not contain
an <element variable declaration> that immediately contains TEMP.

18) An element variable that is declared by a <node pattern> is a node variable. An element variable
that is declared by an <edge pattern> is an edge variable.

« WG3:W24-022 »

19) The scope of an <element variable> EV that is declared by an <element pattern> EP is defined as
follows. If EV is a temporary element variable, then the scope of EV is the innermost <path term>
containingEP; otherwise, the scope ofEV is the innermost <graphpattern binding table> containing
EP.

20) A <subpath variable> SV contained in a <subpath variable declaration> SVD is said to be declared
by SVD, and by the <parenthesized path pattern expression> PPPE that simply contains SVD. SV is
the name of a subpath variable, which is also declared by SVD and PPPE.

21) If EP is an <element pattern> that contains an <element patternwhere clause> EPWC, then EP shall
simply contain an <element variable declaration> GPVD.

22) If EV is an element variable or subpath variable, and BNT is an instance of a BNF non-terminal, then
the terminology “BNT exposesEV” is defined as follows. The full terminology is one of the following:
“BNT exposesEV as an unconditional singleton variable”, “BNT exposesEV as a conditional singleton
variable”, “BNT exposes EV as an effectively bounded group variable” or “BNT exposes EV as an
effectively unbounded group variable”. The terms “unconditional singleton variable”, “conditional
singleton variable”, “effectively boundedgroupvariable”, and “effectively unboundedgroupvariable”
are called the degree of exposure.

a) An <element pattern>EP that declares an element variableEV exposesEV as an unconditional
singleton.

b) A <parenthesized path pattern expression> PPPE that simply contains a <subpath variable
declaration> that declares EV exposes EV as an unconditional singleton variable. PPPE shall
not contain another <parenthesized path pattern expression> that declares EV.

c) If a <path concatenation> PPC declares EV then let PT be the <path term> and let PF be the
<path factor> simply contained in PPC.

Case:

i) If EV is exposed as an unconditional singleton by both PT and PF, then EV is exposed
as an unconditional singleton by PPC. EV shall not be a subpath variable.

227

IWD 39075:202y(E)
16.10 <path pattern expression>

NOTE139—This case expresses an implicit join onEVwithinPPC. Implicit joins between conditional
singleton variables, group variables, or subpath variables are forbidden.

ii) Otherwise, EV shall only be exposed by one of PT or PF. In this case EV is exposed by
PPC in the same degree that it is exposed by PT or PF.

d) If a <path pattern union> or <path multiset alternation> PA declares EV, then

Case:

i) If every operand of PA exposes EV as an unconditional singleton variable, then PA
exposes EV as an unconditional singleton variable.

ii) If at least one operand of PA exposes EV as an effectively unbounded group variable,
then PA exposes EV as an effectively unbounded group variable.

iii) If at least one operand of PA exposes EV as an effectively bounded group variable, then
PA exposes EV as an effectively bounded group variable.

iv) Otherwise, PA exposes EV as a conditional singleton variable.

e) If a <quantified path primary> QPP declares EV, then let PP be the <path primary> simply
contained in QPP.

Case:

i) If QPP contains a <graph pattern quantifier> that is a <fixed quantifier> or a <general
quantifier> that contains an <upper bound> andPPdoes not exposeEV as an effectively
unbounded group variable, then QPP exposes EV as an effectively bounded group
variable.

ii) If QPP is contained at the same depth of graph pattern matching in a restrictive <par-
enthesized path pattern expression>, then QPP exposes EV as an effectively bounded
group variable.

NOTE 140— The preceding definition is applied after the syntactic transformation to insure that
every <path mode prefix> is at the head of a <parenthesized path pattern expression>.

iii) Otherwise, QPP exposes EV as an effectively unbounded group variable.

f) If a <questioned path primary> QUPP declares EV, then let PP be the <path primary> simply
contained in QUPP.

Case:

i) If PP exposes EV as a group variable, then QUPP exposes EV as a group variable with
the same degree of exposure.

ii) Otherwise, QUPP exposes EV as a conditional singleton variable.

g) A<parenthesizedpathpattern expression>exposes the samevariables as the simply contained
<path pattern expression>, in the same degree of exposure.

NOTE141—Arestrictive<pathmode>declaredbya<parenthesizedpathpatternexpression>makesvariables
effectively bounded, but it does so even for proper subexpressions within the scope of the <path mode> and
has already been handled by the rules for <quantified path primary>.

h) If a <path pattern> PP declares EV, then let PPE be the simply contained <path pattern
expression>.

Case:

i) IfPPE exposesEV as anunconditional singleton, a conditional singleton, or an effectively
bounded group variable, then PP exposes EVwith the same degree of exposure.

228

IWD 39075:202y(E)
16.10 <path pattern expression>

ii) Otherwise, PP exposes EV as an effectively bounded group variable.
NOTE 142— That is, even if PPE exposes EV as an effectively unbounded group variable, PP still
exposesEV as effectively bounded, because in this casePP is required to be a selective <path pattern>.

i) If BNT1 and BNT2 are two BNF non-terminals such that BNT1 ::= BNT2 and BNT2 exposes EV,
then BNT1 exposes EV to the same degree of exposure as BNT2.

** Editor’s Note (number 76) **

WG3:W04-009R1 defined “effectively bounded group variable” but did not use the definition. The definitionwill
be used when we define predicates on aggregates, at which time we will want a Syntax Rules stating that if a
group variable GV is referenced in a WHERE clause, then it shall be effectively bounded and the reference shall
be contained in an aggregated argument of an <aggregate function>. See Possible Problem GQL-050 .

23) If BNT is a BNF non-terminal that exposes a graph pattern variable GPVwith a degree of exposure
DEGREE, then BNT is also said to expose the name of GPVwith degree of exposure DEGREE.

24) A <parenthesized path pattern where clause> PPPWC simply contained in a <parenthesized path
pattern expression> PPPE shall not reference a path variable.

** Editor’s Note (number 77) **

WG3:W04-009R1 recognized that a graph query may have a sequence of MATCH clauses, with the bindings of one
MATCH clauseMC1 visible in all subsequent MATCH clauses in the same invocation of <graph table>, and that it should
be permissible to reference such variables in any <parenthesized path pattern where clause> simply contained in a
subsequent MATCH clauseMC2. The relevance of this LO to GQL needs to be investigated. See Language Opportunity
GQL-051 .

General Rules

None.
NOTE143—The evaluation of a <path pattern expression> is performedby theGeneral Rules of Subclause 21.3, “Evaluation
of a <path pattern expression>”.

Conformance Rules

1) Without Feature G030, “Path Multiset Alternation”, conforming GQL language shall not contain a
<path multiset alternation>.

2) Without Feature G031, “Path Multiset Alternation: variable length path operands”, in conforming
GQL language, an operand of a <path multiset alternation> shall be a fixed length path pattern.

3) Without Feature G032, “Path Pattern Union”, conforming GQL language shall not contain a <path
pattern union>.

4) Without Feature G033, “Path Pattern Union: variable length path operands”, in conforming GQL
language, an operand of a <path pattern union> shall be a fixed length path pattern.

5) Without FeatureG035, “QuantifiedPaths”, conformingGQL language shall not contain a<quantified
path primary> that does not immediately contain a <path primary> that is an <edge pattern>.

6) Without FeatureG036, “QuantifiedEdges”, conformingGQL language shall not contain a <quantified
path primary> that immediately contains a <path primary> that is an <edge pattern>.

7) WithoutFeatureG037, “QuestionedPaths”, conformingGQL language shall not contain a<questioned
path primary>.

229

IWD 39075:202y(E)
16.10 <path pattern expression>

You want to write a paper about pattern matching and start with the syntax

16.10 <path pattern expression>

Function

Specify a pattern to match a single path in a property graph.

Format
<path pattern expression> ::=

<path term>
| <path multiset alternation>
| <path pattern union>

<path multiset alternation> ::=
<path term> <multiset alternation operator> <path term>
 [{ <multiset alternation operator> <path term> }...]

<path pattern union> ::=
<path term> <vertical bar> <path term> [{ <vertical bar> <path term> }...]

<path term> ::=
<path factor>

| <path concatenation>

<path concatenation> ::=
<path term> <path factor>

<path factor> ::=
<path primary>

| <quantified path primary>
| <questioned path primary>

<quantified path primary> ::=
<path primary> <graph pattern quantifier>

<questioned path primary> ::=
<path primary> <question mark>

NOTE 131— Unlike most regular expression languages, <question mark> is not equivalent to the quantifier {0,1}: the
quantifier {0,1} exposes variables as group, whereas <questionmark> does not change the singleton variables that it exposes
to group. However, <question mark> does expose any singleton variables as conditional singletons.

<path primary> ::=
<element pattern>

| <parenthesized path pattern expression>
| <simplified path pattern expression>

<element pattern> ::=
<node pattern>

| <edge pattern>

<node pattern> ::=
<left paren> <element pattern filler> <right paren>

<element pattern filler> ::=
[<element variable declaration>]
[<is label expression>]
[<element pattern predicate>]

« WG3:W24-022 »

<element variable declaration> ::=

221

IWD 39075:202y(E)
16.10 <path pattern expression>

Standards are great but not for academics

[TEMP] <element variable>

<is label expression> ::=
<is or colon> <label expression>

<is or colon> ::=
IS

| <colon>

<element pattern predicate> ::=
<element pattern where clause>

| <element property specification>

<element pattern where clause> ::=
WHERE <search condition>

<element property specification> ::=
<left brace> <property key value pair list> <right brace>

<property key value pair list> ::=
<property key value pair> [{ <comma> <property key value pair> }...]

<property key value pair> ::=
<property name> <colon> <value expression>

<edge pattern> ::=
<full edge pattern>

| <abbreviated edge pattern>

<full edge pattern> ::=
<full edge pointing left>

| <full edge undirected>
| <full edge pointing right>
| <full edge left or undirected>
| <full edge undirected or right>
| <full edge left or right>
| <full edge any direction>

<full edge pointing left> ::=
<left arrow bracket> <element pattern filler> <right bracket minus>

<full edge undirected> ::=
<tilde left bracket> <element pattern filler> <right bracket tilde>

<full edge pointing right> ::=
<minus left bracket> <element pattern filler> <bracket right arrow>

<full edge left or undirected> ::=
<left arrow tilde bracket> <element pattern filler> <right bracket tilde>

<full edge undirected or right> ::=
<tilde left bracket> <element pattern filler> <bracket tilde right arrow>

<full edge left or right> ::=
<left arrow bracket> <element pattern filler> <bracket right arrow>

<full edge any direction> ::=
<minus left bracket> <element pattern filler> <right bracket minus>

** Editor’s Note (number 73) **

In the BNF for <full edge any direction>, the delimiter tokens <~[]~> have been suggested as a synonym for -[]- as part of
Feature GA07, “Undirected edge patterns”. The synonym for the <abbreviated edge pattern> - (<minus sign>) would then be
<~>, the synonym for <simplified defaulting any direction> would use the delimiter tokens <~/ /~> and the synonym for

222

IWD 39075:202y(E)
16.10 <path pattern expression>

<simplified override any direction> would use the tokens <~ and > surrounding a label as originally proposed in WG3:MMX-
060. These synonyms might be considered to make the table of edge patterns more harmonious and internally consistent. See
Language Opportunity GQL-212 .

<abbreviated edge pattern> ::=
<left arrow>

| <tilde>
| <right arrow>
| <left arrow tilde>
| <tilde right arrow>
| <left minus right>
| <minus sign>

« WG3:W24-038 deleted one Editor's Note »

<parenthesized path pattern expression> ::=
<left paren>
 [<subpath variable declaration>]
 [<path mode prefix>]

<path pattern expression>
 [<parenthesized path pattern where clause>]
<right paren>

<subpath variable declaration> ::=
<subpath variable> <equals operator>

<parenthesized path pattern where clause> ::=
WHERE <search condition>

Syntax Rules

1) LetRIGHTMINUSbe the following collectionof <token>s: <right bracketminus>, <left arrow>, <slash
minus>, and <minus sign>.

NOTE 132— These are the tokens]-, <-, /-, and -, which expose a minus sign on the right.

2) LetLEFTMINUSbe the following collectionof <token>s: <minus left bracket>, <right arrow>, <minus
slash>, and <minus sign>.

NOTE 133—These are the tokens -[, ->, -/, and -, which expose aminus sign on the left. <minus sign> itself is in both
RIGHTMINUS and LEFTMINUS.

3) A <pathpattern expression> shall not juxtapose a <token> fromRIGHTMINUS followedby a<token>
from LEFTMINUSwithout a <separator> between them.

NOTE 134— Otherwise, the concatenation of the two tokens would include the sequence of two <minus sign>s,
which is a <simple comment introducer>.

4) A <path pattern expression> that contains at the same depth of graph pattern matching a variable
quantifier, a <questioned path primary>, a <path multiset alternation>, or a <path pattern union>
is a possibly variable length path pattern.

5) A <path pattern expression> that is not a possibly variable length path pattern is a fixed length path
pattern.

6) Theminimum path length of certain BNF non-terminals defined in this Subclause is defined
recursively as follows:

a) The minimum path length of a <node pattern> is 0 (zero).

b) The minimum path length of an <edge pattern> is 1 (one).

223

IWD 39075:202y(E)
16.10 <path pattern expression>

c) Theminimum path length of a <path concatenation> is the sum of theminimum path lengths
of its operands.

d) The minimum path length of a <path pattern union> or <path multiset alternation> is the
minimum of the minimum path length of its operands.

e) Theminimumpath length of a <quantified path primary> is the product of theminimumpath
length of the simply contained <path primary> and the value of the <lower bound>.

f) The minimum path length of a <questioned path primary> is 0 (zero).

g) Theminimumpath length of a <parenthesized path pattern expression> is theminimumpath
length of the simply contained <path pattern expression>.

h) IfBNT1 andBNT2 are twoBNFnon-terminals such thatBNT1 ::=BNT2 and theminimumpath
length of BNT2 is defined, then the minimum path length of BNT1 is also defined and is the
same as the minimum path length of BNT2.

7) The <path primary> immediately contained in a <quantified path primary> or <questioned path
primary> shall have minimum path length that is greater than 0 (zero).

8) The<pathprimary> simply contained in a <quantifiedpath primary> shall not contain a <quantified
path primary> at the same depth of graph pattern matching.

** Editor’s Note (number 74) **

It may be possible to permit nested quantifiers. WG3:W01-014 contained a discussion of a way to support aggregates
at different depths of aggregation if there are nested quantifiers. See Language Opportunity GQL-036 .

9) Let PMA be a <path multiset alternation>.

a) A <path term> simply contained in PMA is amultiset alternation operand of PMA.

b) LetNOPMAbe thenumber ofmultiset alternation operands ofPMA. LetOPMA1, ...,OPMANOPMA
be an enumeration of the operands of PMA.

c) Any <subpath variable>s declared by <subpath variable declaration>s simply contained in
the multiset alternation operands of PMA shall be mutually distinct.

d) Let SOPMA1, ..., SOPMANOPMA be implementation-dependent (UV008) <identifier>s that are
mutually distinct and distinct from every <element variable>, <subpath variable> and <path
variable> contained in GP.

e) For every i, 1 (one) ≤ i ≤ NOPMA.

Case:

i) IfOPMAi is a <parenthesized path pattern expression> that simply contains a <subpath
variable declaration>, then let OPMAXi be OPMAi.

ii) Otherwise, let OPMAXi be the <parenthesized path pattern expression>

(SOPMAi = OPMAi)

f) PMA is equivalent to:

OPMAX1 | ... | OPMAXNOPMA

10) A <path term> PPUOP simply contained in a <path pattern union> PSD is a path pattern union
operand of PSD.

224

IWD 39075:202y(E)
16.10 <path pattern expression>

** Editor’s Note (number 75) **

Path pattern union is not defined using left recursion. WG3:SXM-052 believed that it should be possible to support left
recursion but declined to do so for expediency. It is a Language Opportunity to support left recursion. See Language
Opportunity GQL-025 .

PPUOP shall not contain a reference to an element variable that is not declared in PPUOP or outside
of PSD.

11) An <element pattern> EP that contains an <element pattern where clause> EPWC is transformed
as follows:

a) Let EPF be the <element pattern filler> simply contained in EP.

b) Let PREFIX be the <delimiter token> contained in EP before EPF and let SUFFIX be the
<delimiter token> contained in EP after EPF.

c) LetEV be the <element variable> simply contained inEPF. Let ILE be the <is label expression>
contained in EPF, if any; otherwise, let ILE be the zero-length string.

d) EP is replaced by

(PREFIX EV ILE SUFFIX EPWC)

12) An <element pattern> that does not contain an <element variable declaration>, an <is label
expression>, or an <element pattern predicate> is said to be empty.

13) Each <path pattern expression> is transformed in the following steps:

a) If the <path primary> immediately contained in a <quantified path primary> or <questioned
path primary> is an <edge pattern> EP, then EP is replaced by

(EP)

NOTE 135— For example,

->*

becomes:

(->) {0,}

which in later transformations becomes:

(() -> ()) {0,}

b) If two successive <element pattern>s contained in a <path concatenation> at the same depth
of graph pattern matching are <edge pattern>s, then an implicit empty <node pattern> is
inserted between them.

c) If an edge pattern EP contained in a <path term> PST at the same depth of graph pattern
matching is not preceded by a <node pattern> contained in PST at the same depth of graph
pattern matching, then an implicit empty <node pattern> VP is inserted in PST immediately
prior to EP.

d) If an edge pattern EP contained in a <path term> PST at the same depth of graph pattern
matching is not followed by a <node pattern> contained in PST at the same depth of graph
pattern matching, than an implicit empty <node pattern> VP is inserted in PST immediately
after EP.

NOTE 136— As a result of the preceding transformations, a fixed length path pattern has an odd number of
<element pattern>s, beginning and ending with <node pattern>s, and alternating between <node pattern>s
and <edge pattern>s.

225

IWD 39075:202y(E)
16.10 <path pattern expression>

h) IfBNF1 andBNF2 are twoBNFnon-terminals such thatBNF1 ::=BNF2 and theminimumnode
count of BNF2 is defined, then the minimum node count of BNF1 is also defined and is the
same as the minimum node count of BNF2.

15) The <path pattern expression> simply contained in a <path pattern> shall have a minimum node
count that is greater than 0 (zero).

NOTE 137— The minimum node count is computed after the syntactic transform that adds implicit node patterns.
Thus a single <edge pattern> is a permitted <path pattern> because it implies two <node pattern>s.

« WG3:W24-022 »

16) An<element variable>EV contained in an<element variable declaration>GPVD is said to bedeclared
by GPVD, and by the <element pattern> EP that simply contains GPVD. The <element variable> is
the name of an element variable, which is also declared by GPVD and EP. If GPVD simply contains
TEMP, then EV is a temporary element variable. EV is a primary variable.

NOTE 138— Element bindings to temporary element variables are removed prior to set-theoretic deduplication of
matches. SeeGR10) of Subclause16.8, “<graphpattern>” andGR14) of Subclause21.2, “Machinery for graphpattern
matching”.

17) Prior to the application of syntactic transformations, conforming GQL-language shall not contain
an <element variable declaration> that immediately contains TEMP.

18) An element variable that is declared by a <node pattern> is a node variable. An element variable
that is declared by an <edge pattern> is an edge variable.

« WG3:W24-022 »

19) The scope of an <element variable> EV that is declared by an <element pattern> EP is defined as
follows. If EV is a temporary element variable, then the scope of EV is the innermost <path term>
containingEP; otherwise, the scope ofEV is the innermost <graphpattern binding table> containing
EP.

20) A <subpath variable> SV contained in a <subpath variable declaration> SVD is said to be declared
by SVD, and by the <parenthesized path pattern expression> PPPE that simply contains SVD. SV is
the name of a subpath variable, which is also declared by SVD and PPPE.

21) If EP is an <element pattern> that contains an <element patternwhere clause> EPWC, then EP shall
simply contain an <element variable declaration> GPVD.

22) If EV is an element variable or subpath variable, and BNT is an instance of a BNF non-terminal, then
the terminology “BNT exposesEV” is defined as follows. The full terminology is one of the following:
“BNT exposesEV as an unconditional singleton variable”, “BNT exposesEV as a conditional singleton
variable”, “BNT exposes EV as an effectively bounded group variable” or “BNT exposes EV as an
effectively unbounded group variable”. The terms “unconditional singleton variable”, “conditional
singleton variable”, “effectively boundedgroupvariable”, and “effectively unboundedgroupvariable”
are called the degree of exposure.

a) An <element pattern>EP that declares an element variableEV exposesEV as an unconditional
singleton.

b) A <parenthesized path pattern expression> PPPE that simply contains a <subpath variable
declaration> that declares EV exposes EV as an unconditional singleton variable. PPPE shall
not contain another <parenthesized path pattern expression> that declares EV.

c) If a <path concatenation> PPC declares EV then let PT be the <path term> and let PF be the
<path factor> simply contained in PPC.

Case:

i) If EV is exposed as an unconditional singleton by both PT and PF, then EV is exposed
as an unconditional singleton by PPC. EV shall not be a subpath variable.

227

IWD 39075:202y(E)
16.10 <path pattern expression>

h) IfBNF1 andBNF2 are twoBNFnon-terminals such thatBNF1 ::=BNF2 and theminimumnode
count of BNF2 is defined, then the minimum node count of BNF1 is also defined and is the
same as the minimum node count of BNF2.

15) The <path pattern expression> simply contained in a <path pattern> shall have a minimum node
count that is greater than 0 (zero).

NOTE 137— The minimum node count is computed after the syntactic transform that adds implicit node patterns.
Thus a single <edge pattern> is a permitted <path pattern> because it implies two <node pattern>s.

« WG3:W24-022 »

16) An<element variable>EV contained in an<element variable declaration>GPVD is said to bedeclared
by GPVD, and by the <element pattern> EP that simply contains GPVD. The <element variable> is
the name of an element variable, which is also declared by GPVD and EP. If GPVD simply contains
TEMP, then EV is a temporary element variable. EV is a primary variable.

NOTE 138— Element bindings to temporary element variables are removed prior to set-theoretic deduplication of
matches. SeeGR10) of Subclause16.8, “<graphpattern>” andGR14) of Subclause21.2, “Machinery for graphpattern
matching”.

17) Prior to the application of syntactic transformations, conforming GQL-language shall not contain
an <element variable declaration> that immediately contains TEMP.

18) An element variable that is declared by a <node pattern> is a node variable. An element variable
that is declared by an <edge pattern> is an edge variable.

« WG3:W24-022 »

19) The scope of an <element variable> EV that is declared by an <element pattern> EP is defined as
follows. If EV is a temporary element variable, then the scope of EV is the innermost <path term>
containingEP; otherwise, the scope ofEV is the innermost <graphpattern binding table> containing
EP.

20) A <subpath variable> SV contained in a <subpath variable declaration> SVD is said to be declared
by SVD, and by the <parenthesized path pattern expression> PPPE that simply contains SVD. SV is
the name of a subpath variable, which is also declared by SVD and PPPE.

21) If EP is an <element pattern> that contains an <element patternwhere clause> EPWC, then EP shall
simply contain an <element variable declaration> GPVD.

22) If EV is an element variable or subpath variable, and BNT is an instance of a BNF non-terminal, then
the terminology “BNT exposesEV” is defined as follows. The full terminology is one of the following:
“BNT exposesEV as an unconditional singleton variable”, “BNT exposesEV as a conditional singleton
variable”, “BNT exposes EV as an effectively bounded group variable” or “BNT exposes EV as an
effectively unbounded group variable”. The terms “unconditional singleton variable”, “conditional
singleton variable”, “effectively boundedgroupvariable”, and “effectively unboundedgroupvariable”
are called the degree of exposure.

a) An <element pattern>EP that declares an element variableEV exposesEV as an unconditional
singleton.

b) A <parenthesized path pattern expression> PPPE that simply contains a <subpath variable
declaration> that declares EV exposes EV as an unconditional singleton variable. PPPE shall
not contain another <parenthesized path pattern expression> that declares EV.

c) If a <path concatenation> PPC declares EV then let PT be the <path term> and let PF be the
<path factor> simply contained in PPC.

Case:

i) If EV is exposed as an unconditional singleton by both PT and PF, then EV is exposed
as an unconditional singleton by PPC. EV shall not be a subpath variable.

227

IWD 39075:202y(E)
16.10 <path pattern expression>

NOTE139—This case expresses an implicit join onEVwithinPPC. Implicit joins between conditional
singleton variables, group variables, or subpath variables are forbidden.

ii) Otherwise, EV shall only be exposed by one of PT or PF. In this case EV is exposed by
PPC in the same degree that it is exposed by PT or PF.

d) If a <path pattern union> or <path multiset alternation> PA declares EV, then

Case:

i) If every operand of PA exposes EV as an unconditional singleton variable, then PA
exposes EV as an unconditional singleton variable.

ii) If at least one operand of PA exposes EV as an effectively unbounded group variable,
then PA exposes EV as an effectively unbounded group variable.

iii) If at least one operand of PA exposes EV as an effectively bounded group variable, then
PA exposes EV as an effectively bounded group variable.

iv) Otherwise, PA exposes EV as a conditional singleton variable.

e) If a <quantified path primary> QPP declares EV, then let PP be the <path primary> simply
contained in QPP.

Case:

i) If QPP contains a <graph pattern quantifier> that is a <fixed quantifier> or a <general
quantifier> that contains an <upper bound> andPPdoes not exposeEV as an effectively
unbounded group variable, then QPP exposes EV as an effectively bounded group
variable.

ii) If QPP is contained at the same depth of graph pattern matching in a restrictive <par-
enthesized path pattern expression>, then QPP exposes EV as an effectively bounded
group variable.

NOTE 140— The preceding definition is applied after the syntactic transformation to insure that
every <path mode prefix> is at the head of a <parenthesized path pattern expression>.

iii) Otherwise, QPP exposes EV as an effectively unbounded group variable.

f) If a <questioned path primary> QUPP declares EV, then let PP be the <path primary> simply
contained in QUPP.

Case:

i) If PP exposes EV as a group variable, then QUPP exposes EV as a group variable with
the same degree of exposure.

ii) Otherwise, QUPP exposes EV as a conditional singleton variable.

g) A<parenthesizedpathpattern expression>exposes the samevariables as the simply contained
<path pattern expression>, in the same degree of exposure.

NOTE141—Arestrictive<pathmode>declaredbya<parenthesizedpathpatternexpression>makesvariables
effectively bounded, but it does so even for proper subexpressions within the scope of the <path mode> and
has already been handled by the rules for <quantified path primary>.

h) If a <path pattern> PP declares EV, then let PPE be the simply contained <path pattern
expression>.

Case:

i) IfPPE exposesEV as anunconditional singleton, a conditional singleton, or an effectively
bounded group variable, then PP exposes EVwith the same degree of exposure.

228

IWD 39075:202y(E)
16.10 <path pattern expression>

ii) Otherwise, PP exposes EV as an effectively bounded group variable.
NOTE 142— That is, even if PPE exposes EV as an effectively unbounded group variable, PP still
exposesEV as effectively bounded, because in this casePP is required to be a selective <path pattern>.

i) If BNT1 and BNT2 are two BNF non-terminals such that BNT1 ::= BNT2 and BNT2 exposes EV,
then BNT1 exposes EV to the same degree of exposure as BNT2.

** Editor’s Note (number 76) **

WG3:W04-009R1 defined “effectively bounded group variable” but did not use the definition. The definitionwill
be used when we define predicates on aggregates, at which time we will want a Syntax Rules stating that if a
group variable GV is referenced in a WHERE clause, then it shall be effectively bounded and the reference shall
be contained in an aggregated argument of an <aggregate function>. See Possible Problem GQL-050 .

23) If BNT is a BNF non-terminal that exposes a graph pattern variable GPVwith a degree of exposure
DEGREE, then BNT is also said to expose the name of GPVwith degree of exposure DEGREE.

24) A <parenthesized path pattern where clause> PPPWC simply contained in a <parenthesized path
pattern expression> PPPE shall not reference a path variable.

** Editor’s Note (number 77) **

WG3:W04-009R1 recognized that a graph query may have a sequence of MATCH clauses, with the bindings of one
MATCH clauseMC1 visible in all subsequent MATCH clauses in the same invocation of <graph table>, and that it should
be permissible to reference such variables in any <parenthesized path pattern where clause> simply contained in a
subsequent MATCH clauseMC2. The relevance of this LO to GQL needs to be investigated. See Language Opportunity
GQL-051 .

General Rules

None.
NOTE143—The evaluation of a <path pattern expression> is performedby theGeneral Rules of Subclause 21.3, “Evaluation
of a <path pattern expression>”.

Conformance Rules

1) Without Feature G030, “Path Multiset Alternation”, conforming GQL language shall not contain a
<path multiset alternation>.

2) Without Feature G031, “Path Multiset Alternation: variable length path operands”, in conforming
GQL language, an operand of a <path multiset alternation> shall be a fixed length path pattern.

3) Without Feature G032, “Path Pattern Union”, conforming GQL language shall not contain a <path
pattern union>.

4) Without Feature G033, “Path Pattern Union: variable length path operands”, in conforming GQL
language, an operand of a <path pattern union> shall be a fixed length path pattern.

5) Without FeatureG035, “QuantifiedPaths”, conformingGQL language shall not contain a<quantified
path primary> that does not immediately contain a <path primary> that is an <edge pattern>.

6) Without FeatureG036, “QuantifiedEdges”, conformingGQL language shall not contain a <quantified
path primary> that immediately contains a <path primary> that is an <edge pattern>.

7) WithoutFeatureG037, “QuestionedPaths”, conformingGQL language shall not contain a<questioned
path primary>.

229

IWD 39075:202y(E)
16.10 <path pattern expression>

8) Without Feature G038, “Parenthesized path pattern expression”, conforming GQL language shall
not contain a <parenthesized path pattern expression>.

9) Without Feature G041, “Non-local element pattern predicates”, in conforming GQL language, the
<element pattern where clause> of an <element pattern> EP shall only reference the <element
variable> declared in EP.

10) Without Feature G043, “Complete Full Edge Patterns”, conforming GQL language shall not contain
a <full edge pattern> that is not a <full edge any direction>, a <full edge pointing left>, or a <full
edge pointing right>.

11) Without Feature G044, “Basic Abbreviated Edge Patterns”, conforming GQL language shall not
contain an <abbreviated edge pattern> that is a <minus sign>, <left arrow>, or <right arrow>.

12) Without Feature G045, “Complete Abbreviated Edge Patterns”, conforming GQL language shall not
contain an <abbreviated edge pattern> that is not a <minus sign>, <left arrow>, or <right arrow>.

13) Without Feature G046, “Relaxed topological consistency: Adjacent vertex patterns”, in conforming
GQL language, between any two <node pattern>s contained in a <path pattern expression> there
shall be at least one <edge pattern>, <left paren>, or <right paren>.

14) Without Feature G047, “Relaxed topological consistency: Concise edge patterns”, in conforming
GQL language, any <edgepattern> shall be immediately preceded and followedby a <nodepattern>.

15) Without Feature G048, “Parenthesized Path Pattern: Subpath variable declaration”, conforming
GQL language shall not contain a <parenthesized path pattern expression> that simply contains a
<subpath variable declaration>.

16) Without Feature G049, “Parenthesized Path Pattern: Path mode prefix”, conforming GQL language
shall not contain a <parenthesized path pattern expression> that immediately contains a <path
mode prefix>.

17) Without FeatureG050, “ParenthesizedPath Pattern:Where clause”, conformingGQL language shall
not contain a <parenthesized path pattern where clause>.

18) Without Feature G051, “Parenthesized Path Pattern: Non-local predicates”, in conforming GQL
language, a <parenthesized path pattern where clause> simply contained in a <parenthesized path
pattern expression> PPPE shall not reference an <element variable> that is not declared in PPPE.

230

IWD 39075:202y(E)
16.10 <path pattern expression>

You want to write a paper about pattern matching and start with the syntax

16.10 <path pattern expression>

Function

Specify a pattern to match a single path in a property graph.

Format
<path pattern expression> ::=

<path term>
| <path multiset alternation>
| <path pattern union>

<path multiset alternation> ::=
<path term> <multiset alternation operator> <path term>
 [{ <multiset alternation operator> <path term> }...]

<path pattern union> ::=
<path term> <vertical bar> <path term> [{ <vertical bar> <path term> }...]

<path term> ::=
<path factor>

| <path concatenation>

<path concatenation> ::=
<path term> <path factor>

<path factor> ::=
<path primary>

| <quantified path primary>
| <questioned path primary>

<quantified path primary> ::=
<path primary> <graph pattern quantifier>

<questioned path primary> ::=
<path primary> <question mark>

NOTE 131— Unlike most regular expression languages, <question mark> is not equivalent to the quantifier {0,1}: the
quantifier {0,1} exposes variables as group, whereas <questionmark> does not change the singleton variables that it exposes
to group. However, <question mark> does expose any singleton variables as conditional singletons.

<path primary> ::=
<element pattern>

| <parenthesized path pattern expression>
| <simplified path pattern expression>

<element pattern> ::=
<node pattern>

| <edge pattern>

<node pattern> ::=
<left paren> <element pattern filler> <right paren>

<element pattern filler> ::=
[<element variable declaration>]
[<is label expression>]
[<element pattern predicate>]

« WG3:W24-022 »

<element variable declaration> ::=

221

IWD 39075:202y(E)
16.10 <path pattern expression>

Standards are great but not for academics

Your page limit is over

and you’re 20%

into Definition 1

[TEMP] <element variable>

<is label expression> ::=
<is or colon> <label expression>

<is or colon> ::=
IS

| <colon>

<element pattern predicate> ::=
<element pattern where clause>

| <element property specification>

<element pattern where clause> ::=
WHERE <search condition>

<element property specification> ::=
<left brace> <property key value pair list> <right brace>

<property key value pair list> ::=
<property key value pair> [{ <comma> <property key value pair> }...]

<property key value pair> ::=
<property name> <colon> <value expression>

<edge pattern> ::=
<full edge pattern>

| <abbreviated edge pattern>

<full edge pattern> ::=
<full edge pointing left>

| <full edge undirected>
| <full edge pointing right>
| <full edge left or undirected>
| <full edge undirected or right>
| <full edge left or right>
| <full edge any direction>

<full edge pointing left> ::=
<left arrow bracket> <element pattern filler> <right bracket minus>

<full edge undirected> ::=
<tilde left bracket> <element pattern filler> <right bracket tilde>

<full edge pointing right> ::=
<minus left bracket> <element pattern filler> <bracket right arrow>

<full edge left or undirected> ::=
<left arrow tilde bracket> <element pattern filler> <right bracket tilde>

<full edge undirected or right> ::=
<tilde left bracket> <element pattern filler> <bracket tilde right arrow>

<full edge left or right> ::=
<left arrow bracket> <element pattern filler> <bracket right arrow>

<full edge any direction> ::=
<minus left bracket> <element pattern filler> <right bracket minus>

** Editor’s Note (number 73) **

In the BNF for <full edge any direction>, the delimiter tokens <~[]~> have been suggested as a synonym for -[]- as part of
Feature GA07, “Undirected edge patterns”. The synonym for the <abbreviated edge pattern> - (<minus sign>) would then be
<~>, the synonym for <simplified defaulting any direction> would use the delimiter tokens <~/ /~> and the synonym for

222

IWD 39075:202y(E)
16.10 <path pattern expression>

<simplified override any direction> would use the tokens <~ and > surrounding a label as originally proposed in WG3:MMX-
060. These synonyms might be considered to make the table of edge patterns more harmonious and internally consistent. See
Language Opportunity GQL-212 .

<abbreviated edge pattern> ::=
<left arrow>

| <tilde>
| <right arrow>
| <left arrow tilde>
| <tilde right arrow>
| <left minus right>
| <minus sign>

« WG3:W24-038 deleted one Editor's Note »

<parenthesized path pattern expression> ::=
<left paren>
 [<subpath variable declaration>]
 [<path mode prefix>]

<path pattern expression>
 [<parenthesized path pattern where clause>]
<right paren>

<subpath variable declaration> ::=
<subpath variable> <equals operator>

<parenthesized path pattern where clause> ::=
WHERE <search condition>

Syntax Rules

1) LetRIGHTMINUSbe the following collectionof <token>s: <right bracketminus>, <left arrow>, <slash
minus>, and <minus sign>.

NOTE 132— These are the tokens]-, <-, /-, and -, which expose a minus sign on the right.

2) LetLEFTMINUSbe the following collectionof <token>s: <minus left bracket>, <right arrow>, <minus
slash>, and <minus sign>.

NOTE 133—These are the tokens -[, ->, -/, and -, which expose aminus sign on the left. <minus sign> itself is in both
RIGHTMINUS and LEFTMINUS.

3) A <pathpattern expression> shall not juxtapose a <token> fromRIGHTMINUS followedby a<token>
from LEFTMINUSwithout a <separator> between them.

NOTE 134— Otherwise, the concatenation of the two tokens would include the sequence of two <minus sign>s,
which is a <simple comment introducer>.

4) A <path pattern expression> that contains at the same depth of graph pattern matching a variable
quantifier, a <questioned path primary>, a <path multiset alternation>, or a <path pattern union>
is a possibly variable length path pattern.

5) A <path pattern expression> that is not a possibly variable length path pattern is a fixed length path
pattern.

6) Theminimum path length of certain BNF non-terminals defined in this Subclause is defined
recursively as follows:

a) The minimum path length of a <node pattern> is 0 (zero).

b) The minimum path length of an <edge pattern> is 1 (one).

223

IWD 39075:202y(E)
16.10 <path pattern expression>

c) Theminimum path length of a <path concatenation> is the sum of theminimum path lengths
of its operands.

d) The minimum path length of a <path pattern union> or <path multiset alternation> is the
minimum of the minimum path length of its operands.

e) Theminimumpath length of a <quantified path primary> is the product of theminimumpath
length of the simply contained <path primary> and the value of the <lower bound>.

f) The minimum path length of a <questioned path primary> is 0 (zero).

g) Theminimumpath length of a <parenthesized path pattern expression> is theminimumpath
length of the simply contained <path pattern expression>.

h) IfBNT1 andBNT2 are twoBNFnon-terminals such thatBNT1 ::=BNT2 and theminimumpath
length of BNT2 is defined, then the minimum path length of BNT1 is also defined and is the
same as the minimum path length of BNT2.

7) The <path primary> immediately contained in a <quantified path primary> or <questioned path
primary> shall have minimum path length that is greater than 0 (zero).

8) The<pathprimary> simply contained in a <quantifiedpath primary> shall not contain a <quantified
path primary> at the same depth of graph pattern matching.

** Editor’s Note (number 74) **

It may be possible to permit nested quantifiers. WG3:W01-014 contained a discussion of a way to support aggregates
at different depths of aggregation if there are nested quantifiers. See Language Opportunity GQL-036 .

9) Let PMA be a <path multiset alternation>.

a) A <path term> simply contained in PMA is amultiset alternation operand of PMA.

b) LetNOPMAbe thenumber ofmultiset alternation operands ofPMA. LetOPMA1, ...,OPMANOPMA
be an enumeration of the operands of PMA.

c) Any <subpath variable>s declared by <subpath variable declaration>s simply contained in
the multiset alternation operands of PMA shall be mutually distinct.

d) Let SOPMA1, ..., SOPMANOPMA be implementation-dependent (UV008) <identifier>s that are
mutually distinct and distinct from every <element variable>, <subpath variable> and <path
variable> contained in GP.

e) For every i, 1 (one) ≤ i ≤ NOPMA.

Case:

i) IfOPMAi is a <parenthesized path pattern expression> that simply contains a <subpath
variable declaration>, then let OPMAXi be OPMAi.

ii) Otherwise, let OPMAXi be the <parenthesized path pattern expression>

(SOPMAi = OPMAi)

f) PMA is equivalent to:

OPMAX1 | ... | OPMAXNOPMA

10) A <path term> PPUOP simply contained in a <path pattern union> PSD is a path pattern union
operand of PSD.

224

IWD 39075:202y(E)
16.10 <path pattern expression>

** Editor’s Note (number 75) **

Path pattern union is not defined using left recursion. WG3:SXM-052 believed that it should be possible to support left
recursion but declined to do so for expediency. It is a Language Opportunity to support left recursion. See Language
Opportunity GQL-025 .

PPUOP shall not contain a reference to an element variable that is not declared in PPUOP or outside
of PSD.

11) An <element pattern> EP that contains an <element pattern where clause> EPWC is transformed
as follows:

a) Let EPF be the <element pattern filler> simply contained in EP.

b) Let PREFIX be the <delimiter token> contained in EP before EPF and let SUFFIX be the
<delimiter token> contained in EP after EPF.

c) LetEV be the <element variable> simply contained inEPF. Let ILE be the <is label expression>
contained in EPF, if any; otherwise, let ILE be the zero-length string.

d) EP is replaced by

(PREFIX EV ILE SUFFIX EPWC)

12) An <element pattern> that does not contain an <element variable declaration>, an <is label
expression>, or an <element pattern predicate> is said to be empty.

13) Each <path pattern expression> is transformed in the following steps:

a) If the <path primary> immediately contained in a <quantified path primary> or <questioned
path primary> is an <edge pattern> EP, then EP is replaced by

(EP)

NOTE 135— For example,

->*

becomes:

(->) {0,}

which in later transformations becomes:

(() -> ()) {0,}

b) If two successive <element pattern>s contained in a <path concatenation> at the same depth
of graph pattern matching are <edge pattern>s, then an implicit empty <node pattern> is
inserted between them.

c) If an edge pattern EP contained in a <path term> PST at the same depth of graph pattern
matching is not preceded by a <node pattern> contained in PST at the same depth of graph
pattern matching, then an implicit empty <node pattern> VP is inserted in PST immediately
prior to EP.

d) If an edge pattern EP contained in a <path term> PST at the same depth of graph pattern
matching is not followed by a <node pattern> contained in PST at the same depth of graph
pattern matching, than an implicit empty <node pattern> VP is inserted in PST immediately
after EP.

NOTE 136— As a result of the preceding transformations, a fixed length path pattern has an odd number of
<element pattern>s, beginning and ending with <node pattern>s, and alternating between <node pattern>s
and <edge pattern>s.

225

IWD 39075:202y(E)
16.10 <path pattern expression>

h) IfBNF1 andBNF2 are twoBNFnon-terminals such thatBNF1 ::=BNF2 and theminimumnode
count of BNF2 is defined, then the minimum node count of BNF1 is also defined and is the
same as the minimum node count of BNF2.

15) The <path pattern expression> simply contained in a <path pattern> shall have a minimum node
count that is greater than 0 (zero).

NOTE 137— The minimum node count is computed after the syntactic transform that adds implicit node patterns.
Thus a single <edge pattern> is a permitted <path pattern> because it implies two <node pattern>s.

« WG3:W24-022 »

16) An<element variable>EV contained in an<element variable declaration>GPVD is said to bedeclared
by GPVD, and by the <element pattern> EP that simply contains GPVD. The <element variable> is
the name of an element variable, which is also declared by GPVD and EP. If GPVD simply contains
TEMP, then EV is a temporary element variable. EV is a primary variable.

NOTE 138— Element bindings to temporary element variables are removed prior to set-theoretic deduplication of
matches. SeeGR10) of Subclause16.8, “<graphpattern>” andGR14) of Subclause21.2, “Machinery for graphpattern
matching”.

17) Prior to the application of syntactic transformations, conforming GQL-language shall not contain
an <element variable declaration> that immediately contains TEMP.

18) An element variable that is declared by a <node pattern> is a node variable. An element variable
that is declared by an <edge pattern> is an edge variable.

« WG3:W24-022 »

19) The scope of an <element variable> EV that is declared by an <element pattern> EP is defined as
follows. If EV is a temporary element variable, then the scope of EV is the innermost <path term>
containingEP; otherwise, the scope ofEV is the innermost <graphpattern binding table> containing
EP.

20) A <subpath variable> SV contained in a <subpath variable declaration> SVD is said to be declared
by SVD, and by the <parenthesized path pattern expression> PPPE that simply contains SVD. SV is
the name of a subpath variable, which is also declared by SVD and PPPE.

21) If EP is an <element pattern> that contains an <element patternwhere clause> EPWC, then EP shall
simply contain an <element variable declaration> GPVD.

22) If EV is an element variable or subpath variable, and BNT is an instance of a BNF non-terminal, then
the terminology “BNT exposesEV” is defined as follows. The full terminology is one of the following:
“BNT exposesEV as an unconditional singleton variable”, “BNT exposesEV as a conditional singleton
variable”, “BNT exposes EV as an effectively bounded group variable” or “BNT exposes EV as an
effectively unbounded group variable”. The terms “unconditional singleton variable”, “conditional
singleton variable”, “effectively boundedgroupvariable”, and “effectively unboundedgroupvariable”
are called the degree of exposure.

a) An <element pattern>EP that declares an element variableEV exposesEV as an unconditional
singleton.

b) A <parenthesized path pattern expression> PPPE that simply contains a <subpath variable
declaration> that declares EV exposes EV as an unconditional singleton variable. PPPE shall
not contain another <parenthesized path pattern expression> that declares EV.

c) If a <path concatenation> PPC declares EV then let PT be the <path term> and let PF be the
<path factor> simply contained in PPC.

Case:

i) If EV is exposed as an unconditional singleton by both PT and PF, then EV is exposed
as an unconditional singleton by PPC. EV shall not be a subpath variable.

227

IWD 39075:202y(E)
16.10 <path pattern expression>

h) IfBNF1 andBNF2 are twoBNFnon-terminals such thatBNF1 ::=BNF2 and theminimumnode
count of BNF2 is defined, then the minimum node count of BNF1 is also defined and is the
same as the minimum node count of BNF2.

15) The <path pattern expression> simply contained in a <path pattern> shall have a minimum node
count that is greater than 0 (zero).

NOTE 137— The minimum node count is computed after the syntactic transform that adds implicit node patterns.
Thus a single <edge pattern> is a permitted <path pattern> because it implies two <node pattern>s.

« WG3:W24-022 »

16) An<element variable>EV contained in an<element variable declaration>GPVD is said to bedeclared
by GPVD, and by the <element pattern> EP that simply contains GPVD. The <element variable> is
the name of an element variable, which is also declared by GPVD and EP. If GPVD simply contains
TEMP, then EV is a temporary element variable. EV is a primary variable.

NOTE 138— Element bindings to temporary element variables are removed prior to set-theoretic deduplication of
matches. SeeGR10) of Subclause16.8, “<graphpattern>” andGR14) of Subclause21.2, “Machinery for graphpattern
matching”.

17) Prior to the application of syntactic transformations, conforming GQL-language shall not contain
an <element variable declaration> that immediately contains TEMP.

18) An element variable that is declared by a <node pattern> is a node variable. An element variable
that is declared by an <edge pattern> is an edge variable.

« WG3:W24-022 »

19) The scope of an <element variable> EV that is declared by an <element pattern> EP is defined as
follows. If EV is a temporary element variable, then the scope of EV is the innermost <path term>
containingEP; otherwise, the scope ofEV is the innermost <graphpattern binding table> containing
EP.

20) A <subpath variable> SV contained in a <subpath variable declaration> SVD is said to be declared
by SVD, and by the <parenthesized path pattern expression> PPPE that simply contains SVD. SV is
the name of a subpath variable, which is also declared by SVD and PPPE.

21) If EP is an <element pattern> that contains an <element patternwhere clause> EPWC, then EP shall
simply contain an <element variable declaration> GPVD.

22) If EV is an element variable or subpath variable, and BNT is an instance of a BNF non-terminal, then
the terminology “BNT exposesEV” is defined as follows. The full terminology is one of the following:
“BNT exposesEV as an unconditional singleton variable”, “BNT exposesEV as a conditional singleton
variable”, “BNT exposes EV as an effectively bounded group variable” or “BNT exposes EV as an
effectively unbounded group variable”. The terms “unconditional singleton variable”, “conditional
singleton variable”, “effectively boundedgroupvariable”, and “effectively unboundedgroupvariable”
are called the degree of exposure.

a) An <element pattern>EP that declares an element variableEV exposesEV as an unconditional
singleton.

b) A <parenthesized path pattern expression> PPPE that simply contains a <subpath variable
declaration> that declares EV exposes EV as an unconditional singleton variable. PPPE shall
not contain another <parenthesized path pattern expression> that declares EV.

c) If a <path concatenation> PPC declares EV then let PT be the <path term> and let PF be the
<path factor> simply contained in PPC.

Case:

i) If EV is exposed as an unconditional singleton by both PT and PF, then EV is exposed
as an unconditional singleton by PPC. EV shall not be a subpath variable.

227

IWD 39075:202y(E)
16.10 <path pattern expression>

NOTE139—This case expresses an implicit join onEVwithinPPC. Implicit joins between conditional
singleton variables, group variables, or subpath variables are forbidden.

ii) Otherwise, EV shall only be exposed by one of PT or PF. In this case EV is exposed by
PPC in the same degree that it is exposed by PT or PF.

d) If a <path pattern union> or <path multiset alternation> PA declares EV, then

Case:

i) If every operand of PA exposes EV as an unconditional singleton variable, then PA
exposes EV as an unconditional singleton variable.

ii) If at least one operand of PA exposes EV as an effectively unbounded group variable,
then PA exposes EV as an effectively unbounded group variable.

iii) If at least one operand of PA exposes EV as an effectively bounded group variable, then
PA exposes EV as an effectively bounded group variable.

iv) Otherwise, PA exposes EV as a conditional singleton variable.

e) If a <quantified path primary> QPP declares EV, then let PP be the <path primary> simply
contained in QPP.

Case:

i) If QPP contains a <graph pattern quantifier> that is a <fixed quantifier> or a <general
quantifier> that contains an <upper bound> andPPdoes not exposeEV as an effectively
unbounded group variable, then QPP exposes EV as an effectively bounded group
variable.

ii) If QPP is contained at the same depth of graph pattern matching in a restrictive <par-
enthesized path pattern expression>, then QPP exposes EV as an effectively bounded
group variable.

NOTE 140— The preceding definition is applied after the syntactic transformation to insure that
every <path mode prefix> is at the head of a <parenthesized path pattern expression>.

iii) Otherwise, QPP exposes EV as an effectively unbounded group variable.

f) If a <questioned path primary> QUPP declares EV, then let PP be the <path primary> simply
contained in QUPP.

Case:

i) If PP exposes EV as a group variable, then QUPP exposes EV as a group variable with
the same degree of exposure.

ii) Otherwise, QUPP exposes EV as a conditional singleton variable.

g) A<parenthesizedpathpattern expression>exposes the samevariables as the simply contained
<path pattern expression>, in the same degree of exposure.

NOTE141—Arestrictive<pathmode>declaredbya<parenthesizedpathpatternexpression>makesvariables
effectively bounded, but it does so even for proper subexpressions within the scope of the <path mode> and
has already been handled by the rules for <quantified path primary>.

h) If a <path pattern> PP declares EV, then let PPE be the simply contained <path pattern
expression>.

Case:

i) IfPPE exposesEV as anunconditional singleton, a conditional singleton, or an effectively
bounded group variable, then PP exposes EVwith the same degree of exposure.

228

IWD 39075:202y(E)
16.10 <path pattern expression>

ii) Otherwise, PP exposes EV as an effectively bounded group variable.
NOTE 142— That is, even if PPE exposes EV as an effectively unbounded group variable, PP still
exposesEV as effectively bounded, because in this casePP is required to be a selective <path pattern>.

i) If BNT1 and BNT2 are two BNF non-terminals such that BNT1 ::= BNT2 and BNT2 exposes EV,
then BNT1 exposes EV to the same degree of exposure as BNT2.

** Editor’s Note (number 76) **

WG3:W04-009R1 defined “effectively bounded group variable” but did not use the definition. The definitionwill
be used when we define predicates on aggregates, at which time we will want a Syntax Rules stating that if a
group variable GV is referenced in a WHERE clause, then it shall be effectively bounded and the reference shall
be contained in an aggregated argument of an <aggregate function>. See Possible Problem GQL-050 .

23) If BNT is a BNF non-terminal that exposes a graph pattern variable GPVwith a degree of exposure
DEGREE, then BNT is also said to expose the name of GPVwith degree of exposure DEGREE.

24) A <parenthesized path pattern where clause> PPPWC simply contained in a <parenthesized path
pattern expression> PPPE shall not reference a path variable.

** Editor’s Note (number 77) **

WG3:W04-009R1 recognized that a graph query may have a sequence of MATCH clauses, with the bindings of one
MATCH clauseMC1 visible in all subsequent MATCH clauses in the same invocation of <graph table>, and that it should
be permissible to reference such variables in any <parenthesized path pattern where clause> simply contained in a
subsequent MATCH clauseMC2. The relevance of this LO to GQL needs to be investigated. See Language Opportunity
GQL-051 .

General Rules

None.
NOTE143—The evaluation of a <path pattern expression> is performedby theGeneral Rules of Subclause 21.3, “Evaluation
of a <path pattern expression>”.

Conformance Rules

1) Without Feature G030, “Path Multiset Alternation”, conforming GQL language shall not contain a
<path multiset alternation>.

2) Without Feature G031, “Path Multiset Alternation: variable length path operands”, in conforming
GQL language, an operand of a <path multiset alternation> shall be a fixed length path pattern.

3) Without Feature G032, “Path Pattern Union”, conforming GQL language shall not contain a <path
pattern union>.

4) Without Feature G033, “Path Pattern Union: variable length path operands”, in conforming GQL
language, an operand of a <path pattern union> shall be a fixed length path pattern.

5) Without FeatureG035, “QuantifiedPaths”, conformingGQL language shall not contain a<quantified
path primary> that does not immediately contain a <path primary> that is an <edge pattern>.

6) Without FeatureG036, “QuantifiedEdges”, conformingGQL language shall not contain a <quantified
path primary> that immediately contains a <path primary> that is an <edge pattern>.

7) WithoutFeatureG037, “QuestionedPaths”, conformingGQL language shall not contain a<questioned
path primary>.

229

IWD 39075:202y(E)
16.10 <path pattern expression>

8) Without Feature G038, “Parenthesized path pattern expression”, conforming GQL language shall
not contain a <parenthesized path pattern expression>.

9) Without Feature G041, “Non-local element pattern predicates”, in conforming GQL language, the
<element pattern where clause> of an <element pattern> EP shall only reference the <element
variable> declared in EP.

10) Without Feature G043, “Complete Full Edge Patterns”, conforming GQL language shall not contain
a <full edge pattern> that is not a <full edge any direction>, a <full edge pointing left>, or a <full
edge pointing right>.

11) Without Feature G044, “Basic Abbreviated Edge Patterns”, conforming GQL language shall not
contain an <abbreviated edge pattern> that is a <minus sign>, <left arrow>, or <right arrow>.

12) Without Feature G045, “Complete Abbreviated Edge Patterns”, conforming GQL language shall not
contain an <abbreviated edge pattern> that is not a <minus sign>, <left arrow>, or <right arrow>.

13) Without Feature G046, “Relaxed topological consistency: Adjacent vertex patterns”, in conforming
GQL language, between any two <node pattern>s contained in a <path pattern expression> there
shall be at least one <edge pattern>, <left paren>, or <right paren>.

14) Without Feature G047, “Relaxed topological consistency: Concise edge patterns”, in conforming
GQL language, any <edgepattern> shall be immediately preceded and followedby a <nodepattern>.

15) Without Feature G048, “Parenthesized Path Pattern: Subpath variable declaration”, conforming
GQL language shall not contain a <parenthesized path pattern expression> that simply contains a
<subpath variable declaration>.

16) Without Feature G049, “Parenthesized Path Pattern: Path mode prefix”, conforming GQL language
shall not contain a <parenthesized path pattern expression> that immediately contains a <path
mode prefix>.

17) Without FeatureG050, “ParenthesizedPath Pattern:Where clause”, conformingGQL language shall
not contain a <parenthesized path pattern where clause>.

18) Without Feature G051, “Parenthesized Path Pattern: Non-local predicates”, in conforming GQL
language, a <parenthesized path pattern where clause> simply contained in a <parenthesized path
pattern expression> PPPE shall not reference an <element variable> that is not declared in PPPE.

230

IWD 39075:202y(E)
16.10 <path pattern expression>

You want to write a paper about pattern matching and start with the syntax

And then you want to work with it but it’s like “find the rabbit”

Our Goal

Our Goal
GQL to the (academic) masses

Our Goal
GQL to the (academic) masses
- Distill

Our Goal
GQL to the (academic) masses
- Distill
- Formalize, provide the semantics

Our Goal
GQL to the (academic) masses
- Distill
- Formalize, provide the semantics
- Plus initial results

Our Goal
GQL to the (academic) masses
- Distill
- Formalize, provide the semantics
- Plus initial results
- Explain what is similar to / different from DB research

concepts such as RPQs, CRPQs etc

Our Goal
GQL to the (academic) masses
- Distill
- Formalize, provide the semantics
- Plus initial results
- Explain what is similar to / different from DB research

concepts such as RPQs, CRPQs etc
- Outline research challenges that GQL brings

Our Goal
GQL to the (academic) masses
- Distill
- Formalize, provide the semantics
- Plus initial results
- Explain what is similar to / different from DB research

concepts such as RPQs, CRPQs etc
- Outline research challenges that GQL brings

Word of caution

GQL is a moving target

We do our best…..

Our Goal
GQL to the (academic) masses
- Distill
- Formalize, provide the semantics
- Plus initial results
- Explain what is similar to / different from DB research

concepts such as RPQs, CRPQs etc
- Outline research challenges that GQL brings

Word of caution

GQL is a moving target

We do our best…..

Our Goal
GQL to the (academic) masses
- Distill
- Formalize, provide the semantics
- Plus initial results
- Explain what is similar to / different from DB research

concepts such as RPQs, CRPQs etc
- Outline research challenges that GQL brings

Word of caution

GQL is a moving target

We do our best…..

Papers/talks

- Last year: SIGMOD’22 on pattern
matching (WG3+FSWG)

- Then PODS’23 paper: formalization of
pattern matching

- also subject of KR 2023 keynote

- EDBT/ICDT 2023 keynote: core GQL

- talk + paper

GQL in a Nutshell

Graph

Pattern

Matching

Core of the language

⇝

graph relation

GQL in a Nutshell

Graph

Pattern

Matching

Core of the language

Relational

Querying

⇝

graph relation

GQL in a Nutshell

Graph

Pattern

Matching

Core of the language

Relational

Querying

⇝

graph relation

⋈ ∪ ∩
− θ

GQL in a Nutshell

Graph

Pattern

Matching

Core of the language

Relational

Querying

⇝

graph relation

⋈ ∪ ∩
− θ

 extras+
(e.g., combining graph and table)

Updates, etc.

Not yet

GQL in a Nutshell

Graph

Pattern

Matching

Core of the language

Relational

Querying

⇝

graph relation

⋈ ∪ ∩
− θ

 extras+
(e.g., combining graph and table)

The Core:

Graph Pattern Matching

⇝

graph relation

PODS 2023

Pattern calculus in a nutshell: PODS 23

Pattern calculus in a nutshell: PODS 23
ν := (x : ℓ)Node pattern

Pattern calculus in a nutshell: PODS 23
ν := (x : ℓ)Node pattern match an -labeled node, assign to a variable ℓ

Pattern calculus in a nutshell: PODS 23
ν := (x : ℓ)Node pattern

α := ⟶ ∣ ⟵ ∣ ----Edge pattern x : ℓ x : ℓ x : ℓ

match an -labeled node, assign to a variable ℓ

Pattern calculus in a nutshell: PODS 23
ν := (x : ℓ)Node pattern

α := ⟶ ∣ ⟵ ∣ ----Edge pattern x : ℓ x : ℓ x : ℓ
-labeled edge directed left/right/any-directed, assign to a variable ℓ

match an -labeled node, assign to a variable ℓ

Pattern calculus in a nutshell: PODS 23
ν := (x : ℓ)Node pattern

α := ⟶ ∣ ⟵ ∣ ----Edge pattern x : ℓ x : ℓ x : ℓ
-labeled edge directed left/right/any-directed, assign to a variable ℓ

match an -labeled node, assign to a variable ℓ
Both and are optionalx ℓ

Pattern calculus in a nutshell: PODS 23
ν := (x : ℓ)Node pattern

π := ν ∣ α ∣ π π ∣ π + π ∣ πn..m ∣ π⟨θ⟩Patterns 0 ≤ n ≤ m ≤ ∞

α := ⟶ ∣ ⟵ ∣ ----Edge pattern x : ℓ x : ℓ x : ℓ
-labeled edge directed left/right/any-directed, assign to a variable ℓ

match an -labeled node, assign to a variable ℓ
Both and are optionalx ℓ

Pattern calculus in a nutshell: PODS 23
ν := (x : ℓ)Node pattern

π := ν ∣ α ∣ π π ∣ π + π ∣ πn..m ∣ π⟨θ⟩Patterns 0 ≤ n ≤ m ≤ ∞

α := ⟶ ∣ ⟵ ∣ ----Edge pattern x : ℓ x : ℓ x : ℓ
-labeled edge directed left/right/any-directed, assign to a variable ℓ

node edge concatenation union repetition selection with condition

 n-to-m times

match an -labeled node, assign to a variable ℓ
Both and are optionalx ℓ

Pattern calculus in a nutshell: PODS 23
ν := (x : ℓ)Node pattern

θ := x . a = c ∣ x . a = y . b ∣ θ ∨ θ ∣ θ ∧ θ ∣ ¬θConditions

π := ν ∣ α ∣ π π ∣ π + π ∣ πn..m ∣ π⟨θ⟩Patterns 0 ≤ n ≤ m ≤ ∞

α := ⟶ ∣ ⟵ ∣ ----Edge pattern x : ℓ x : ℓ x : ℓ
-labeled edge directed left/right/any-directed, assign to a variable ℓ

node edge concatenation union repetition selection with condition

 n-to-m times

match an -labeled node, assign to a variable ℓ
Both and are optionalx ℓ

Pattern calculus in a nutshell: PODS 23
ν := (x : ℓ)Node pattern

θ := x . a = c ∣ x . a = y . b ∣ θ ∨ θ ∣ θ ∧ θ ∣ ¬θConditions

π := ν ∣ α ∣ π π ∣ π + π ∣ πn..m ∣ π⟨θ⟩Patterns 0 ≤ n ≤ m ≤ ∞

α := ⟶ ∣ ⟵ ∣ ----Edge pattern x : ℓ x : ℓ x : ℓ
-labeled edge directed left/right/any-directed, assign to a variable ℓ

node edge concatenation union repetition selection with condition

 n-to-m times

match an -labeled node, assign to a variable ℓ

key-value comparisons Boolean combinations

Both and are optionalx ℓ

Pattern calculus in a nutshell: PODS 23
ν := (x : ℓ)Node pattern

θ := x . a = c ∣ x . a = y . b ∣ θ ∨ θ ∣ θ ∧ θ ∣ ¬θConditions

Queries Q := σ π ∣ p = σ π ∣ Q, Q

π := ν ∣ α ∣ π π ∣ π + π ∣ πn..m ∣ π⟨θ⟩Patterns 0 ≤ n ≤ m ≤ ∞

α := ⟶ ∣ ⟵ ∣ ----Edge pattern x : ℓ x : ℓ x : ℓ
-labeled edge directed left/right/any-directed, assign to a variable ℓ

node edge concatenation union repetition selection with condition

 n-to-m times

match an -labeled node, assign to a variable ℓ

key-value comparisons Boolean combinations

Both and are optionalx ℓ

Pattern calculus in a nutshell: PODS 23
ν := (x : ℓ)Node pattern

θ := x . a = c ∣ x . a = y . b ∣ θ ∨ θ ∣ θ ∧ θ ∣ ¬θConditions

Queries Q := σ π ∣ p = σ π ∣ Q, Q

π := ν ∣ α ∣ π π ∣ π + π ∣ πn..m ∣ π⟨θ⟩Patterns 0 ≤ n ≤ m ≤ ∞

α := ⟶ ∣ ⟵ ∣ ----Edge pattern x : ℓ x : ℓ x : ℓ
-labeled edge directed left/right/any-directed, assign to a variable ℓ

node edge concatenation union repetition selection with condition

 n-to-m times

ensure finitely

many paths

match an -labeled node, assign to a variable ℓ

key-value comparisons Boolean combinations

Both and are optionalx ℓ

Pattern calculus in a nutshell: PODS 23
ν := (x : ℓ)Node pattern

θ := x . a = c ∣ x . a = y . b ∣ θ ∨ θ ∣ θ ∧ θ ∣ ¬θConditions

Queries Q := σ π ∣ p = σ π ∣ Q, Q

π := ν ∣ α ∣ π π ∣ π + π ∣ πn..m ∣ π⟨θ⟩Patterns 0 ≤ n ≤ m ≤ ∞

α := ⟶ ∣ ⟵ ∣ ----Edge pattern x : ℓ x : ℓ x : ℓ
-labeled edge directed left/right/any-directed, assign to a variable ℓ

node edge concatenation union repetition selection with condition

 n-to-m times

ensure finitely

many paths

name

matched

path

match an -labeled node, assign to a variable ℓ

key-value comparisons Boolean combinations

Both and are optionalx ℓ

Pattern calculus in a nutshell: PODS 23
ν := (x : ℓ)Node pattern

θ := x . a = c ∣ x . a = y . b ∣ θ ∨ θ ∣ θ ∧ θ ∣ ¬θConditions

Queries Q := σ π ∣ p = σ π ∣ Q, Q

π := ν ∣ α ∣ π π ∣ π + π ∣ πn..m ∣ π⟨θ⟩Patterns 0 ≤ n ≤ m ≤ ∞

α := ⟶ ∣ ⟵ ∣ ----Edge pattern x : ℓ x : ℓ x : ℓ
-labeled edge directed left/right/any-directed, assign to a variable ℓ

node edge concatenation union repetition selection with condition

 n-to-m times

ensure finitely

many paths

name

matched

path

join

match an -labeled node, assign to a variable ℓ

key-value comparisons Boolean combinations

Both and are optionalx ℓ

Semantics — Idea

Q = π1, π2, …, πn

Gp1

p2

x1, x2, …, xm

pn

…..

with variables

MATCH result: a tuple of paths + a table

x1 x2 ….. xm

GQL and SQL/PGQ only keep the table

What’s in the table?

• Graph elements

• Nodes

• Edges

• Paths (when named:)

• Lists of graph elements

x = π

What’s in the table?

• Graph elements

• Nodes

• Edges

• Paths (when named:)

• Lists of graph elements

x = π

π = …(x)… ⟶ (…(u)…)n..m…(… ⟶ …)ℓ,k…
y w

n e [n1, n2, …] [e1, e2, …]

What’s in the table?

• Graph elements

• Nodes

• Edges

• Paths (when named:)

• Lists of graph elements

x = π

π = …(x)… ⟶ (…(u)…)n..m…(… ⟶ …)ℓ,k…
y w

n e [n1, n2, …] [e1, e2, …]

Tables may have nulls: (x) + ⟶
y

x y
n NULL

NULL e

What we have done in the PODS paper
• Formal semantics for well-typed expressions

• Type system: when a variable is assigned:

• a graph element, or a list, or could be assigned NULL

• Complexity

• PSPACE data complexity of enumeration

• Not surprising: there are many paths

• Note: Cypher is NP-hard. Things may work in practice, but not in theory!

• Expressivity

• Subsumes CRPQs, inverses, unions, nested regular expressions, regular queries

Relational Querying in GQL (streamlined)

Union, Intersection, Difference
If and are GQL queries, then so are

- UNION

- INTERSECT

- EXCEPT

- OTHERWISE

Q1 Q2

Q1 Q2

Q1 Q2

Q1 Q2

Q1 Q2

Basic Operations on Tables

- RETURN (projection)

- LET (add columns)

- FILTER (selection)

- FOR (unnest for lists)

- another MATCH (join with the current working table)

Multiple Graphs
USE G1  
 MATCH
 WHERE
 RETURN

π1
θ1
L1

NEXT USE G2
 MATCH
 WHERE
 RETURN

π2
θ2
L2

NEXT USE Gn
 MATCH
 WHERE
 RETURN

πn
θn
Ln

…………………..

ICDT ’23 Paper:

“A Researcher’s Digest of GQL”

Idea:

A syntax closer to actual GQL

But still OK for academics to use for research

Syntax: PATTERNS
Francis et al. 7

PATH PATTERN For x œ Vars, ¸ œ L, 0 Æ n Æ m œ N:

(descriptor) ” := x :¸ WHERE ◊ x, :¸, and WHERE ◊ are optional

(path pattern) fi := (”) (node pattern)
| -[”]-> | <-[”]- | ~[”]~ (edge pattern)
| fi fi (concatenation)
| fi|fi (union)
| fi WHERE ◊ (conditioning)
| fi{n,m} (bounded repetition)
| fi{n,} (unbounded repetition)

EXPRESSION and CONDITION For x œ Vars, ¸ œ L, a œ K, c œ Const:

(expression) ‰ := x | x.a | c

(condition) ◊ := ‰ = ‰ | ‰ < ‰ | ‰ IS NULL

| x : ¸ | EXISTS { Q }

| ◊ OR ◊ | ◊ AND ◊ | NOT ◊

GRAPH PATTERN For x œ Vars:

(path mode) µ := (ALL | ANY) [SHORTEST] [TRAIL | ACYCLIC]

(graph pattern) � := µ [x =] fi | �, �

CLAUSE and QUERY For k Ø 0, ¸ Ø 1, and x, y, x1, . . . , xk œ Vars, and G œ G:

(clause) C := MATCH �
| LET x = ‰

| FOR x IN y

| FILTER ◊

(linear query) L := USE G L

| C L

| RETURN ‰1 AS x1, . . . , ‰k AS xk

(query) Q := L

| USE G {Q1 THEN Q2 · · · THEN Q¸}

| Q INTERSECT Q | Q UNION Q | Q EXCEPT Q

Figure 2 Syntax of GQL

Syntax: QUERIES

Francis et al. 7

PATH PATTERN For x œ Vars, ¸ œ L, 0 Æ n Æ m œ N:

(descriptor) ” := x :¸ WHERE ◊ x, :¸, and WHERE ◊ are optional

(path pattern) fi := (”) (node pattern)
| -[”]-> | <-[”]- | ~[”]~ (edge pattern)
| fi fi (concatenation)
| fi|fi (union)
| fi WHERE ◊ (conditioning)
| fi{n,m} (bounded repetition)
| fi{n,} (unbounded repetition)

EXPRESSION and CONDITION For x œ Vars, ¸ œ L, a œ K, c œ Const:

(expression) ‰ := x | x.a | c

(condition) ◊ := ‰ = ‰ | ‰ < ‰ | ‰ IS NULL

| x : ¸ | EXISTS { Q }

| ◊ OR ◊ | ◊ AND ◊ | NOT ◊

GRAPH PATTERN For x œ Vars:

(path mode) µ := (ALL | ANY) [SHORTEST] [TRAIL | ACYCLIC]

(graph pattern) � := µ [x =] fi | �, �

CLAUSE and QUERY For k Ø 0, ¸ Ø 1, and x, y, x1, . . . , xk œ Vars, and G œ G:

(clause) C := MATCH �
| LET x = ‰

| FOR x IN y

| FILTER ◊

(linear query) L := USE G L

| C L

| RETURN ‰1 AS x1, . . . , ‰k AS xk

(query) Q := L

| USE G {Q1 THEN Q2 · · · THEN Q¸}

| Q INTERSECT Q | Q UNION Q | Q EXCEPT Q

Figure 2 Syntax of GQL

ICDT Paper: Semantics
1:12 A Researcher’s Digest of GQL

J-[]->KG =
)

(path(src(e), e, tgt(e)), ())
-- e œ EG

d

*

J-[x]->KG =
)

(path(src(e), e, tgt(e)), (x ‘æ e))
-- e œ EG

d

*

J-[:¸]->KG =
Ó

(path(src(e), e, tgt(e)), ())
--- e œ EG

d , ¸ œ lab
G(e)

Ô

Other cases of the forward edge patterns are treated by moving the label and conditions
outside of the edge pattern, just as for node patterns. Backward edge patterns and undirected
edge patterns are treated similarly, with the base cases given below.

J<-[]-KG =
)

(path(tgt(e), e, src(e)), ())
-- e œ EG

d

*

J~[]~KG =
;

(path(u1, e, u2), ()), (path(u2, e, u1), ())

e œ EG
u

{u1, u2} = endpoints
G(e)

<

Semantics of Concatenation, Union, and Conditioning

Jfi1 fi2KG

Y
]

[(p1 · p2, µ1 on µ2)

(pi, µi) œ JfiiKG for i = 1, 2
p1 and p2 concatenate
µ1 ≥ µ2

Z
^

\

Note that since fi1 fi2 is assumed to be well-formed, all variables shared by fi1 and fi2 are
singleton variables (Condition 2 in Section 3). In other words, implicit joins over group and
optional variables are disallowed; the same remark will also apply for the semantics of joins.
I Remark 9. Consider the pattern

(x) (-[:Transfer]->()-[:Transfer]->(x)]){1,}

This pattern is disallowed in GQL because the leftmost x is a singleton variable, whereas the
rightmost x is a group variable. In GQL philosophy, the leftmost x will be bound to a node
and the rightmost x will be bound to a list of nodes, which is a type mismatch.

Jfi1 | fi2KG = { (p, µ fi µÕ) | (p, µ) œ Jfi1KG fi Jfi2KG }
where µÕ maps every variable in var(fi1 |fi2)\Dom(µ) to null. (Recall that var maps a pattern
to the set of variables appearing in it.)

Jfi WHERE ◊KG = { (p, µ) œ JfiKG | J◊Kµ
G = true }

Semantics of Repetition

Jfi{n, m}KG =
m€

i=n

JfiKi
G

Jfi{n, }KG =
Œ€

i=n

JfiKi
G

Above, for a pattern fi and a natural number i Ø 0, we use JfiKi
G to denote the i-th power of

JfiKG, which we define as

JfiK0
G = { (path(u), µ) | u is a node in G }

where µ binds each variable in Dom(sch(fi)) to list(), that is, the empty-list value; and

’i > 0 JfiKi
G =

;
(p1 · . . . · pi, µÕ)

(p1, µ1), . . . , (pn, µi) œ JfiKG

p1, . . . , pi concatenate

<

where µÕ binds each variable in Dom(sch(fi)) to list
!
µ1(x), . . . , µi(x)

"
. Recall that sch is

defined in Section 3.

N. Francis et al. 1:13

I Remark 10. Since fi{n, } is assumed to be well-formed, it holds ÎfiÎmin Ø 1. A simple
induction then yields that each pi in the definition above has positive length. A second
induction then yields that, given a path p, there are finitely many assignments µ such
that (p, µ) œ Jfi{n, m}KG. This fact is crucial to have a finite output in the end.

For instance, consider a graph with a single node u and no edges, and the pattern (a){0,}

which is not well-formed (the minimal path length of () is 0). For every i, the set J(a)Ki
G

contains (path(u), µi) where µi = (a ‘æ list(u, . . . , u¸ ˚˙ ˝
i times

)); hence the union in the definition of

Jfi{n, }KG above would not only yield an infinite number of elements, but all of them would
be associated to the same path. As a result a graph pattern such as ALL SHORTEST (a){0,}

would have infinitely many results.

4.3 Semantics of Graph Patterns
We now define the semantics of graph patterns. We first fully define atomic graph patterns
and then define their joins.

Jx = fiKG =
)

(p, µ fi {x ‘æ p}) | (p, µ) œ JfiKG

*

In the following we denote by fĩ a graph pattern that never uses the “,” operator, hence it is
of the form µ x= fi, where µ is a path mode, x is a variable, fi is a path pattern, and “x=“ is
optional.

JTRAIL fiKG = { (p, µ) œ JfiKG | no edge occurs more than once in p }
JACYCLIC fiKG = { (p, µ) œ JfiKG | no node occurs more than once in p }

JSHORTEST fĩKG =

Y
]

[(p, µ) œ JfĩKG

len(p) = min

Y
]

[len(pÕ)

(pÕ, µÕ) œ JfĩKG

src(pÕ) = src(p)
tgt(pÕ) = tgt(p)

Z
^

\

Z
^

\

JALL fĩKG = JfĩKG

JANY fĩKG =
€

(s,t)œX

{any({ (p, µ) | (p, µ) œ JfĩKG , endpoints(p) = (s, t) }}

where X = {
!
src(p), tgt(p)

"
| (p, µ) œ JfĩKG } and any is a procedure that arbitrarily returns

one element from a set; any need not be deterministic.

J�1, �2KG = { (p̄1 ◊ p̄2, µ1 on µ2) | (p̄i, µi) œ J�iKG for i = 1, 2 and µ1 ≥ µ2 }

Here, p̄1 = (p1
1, p2

1, . . . , pk
1) and p̄2 = (p1

2, p2
2, . . . , pl

2) are tuples of paths, and p̄1 ◊ p̄2 stands
for (p1

1, p2
1, . . . , pk

1 , p1
2, p2

2, . . . , pl
2). Just as it is the case of concatenation, since �1, �2 is

well-formed, implicit joins can occur over singleton variables only.

4.4 Semantics of Conditions and Expressions
The semantics J‰Kµ

G of an expression ‰ is an element in V that is computed with respect to
a binding µ and a graph G. Intuitively, variables in ‰ are evaluated with µ and we use G to
access the properties of an element. It is formally defined as follows.

JcKµ
G = c for c œ Const

JxKµ
G = µ(x) for x œ Dom(µ)

Jx.aKµ
G =

I
prop

G(µ(x), a) if (µ(x), a) œ Dom(prop
G)

null else if µ(x) œ (N fi Ed fi Eu)
for x œ Dom(µ), a œ K

ICDT 2023

ICDT Paper: Semantics
1:14 A Researcher’s Digest of GQL

I Remark 11. Recall that di�erent graphs may share nodes and edges. Hence the condition
(µ(x), a) œ Dom(prop

G), above, does imply that µ(x) is a node or an edge in G, but does
not imply that it was matched in G.
The semantics J◊Kµ

G of a condition ◊ is an element in {true, false, null} that is evaluated with
respect to a binding µ and a graph G, and is defined as follows:

J‰1 = ‰2Kµ
G =

Y
__]

__[

null if J‰1Kµ
G = null or J‰2Kµ

G = null

true if J‰1Kµ
G = J‰2Kµ

G ”= null

false otherwise

J‰1 < ‰2Kµ
G =

Y
__]

__[

null if J‰1Kµ
G = null or J‰2Kµ

G = null

true else if J‰1Kµ
G < J‰2Kµ

G

false otherwise

J‰ IS NULLKµ
G =

I
true if J‰Kµ

G = null

false otherwise

J‰:¸Kµ
G =

I
true if J‰Kµ

G œ NG fi EG
u fi EG

d and ¸ œ lab
G(J‰Kµ

G)
false else if J‰Kµ

G œ N fi Ed fi Eu

J◊1 AND ◊2Kµ
G = J◊1Kµ

G · J◊2Kµ
G

(ú)

J◊1 OR ◊2Kµ
G = J◊1Kµ

G ‚ J◊2Kµ
G

(ú)

JNOT ◊Kµ
G = ¬ J◊Kµ

G
(ú)

(ú) Operators ·, ‚, and ¬ are defined as in SQL three-valued logic, e.g. null ‚ true = true

while null · true = null.

JEXISTS { Q }Kµ
G =

I
true if JQKG ({µ}) is not empty
false otherwise

4.5 Semantics of Queries
Clauses and queries are interpreted as functions that operate on tables. These tables are our
abstraction of GQL’s working tables.

I Definition 12. A table T is a set of bindings that have the same domains, referred to
as Dom(T).

Note that tables do not have schemas: two di�erent bindings in a table might associate a
variable to values of incompatible types.

Semantics of Clauses

The semantics JCKG of a clause C is a function that maps tables into tables, and is parametrized
by a graph G. Patterns, conditions and expression in a clause are evaluated with respect to
that G.

JMATCH �KG (T) =
€

µœT

)
µ on µÕ | (p, µÕ) œ J�KG , µ ≥ µÕ*

Note that if � uses a variable that already occurs in Dom(T), a join is performed. Unlike in
the case of path patterns and graph patterns, this join can involve variables bound to lists
or paths. While this is not problematic mathematically, it might be disallowed in future
iterations of GQL.

N. Francis et al. 1:15

If x /œ Dom(T), then

JLET x = ‰KG (T) =
€

µœT

{µ on (x ‘æ J‰Kµ
G)}

JFILTER ◊KG (T) =
€

µœT

)
µ | J◊Kµ

G = true
*

.

If x /œ Dom(T) and, for every µ œ T , µ(y) is a list or null,3 then

JFOR x IN yKG (T) =
€

µœT

)
µ on (x ‘æ v) | v œ µ(y)

*
.

Semantics of Linear Queries

JUSE GÕ
LKG (T) = JLKGÕ (T)

JC LKG (T) = JLKG

!
JCKG (T)

"

JRETURN ‰1 AS x1, . . . , ‰¸ AS x¸KG (T) =
€

µœT

Ó
(x1 ‘æ J‰1Kµ

G , . . . , x¸ ‘æ J‰¸KG
µ)

Ô

Semantics of Queries

The output of a query Q is defined as

Output(Q) = JQKG ({()}) ,

where {()} is the unit table that consists of the empty binding, and G is the default graph
in D. We define the semantics of queries recursively as follows.

JUSE GÕ {Q1 THEN Q2 · · · THEN Qk}KG (T) = JQkKGÕ ¶ · · · ¶ JQ1KGÕ (T)

If Dom (JQ1KG (T)) = Dom (JQ2KG (T)), then we let

JQ1 INTERSECT Q2KG (T) = JQ1KG (T) fl JQ2KG (T)
JQ1 UNION Q2KG (T) = JQ1KG (T) fi JQ2KG (T)

JQ1 EXCEPT Q2KG (T) = JQ1KG (T) \ JQ2KG (T)

5 A Few Known Discrepancies with the GQL Standard

In pursuing the goal of introducing the key features of GQL to the research community, we
inevitably had to make decisions that resulted in discrepancies between our presentation and
the 500+ pages of the forthcoming Standard. In this section, we discuss a non-exhaustive
list of di�erences between the actual GQL Standard and our digest. To start with, in all our
formal development we assumed that queries are given by their syntax trees, which result
from parsing them. Hence we completely omitted such parsing-related aspects as parentheses,
operator precedence etc. Also we note that many GQL features, even those described here,
are optional, and not every implementation is obliged to have them all.

3 Note that null is treated just as list()

ICDT 2023

What Do the Papers Omit?

What Do the Papers Omit?
Bag semantics
Our semantics is correct up to multiplicities

What Do the Papers Omit?
Bag semantics
Our semantics is correct up to multiplicities

Aggregation
- There is vertical aggregation as in SQL

- There is also horizontal aggregation along paths

- e.g. SUM(e.weight) < 100

What Do the Papers Omit?
Bag semantics
Our semantics is correct up to multiplicities

Aggregation
- There is vertical aggregation as in SQL

- There is also horizontal aggregation along paths

- e.g. SUM(e.weight) < 100

Procedure calls

- inlined: CALL {...}
- named: CALL <proc-name> (<params>)

What Do the Papers Omit?
Bag semantics
Our semantics is correct up to multiplicities

Aggregation
- There is vertical aggregation as in SQL

- There is also horizontal aggregation along paths

- e.g. SUM(e.weight) < 100

Procedure calls

- inlined: CALL {...}
- named: CALL <proc-name> (<params>)

Updates
insert, set, delete

What Do the Papers Omit?
Bag semantics
Our semantics is correct up to multiplicities

Aggregation
- There is vertical aggregation as in SQL

- There is also horizontal aggregation along paths

- e.g. SUM(e.weight) < 100

Procedure calls

- inlined: CALL {...}
- named: CALL <proc-name> (<params>)

Updates
insert, set, delete

Extra path modes
e.g. TRAIL along several paths π1, …, πn

What Do the Papers Omit?
Bag semantics
Our semantics is correct up to multiplicities

Aggregation
- There is vertical aggregation as in SQL

- There is also horizontal aggregation along paths

- e.g. SUM(e.weight) < 100

Procedure calls

- inlined: CALL {...}
- named: CALL <proc-name> (<params>)

Updates
insert, set, delete

Extra path modes
e.g. TRAIL along several paths π1, …, πn

Catalog operations

Data types and value expressions

Predicates (including handling nulls)

Open Questions

Open Questions
The first version of the standard will be published in 2024

It all makes sense if you take a quick look….

Open Questions
The first version of the standard will be published in 2024

It all makes sense if you take a quick look….

Open Questions
The first version of the standard will be published in 2024

It all makes sense if you take a quick look….

But it has not been scrutinised outside WG3 and LDBC

We need to do research on GQL now!

Our work gives you the platform

Open Questions
The first version of the standard will be published in 2024

It all makes sense if you take a quick look….

But it has not been scrutinised outside WG3 and LDBC

We need to do research on GQL now!

Our work gives you the platform

 Questions:

Is it good? Is it usable? Or the best simply

because everything else is average?

Open Questions
The first version of the standard will be published in 2024

It all makes sense if you take a quick look….

But it has not been scrutinised outside WG3 and LDBC

We need to do research on GQL now!

Our work gives you the platform

 Questions:

Is it good? Is it usable? Or the best simply

because everything else is average?

Directions for Research:

Theoretician’s Comfort zone

Expressive Power and Complexity
- Clean Language Fragments and Extensions

- Think of First-Order Logic and everything we know about its power,
complexity, and that of CQs, UCQs, Datalog, etc etc

- DB theory folks are really good at this

Query processing and Optimization

- Containment, Equivalence, ...

- GQL goes much beyond CRPQs

- Practical algorithms, data structures

Directions for Research:

Theoretician’s Comfort zone

Expressive Power and Complexity
- Clean Language Fragments and Extensions

- Think of First-Order Logic and everything we know about its power,
complexity, and that of CQs, UCQs, Datalog, etc etc

- DB theory folks are really good at this

Directions for Research: Extra features

Directions for Research: Extra features

Directions for Research: Extra features
Updates

- Updating graphs is not a trivial matter

- Many alternative semantics need to be explored

(even the case of Cypher was highly problematic)

Directions for Research: Extra features
Updates

- Updating graphs is not a trivial matter

- Many alternative semantics need to be explored

(even the case of Cypher was highly problematic)

Design analysis: alternatives, suggestions, holes
- Many examples: e.g., dealing with group variables. Are the current

restrictions (e.g., no comparisons) necessary?

- Can variables be used non-locally?

- E.g. MATCH (x) (-[y:a]-> WHERE x.k+y.k=10)* (z)
- Implications for complexity?

Directions for Research: What is missing

Directions for Research: What is missing

- Graph-to-Graph Queries
- Like Cypher, GQL is an engine for turning

graphs into relations

- This has many limitations: how to do views?

subqueries?

- Need design principles for graph-to-graph

languages.

Directions for Research: What is missing

- Graph-to-Graph Queries
- Like Cypher, GQL is an engine for turning

graphs into relations

- This has many limitations: how to do views?

subqueries?

- Need design principles for graph-to-graph

languages.

Schemas and Constraints
- Taken for granted for relational databases

- Much less work on property graphs but it’s coming

- PG-KEYS (SIGMOD’21), PG-SCHEMA (SIGMOD’23)

Final Thoughts

Final Thoughts
After 6 years of work, GQL will become an ISO Standard

There is a reason to be happy but:

-When you jump for joy, beware that no one moves ground
under your feet

-NDL was a standard too but lost to relational

Final Thoughts
After 6 years of work, GQL will become an ISO Standard

There is a reason to be happy but:

-When you jump for joy, beware that no one moves ground
under your feet

-NDL was a standard too but lost to relational

Final Thoughts
After 6 years of work, GQL will become an ISO Standard

-SQL/PGQ in relational systems

-Relational languages for KG, e.g. RelationalAI

-Native Graph Querying vs Relational Graph Querying will be playing
out in the next N years

-The Register, 6 March 2023: “The Great Graph Debate:
Revolutionary concept in databases or niche curiosity”

Relational querying of graphs is very active too

There is a reason to be happy but:

-When you jump for joy, beware that no one moves ground
under your feet

-NDL was a standard too but lost to relational

Final Thoughts

Our community has a lot to offer in this debate — on both fronts

After 6 years of work, GQL will become an ISO Standard

-SQL/PGQ in relational systems

-Relational languages for KG, e.g. RelationalAI

-Native Graph Querying vs Relational Graph Querying will be playing
out in the next N years

-The Register, 6 March 2023: “The Great Graph Debate:
Revolutionary concept in databases or niche curiosity”

Relational querying of graphs is very active too

It takes a (cat) team

Paolo Guagliardo

Filip Murlak

Wim Martens Domagoj Vrgoč

Victor Marsault

Amélie Gheerbrant

Nadime Francis

Liat Peterfreund

Alexandra Rogova

Leonid Libkin

