INTECRATING CONNECTION SEARCH IN CRAPH QUERIES

Angelos C. Anadiotis, Ioana Manolescu, Madhulika Mohanty Inria \& IPP

MOTIVATING EXAMPLE

MOTIVATING EXAMPLE

Integrating Connection Search in Graph Queries, ICDE 2023

MOTIVATING EXAMPLE

STATE OF THE ART

Requirements/ Existing	Exact match	(Label-constrained) regular paths between any two nodes	Connecting tree search
SPARQL	\checkmark (US entrepreneurs, French politicians, French entrepreneurs)	\checkmark (check but not return) \$x-knows*-> \$y	x
Cypher/GQL	\checkmark	\checkmark \$x-[*]-\$y	x
Keyword Search Algorithms (BANKS, BLINKS, DBXplorer, etc.)	x	X	\checkmark (based on keywords alone, various pruning strategies)

STATE OF THE ART

Requirements/ Existing	Exact match	(Label-constrained) regular paths between any two nodes	Connecting tree search
SPARQL	\checkmark (US entrepreneurs, French politicians, French entrepreneurs)	\checkmark (check but not return) \$x-knows*-> \$y	X
Cypher/GQL	\checkmark	\checkmark \$x-[*]-\$y	x
Keyword Search Algorithms (BANKS, BLINKS, DBXplorer, etc.)	x	X	\checkmark (based on keywords alone, various pruning strategies)

Keyword Search has high complexity (Group Steiner Tree - NP-Hard)

REQUIREMENTS

(P1) A query language supporting such queries

REQUIREMENTS

(Pl) A query language supporting such queries
(P2) General tree search

- Undirected search.
- Find all answers (under space and time budget).
- Independent of the cost function.

REQUIREMENTS

(P1) A query language supporting such queries
(P2) General tree search

- Undirected search.
- Find all answers (under space and time budget).
- Independent of the cost function.
(P3) Efficient execution algorithms

SUPPORT FOR EXTENDED QUERIES (EQ)

Given a graph and set of node/edge properties, GPML supports:
$>$ Path Patterns (PPs) of the form:
MATCH
(v: Alice WHERE v.type=entrepreneur)
-[e: citizenOf] \rightarrow
(w WHERE w.type=country)
> PPs can contain Regular Paths:
MATCH $p=(x)-[y$: founded $] \rightarrow *(z)$
$>$ Graph Patterns (GPs)
Conjunction of PPs

SUPPORT FOR EXTENDED QUERIES (EQ)

Given a graph and set of node/edge properties, GPML supports:
$>$ Path Patterns (PPs) of the form:
MATCH
(v: Alice WHERE v.type=entrepreneur)
-[e: citizenOf] \rightarrow
(w WHERE w.type=country)
> PPs can contain Regular Paths:
MATCH $p=(x)-[y$: founded $] \rightarrow *(z)$
$>$ Graph Patterns (GPs)
Conjunction of PPs

Our extension: Connecting Tree Patterns (CTPs)

- n input variables, l output variable ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \underline{\mathrm{w}}$)

EXAMPLE QUERY

How are the US entrepreneurs, French entrepreneurs and French politicians related?

MATCH

(x WHERE x.type = entrepreneur) - [a: citizenOf $] \rightarrow$ (b: USA),
(y WHERE y.type= entrepreneur) -[c: citizenOf] \rightarrow (d: France),
(z WHERE z.type = politician) $-[\mathrm{e}:$ citizenOf $] \rightarrow$ (f: France),
(X, y, z, w
RETURN w;

QUERY SEMANTICS (GP)

MATCH

(x WHERE x.type = entrepreneur) - [a: citizenOf $] \rightarrow$ (b: USA),
(y WHERE y.type $=$ entrepreneur) $-[$ c: citizenOf $] \rightarrow(d$: France $)$, (z WHERE z.type $=$ politician) $-[\mathrm{e}$: citizenOf $] \rightarrow$ (f: France),
($\mathrm{x}, \mathrm{y}, \mathrm{z}, \underline{\mathrm{w}}$)
RETURN w;

\mathbf{x}	\mathbf{y}	\mathbf{z}
Bob	Alice	Elon
Carole	Doug	Falcon

QUERY SEMANTICS (CTP)

MATCH

(x WHERE x.type = entrepreneur) - [a: citizenOf] \rightarrow (b: USA),
(y WHERE y.type= entrepreneur) - [c: citizenOf $] \rightarrow$ (d: France), (z WHERE z.type = politician) - [e: citizenOf] \rightarrow (f: France), ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \underline{\mathrm{w}}$)

QUERY SEMANTICS (CTP)

MATCH

(x WHERE x.type = entrepreneur) - [a: citizenOf $] \rightarrow$ (b: USA),
(y WHERE y.type= entrepreneur) - [c: citizenOf $] \rightarrow$ (d: France), (z WHERE z.type = politician) -[e: citizenOf] \rightarrow (f: France), ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \underline{\mathrm{w}}$) RETURN w;
 more

\uparrow กTF TT ก T TTTLT/ Graph integration of structured, semistructured and unstructured data for data journalism, A. Anadiotis et al. Information Systems J. (2022)

Build rooted trees :

คTTFTT ก TDTTTTTT Graph integration of structured, semistructured and unstructured data for data journalism, A. Anadiotis et al. Information Systems J. (2022)

Build rooted trees :

- MERGE (t, t')

GAM ALGORITHM

Further:

- Property: Complete
- Minimal answers only.
- Builds all rooted trees. X

OPTIMIZATION 1: EDGE SET PRUNING (ESP)

- Keep only the first rooted tree built for the same set of edges.

OPTIMIZATION 1: EDGE SET PRUNING (ESP)

- Keep only the first rooted tree built for the same set of edges.
- Property: Complete for 2-input

CTPs. $\sqrt{ }$

OPTIMIILHTION 1: EDGE SET PRUNING (ESP)

- Keep only the first rooted tree built for the same set of edges.
- Property: Complete for 2-input CTPs. \checkmark
- Incomplete for a CTP of arity $>=3$. X
- Example:
- Connection between Alice, Bob and Falcon

OPTIMIZATION 2: MERCE-ORIENTED ESP (MOESP)

- Build MoESP trees from new tree t as follows:
- t^{\prime} has the same edges (and nodes) as t, but
- t^{\prime} is rooted in a seed r , distinct from the root of t

OPTIMIZATION 2: MERCE-ORIENTED ESP (MOESP)

- Build MoESP trees from new tree t as follows:
- t^{\prime} has the same edges (and nodes) as t, but
${ }^{-} \mathrm{t}^{\prime}$ is rooted in a seed r , distinct from the root of t
- Property: Finds all path results. \checkmark
- May still fail to find some results. X

OPTIMIZATION 3: LIMITED ESP (LESP)

- Signature (s) for each node n :
- \#Seed-sets having paths from
seeds to n.
- Limit ESP when the root:
- Has $\mathbf{s}>=3$.
- Has 3 or more adjacent edges.

ADDING IT ALL UP - MOLESP

- Variant with ESP, MoESP (inject more trees) and LESP (limit pruning on some Merges).
- Property: Complete for CTPs of arity $3 . \checkmark$
- Still incomplete for some CTPs of arity >= 4.
- Property: Identified class of solutions guaranteed to be found for CTPs of any arity (refer to the paper).
- The frequent cases covered. $\sqrt{ }$

SChLABILITY ON BARABASI ALBERT GRAPHS
 Timeout 25 minutes.

SChLABILITY ON BARABASI ALBERT GRAPHS
 MoLESP scales well with the size of BarabasiAlbert graphs.

SCALABILITY ON BARABASI ALBERT GRAPHS

SCALABILITY ON BARABASI ALBERT GRAPHS
 MoLESP is 2 x faster than GAM, slightly slower than MoESP.

RECALI ON BARABASI ALBERT GRAPHS

RECALI ON BARABASI AIBERT GRAPHS

MoLESP has a perfect recall even for $\mathrm{m}=4$.

COMPARISON WITH KEYWORD SEARCH

(1) ITT 1 RTIT Kharlamov et al. Efficient Computation of Semantically Cohesive Subgraphs for KeywordSOTA: QGSTP

Dataset: DBPedia \#Queries: 312

Timeout 15 minutes

COMPARISON WITH KEYWORD SEARCH

 SOTA: QGSTP
Dataset: DBPedia

 \#Queries: 312MoLESP is 4 x faster in finding result.

Kharlamov et al. Efficient Computation of Semantically Cohesive Subgraphs for Keyword-
Based Knowledge Graph Exploration. In WWW 2021.

COMPRRISON WITH GQ ENGINES

Timeout 15 minutes

\rightarrow	MoLESP (any path, return)
	Postgres (any path, return)
	UNI JEDI (labelled path, return)
	UNI Virtuoso (labelled path, check-only)
	UNI Virtuoso (any path, check-only)
--	Neo4j (any path, return)
---	UNI MoLESP (any path, return)

COMPARISON WITH GQ ENGINES

Timeout 15 minutes

MoLESP is the only feasible path returning algorithm.
MoLESP (any path,
return)

[JEDI] C. Aebeloe, G. Montoya, V. Setty, and K. Hose, "Discovering diversified paths in knowledge bases," VLDB 2018.

COMPARISON WITH GQ ENGINES PATH STITCHING

Timeout 15 minutes

[JEDI] C. Aebeloe, G. Montoya, V. Setty, and K. Hose, "Discovering diversified paths in knowledge bases," VLDB 2018.

COMPARISON WITH GQ ENGINES PATH STITCHING

Timeout 15 minutes

MoLESP scales well with the graph size and the cost of adding CTP is minimal.MoLESP (any path, return)
Postgres (any path, return)
UNI JEDI (labelled path, return)

UNI Virtuoso
-•- (labelled path, check-only)
UNI Virtuoso (any path, check-only) Neo4j (any path, return)

UNI MoLESP (any path, return)

[JEDI] C. Aebeloe, G. Montoya, V. Setty, and K. Hose, "Discovering diversified paths in knowledge bases," VLDB 2018.

CONCLUSION

-Extension to GPML by using CTPs.

- Supports asking for connecting trees.
-MoLESP: Efficient search algorithm for the connecting trees.
-Future work:
- Smart execution strategies for jointly optimizing GPs and CTPs.
- Optimized execution of multiple CTPs.

THANK YOU

Project Web site: https://team.inria.fr/cedar/connectionlens/

Code and datasets for this paper: https://gitlab.inria.fr/cedar/extended-graph-querying

