INTEGRATING CONNECTION SEARCH IN GRAPH QUERIES

Angelos C. Anadiotis, Ioana Manolescu, Madhulika Mohanty

Inria & IPP

MOTIVATING EXAMPLE

Integrating Connection Search in Graph Queries, ICDE 2023

MOTIVATING EXAMPLE

Integrating Connection Search in Graph Queries, ICDE 2023

MOTIVATING EXAMPLE

Integrating Connection Search in Graph Queries, ICDE 2023

STATE 0	How are the US entrepreneurs, French			
Requirements/ Existing	Exact match	(Label-constrained) regular paths between any two nodes	Connecting tree search	and French politicians related?
SPARQL	✓ (US entrepreneurs, French politicians, French entrepreneurs)	✓ (check but not return) \$x - knows*-> \$y	X	
Cypher/GQL	\checkmark	√ \$x-[*]-\$y	X	Ĩ
Keyword Search Algorithms (BANKS, BLINKS, DBXplorer, etc.)	X	X	 ✓ (based on keywords alone, various pruning strategies) 	

Integrating Connection Search in Graph Queries, ICDE 2023

STATE 01	How are the US entrepreneurs, French			
Requirements/ Existing	Exact match	(Label-constrained) regular paths between any two nodes	Connecting tree search	and French politicians related?
SPARQL	✓ (US entrepreneurs, French politicians, French entrepreneurs)	✓ (check but not return) \$x - knows*-> \$y	X	
Cypher/GQL	\checkmark	√ \$x-[*]-\$y	X	Ĩ
Keyword Search Algorithms (BANKS, BLINKS, DBXplorer, etc.)	X	X	 ✓ (based on keywords alone, various pruning strategies) 	

Keyword Search has high complexity (Group Steiner Tree – NP-Hard)

Integrating Connection Search in Graph Queries, ICDE 2023

REQUIREMENTS

(P1) A query language supporting such queries

Integrating Connection Search in Graph Queries, ICDE 2023

REQUIREMENTS

How are the US entrepreneurs, French entrepreneurs and French politicians related?

(P1) A query language supporting such queries

(P2) General tree search

- Undirected search.
- Find all answers (under space and time budget).
- Independent of the cost function.

REQUIREMENTS

How are the US entrepreneurs, French entrepreneurs and French politicians related?

(P1) A query language supporting such queries

(P2) General tree search

- Undirected search.
- Find all answers (under space and time budget).
- Independent of the cost function.

(P3) Efficient execution algorithms

SUPPORT FOR EXTENDED QUERIES (EQ)

Given a graph and set of node/edge properties, GPML supports:

> **Path Patterns (PPs)** of the form:

МАТСН

(v: Alice WHERE v.type=entrepreneur)

–[e: citizenOf] \rightarrow

(w WHERE w.type=country)

PPs can contain Regular Paths: MATCH p = (x) −[y: founded]→*(z)

Graph Patterns (GPs)

Conjunction of PPs

SUPPORT FOR EXTENDED QUERIES (EQ)

Given a graph and set of node/edge properties, GPML supports: 1.founded

Path Patterns (PPs) of the form:

MATCH

(v: Alice WHERE v.type=entrepreneur)

 $-[e: citizenOf] \rightarrow$

(w WHERE w.type=country)

- PPs can contain Regular Paths: MATCH $p = (x) - [y: founded] \rightarrow *(z)$
- **Graph Patterns (GPs)**

Conjunction of PPs

2.investor x.locatedi.0.USA (entrepreneur) 10.founded 6.citizenC 3.Alice 7.OrgC 9. investsIn 7.founded (entrepreneur) company 5.OrgA ¹13.citizenOf(entrepreneur) 8.CEO 6.Doug 19.investsIn (company) 12.Falcon 20.citizenOf 15.locatedIn (politician) 11.parentOf 8.France 9.Elon (country) (politician) 12.citizenO 16.affiliation 18.affiliation 11."National Liberal Party

1.OrgB

(company)

Our extension: Connecting Tree Patterns (CTPs)

n input variables, 1 output variable (x, y, z, w)

Integrating Connection Search in Graph Oueries, ICDE 2023

3.parentor

4. Carole

2.Bob

(entrepreneur)

5.citizenOf

EXAMPLE QUERY

How are the US entrepreneurs, French entrepreneurs and French politicians related?

MATCH

QUERY SEMANTICS (GP)

MATCH

```
(x WHERE x.type = entrepreneur) -[a: citizenOf] \rightarrow (b: USA),
(y WHERE y.type= entrepreneur) -[c: citizenOf] \rightarrow (d: France),
(z WHERE z.type = politician) -[e: citizenOf] \rightarrow (f: France),
(x, y, z, w)
```

RETURN w;

x	У	Z
Bob	Alice	Elon
Carole	Doug	Falcon

Integrating Connection Search in Graph Queries, ICDE 2023

QUERY SEMANTICS (CTP)

MATCH

Integrating Connection Search in Graph Queries, ICDE 2023

QUERY SEMANTICS (CTP)

MATCH

Integrating Connection Search in Graph Queries, ICDE 2023

GAM ALCORTINE Graph integration of structured, semistructured and unstructured data for data journalism, A. Anadiotis et al. Information Systems J. (2022)

Build <u>rooted</u> trees :

Integrating Connection Search in Graph Queries, ICDE 2023

GAM ALGORITHM Graph integration of structured, semistructured and unstructured data for data journalism, A. Anadiotis et al. Information Systems J. (2022)

Build rooted trees :

Integrating Connection Search in Graph Queries, ICDE 2023

GAM ALGORITHM

Further:

- Property: Complete
- Minimal answers only.
- Builds <u>all rooted trees</u>. X

OPTIMIZATION 1: EDGE SET PRUNING (ESP)

 Keep only <u>the first rooted</u> tree built for the same set of edges.

Integrating Connection Search in Graph Queries, ICDE 2023

OPTIMIZATION 1: EDGE SET PRUNING (ESP)

 Keep only <u>the first rooted</u> tree built for the same set of edges.

■ <u>Property:</u> Complete for 2-input CTPs. √

Integrating Connection Search in Graph Queries, ICDE 2023

Integrating Connection Search in Graph Oueries, ICDE 2023

OPTIMIZATION 2: MERGE-ORIENTED ESP (MOESP)

OPTIMIZATION 2: MERGE-ORIENTED ESP (MOESP)

OPTIMIZATION 3: LIMITED ESP (LESP)

- Signature (s) for each node *n*:
 - #Seed-sets having paths from seeds to n.
- Limit ESP when the root:
 - Has s>=3.
 - Has 3 or more adjacent edges.

ADDING IT ALL UP - MOLESP

 Variant with ESP, MoESP (inject more trees) and LESP (limit pruning on some Merges).

■ <u>Property</u>: Complete for CTPs of arity 3. ✓

- Still incomplete for some CTPs of arity >= 4.
- <u>Property</u>: Identified class of solutions guaranteed to be found for CTPs of any arity (refer to the paper).
 - The frequent cases covered. \checkmark

SCALABILITYONBARABASIALBERTGRAPHS $\widehat{\mathbb{P}}^{10^6}$ m=2---GAM

Timeout 25 minutes.

SCALABILITYONBARABASIALBERTGRAPHS $\widehat{\mathbb{G}}^2 \mathbb{10}^6$ m=2---GAM

MoLESP scales well with the size of Barabasi-Albert graphs.

SCALABILITY ON BARABASI ALBERT GRAPHS

Integrating Connection Search in Graph Queries, ICDE 2023

SCALABILITY ON BARABASI ALBERT GRAPHS 1000

MoLESP is 2x faster than GAM, slightly slower than MoESP.

RECALL ON BARABASI ALBERT GRAPHS

Integrating Connection Search in Graph Queries, ICDE 2023

RECALL ON BARABASI ALBERT GRAPHS

1.0 GAM MoLESP 0.8 MoESP MoLESP has a perfect LESP Recall recall even for m=4. ESP 0.4 0.2 0.0 3 2 4 Number of seed sets, m

COMPARISON WITH GQ ENGINES

Timeout 15 minutes

COMPARISON WITH GQ ENGINES

COMPARISON WITH GQ ENGINES PATH STITCHING

Timeout 15 minutes

COMPARISON WITH GQ ENGINES PATH STITCHING

MoLESP scales well with the graph size and the cost of adding CTP is minimal.

CONCLUSION

- Extension to GPML by using CTPs.
 - Supports asking for connecting trees.
- MoLESP: Efficient search algorithm for the connecting trees.
- •Future work:
 - Smart execution strategies for jointly optimizing GPs and CTPs.
 - Optimized execution of multiple CTPs.

THANK YOU

Project Web site: https://team.inria.fr/cedar/connectionlens/

Code and datasets for this paper: <u>https://gitlab.inria.fr/cedar/extended-graph-querying</u>

Integrating Connection Search in Graph Queries, ICDE 2023

