
Introducing PG-Schema
Schemas for Property Graphs

Industry: Best Paper

Who are we?
Renzo ANGLES, Universidad de Talca, Chile ⬤⬤
Angela BONIFATI, Lyon 1 University & CNRS, France ⬤⬤
Stefania DUMBRAVA, ENSIIE & Institut Polytechnique de Paris, France ⬤⬤
George FLETCHER, Eindhoven University of Technology, Netherlands ⬤⬤
Alastair GREEN, LDBC, UK ⬤⬤
Jan HIDDERS, Birkbeck, University of London, UK ⬤⬤⬤
Bei LI, Google, USA ⬤⬤⬤
Leonid LIBKIN, University of Edinburgh, UK; RelationalAI & ENS, PSL University, France ⬤⬤⬤⬤
Victor MARSAULT, Université Gustave Eiffel & CNRS, France ⬤⬤
Wim MARTENS, University of Bayreuth, Germany ⬤⬤
Filip MURLAK, University of Warsaw, Poland ⬤⬤
Stefan PLANTIKOW, Neo4j, Germany ⬤⬤⬤
Ognjen SAVKOVIĆ, Free University of Bozen-Bolzano, Italy ⬤⬤
Michael SCHMIDT, Amazon Web Services, USA ⬤⬤
Juan SEQUEDA, data.world, USA ⬤⬤
Sławek STAWORKO, RelationalAI, USA; University of Lille, France ⬤⬤⬤
Dominik TOMASZUK, University of Bialystok, Poland ⬤⬤
Hannes VOIGT, Neo4j, Germany ⬤⬤⬤
Domagoj VRGOČ, University of Zagreb, Croatia; PUC Chile, Chile ⬤⬤
Mingxi WU, TigerGraph, USA ⬤⬤⬤
Dušan ŽIVKOVIĆ, Integral Data Solutions, UK ⬤

Different ways to use schemas

 Flexible Schema I
● rapid development in

early stages
● schema comes with data
● descriptive role:

tell users & systems what
to expect in the data

 Partial Schema I
● advanced stages of

development
● prescriptive schema

over stable data
● descriptive schema for

stable and evolving data

 Schema First I
● production settings of

stable systems
● schema provided

during setup
● prescriptive role:

limit data modifications

 No Schema I

data exploration ● data visualisation ● query formulation
data transformations ● data integration

data curation ● query optimization

Ingredients of PG-Schema

AccountCustomer

iban STRING PRIMARY KEYid INT32

Example

Person

name STRING
birthdate STRING OPTIONAL

 Owns.

 id INT32.

1..* *

AccountCustomer

iban STRING id INT32

Node types

 (person: Person {name STRING, OPTIONAL birthdate DATE}),

 (customer: Customer & person {id INT32}),

 (account: Account {iban STRING})

Person

name STRING
birthdate STRING OPTIONAL

AccountCustomer

iban STRING id INT32

Edge types

 (person: Person {name STRING, OPTIONAL birthdate DATE}),

 (customer: Customer & person {id INT32}),

 (account: Account {iban STRING}),

 (:customer)-[owns: Owns {since DATE}]->(:account)

Person

name STRING
birthdate STRING OPTIONAL

 Owns.

 id INT32.

* *

AccountCustomer

iban STRING PRIMARY KEYid INT32

Constraints

 (person: Person {name STRING, OPTIONAL birthdate DATE}),

 (customer: Customer & person {id INT32}),

 (account: Account {iban STRING}),

 (:customer)-[owns: Owns {since DATE}]->(:account),

 FOR (a:account) KEY a.iban,

 FOR (a:account) MANDATORY (:customer)-[:owns]->(a)

Person

name STRING
birthdate STRING OPTIONAL

 Owns.

 id INT32.

1..* *

AccountCustomer

iban STRING PRIMARY KEYid INT32

Complete PG-Schema

CREATE GRAPH TYPE customerGraph STRICT {

 (person: Person {name STRING, OPTIONAL birthdate DATE}),

 (customer: Customer & person {id INT32}),

 (account: Account {iban STRING}),

 (:customer)-[owns: Owns {since DATE}]->(:account),

 FOR (a:account) KEY a.iban,

 FOR (a:account) MANDATORY (:customer)-[:owns]->(a)

}

Person

name STRING
birthdate STRING OPTIONAL

 Owns.

 id INT32.

1..* *

Superpowers of PG-Schema

Simplicity. One-way information flow

easy to understand, validate, and generate ● facilitates partial validation

node labels

node properties

edge labels

edge properties

node types edge types constraints

Union, intersection, and abstract types, for inheritance and more.

Power. Compositionality

CREATE GRAPH TYPE customerGraph STRICT {

 (person: Person {name STRING, OPTIONAL birthdate DATE}),

 (company: Company {name STRING}),

 ABSTRACT (taxpayer: {taxPayerNumber STRING}),

 (customer: (person|company) & taxpayer & Customer {id INT32})

}

reusability ● conciseness ● modelling power

Versatility. Strict and loose schemas

STRICT schemas: elements must belong to at least one type and constraints must hold.

schema first ● partial schema ● flexible schema

CREATE GRAPH TYPE customerGraph STRICT {

 (person: Person {name STRING, OPTIONAL birthdate DATE}),

 (customer: Customer & person {id INT32}),

 (account: Account {iban STRING}),

 (:customer)-[owns: Owns {since DATE}]->(:account),

 FOR (a:account) KEY a.iban,

 FOR (a:account) MANDATORY (:customer)-[:owns]->(a)

}

CREATE GRAPH TYPE customerGraph LOOSE {

 (person: Person {name STRING, OPTIONAL birthdate DATE}),

 (customer: Customer & person {id INT32}),

 (account: Account {iban STRING}),

 (:customer)-[owns: Owns {since DATE}]->(:account),

 FOR (a:account) KEY a.iban,

 FOR (a:account) MANDATORY (:customer)-[:owns]->(a)

}

Versatility. Strict and loose schemas

schema first ● partial schema ● flexible schema

LOOSE schemas: elements may belong to zero types, but the constraints must hold.

Versatility. Closed and open types

CLOSED types (default) allow only explicitly mentioned or inherited labels and properties.

OPEN types allow arbitrary additional labels and properties.

schema first ● partial schema ● flexible schema

CREATE GRAPH TYPE customerGraph STRICT {

 (person: Person OPEN {name STRING, OPTIONAL birthdate DATE}),

 (customer: Customer & person {id INT32, OPEN })

}

Also in the paper

● Systematic analysis of design requirements.

● Full grammar of PG-Schema (excluding PG-Keys).

● Formal semantics of PG-Schema (excluding PG-Keys).

● Detailed comparison with existing schema formalisms.

● Possible extensions.

Also in the paper

Takeaway

For industry

● PG-Schema is a simple, yet powerful and versatile schema language for
property graphs, rooted in the experience of 30+ researchers, engineers,
and standards contributors.

● By implementing it in your system you will increase functionality to better
support current and future customer demands.

● If full PG-Schema seems too much, talk to us about an adequate fragment.

For academia

● The hard part of schema language design is striking the right balance
between simplicity and power. Can we add negation or recursion?

● Schema validation and basic schema generation is tractable, but practical
maintenance algorithms are needed (incremental and batch setting).

● Powerful type compositions make visualizing schemas challenging.

● Graph data transformations and query optimization can build on PG-Schema.

Thank You

