
TigerGraph's Computation Model

Alin Deutsch

Professor, UC San Diego

Chief Scientist, TigerGraph

Example Graph (Typed)

Vertex types:
• Product (name, category, price)
• Customer (ssn, name, address)

Edge types:
• Bought (discount, quantity)

Customer c bought 100 units of product p at discount 5%:
modeled by edge

 (c) --[Bought {discount=5%, quantity=100}]--> (p)

Example: Customer Buys Product

customer product

bought

discount quantity pricename

nodenode

edge

property
property

Sales Data as Property Graph

customers productssales

Map-Reduce Adapted to Graphs

• parallel processing

• computation starts from the "active vertex set"

• Map same computation over
– active vertices, or over
– edges incident to active vertex set

 and compute new active vertex set

• Reduce map results into aggregating containers
 called “accumulators”

Active Vertex Set

Map

Vertex Map

apply same computation to all active vertices

Edge Map

apply to all edges incident on active vertices

Compute New Active Vertex Set

apply same computation to all active vertices

Reduce

• The results of maps are aggregated by writing into
containers called “accumulators”

"Edge-Map, Vertex-Reduce"

paradigm

Accumulators

• An Edge-Map-Vertex-Reduce step collects and aggregates
data by writing it into accumulators

• Accumulators are containers (data types) that
– hold a data value
– accept inputs
– aggregate inputs into the data value using a binary operation

• May be built-in (sum, max, min, etc.) or user-defined

• May be
– global (a single container instance for the query)
– vertex-attached (one container instance per vertex)

Vertex-Attached Accumulator Example:
Revenue per Customer and per Product

customer product

bought

discount quantity price

@cSales
@pSales

thisSaleRevenue

Reduce Into Vertex-Attached Accumulator:
Revenue per Customer and per Product

@cSales

@cSales

@pSales

@pSales

@pSales

+
+

Expressed in GSQL

• Edge Map maximizes opportunities for parallel evaluation

SumAccum<float> @cSales, @pSales;

SELECT c

FROM (c:Customer) -[b:Bought]-> (p:Product)

ACCUM float thisSaleRevenue = b.quantity*(1-b.discount)*p.price,

 c.@cSales += thisSaleRevenue,

 p.@pSales += thisSaleRevenue;

one instance per node

groups are distributed, each node
accumulates its own group

sale revenue contributes to two
aggregations, each by distinct

grouping criteria

active vertex set

Vertex-Attached Accumulator Example:
Revenue per Customer and per Product

• Edge Map maximizes opportunities for parallel evaluation

SumAccum<float> @cSales, @pSales;

Products =

SELECT p

FROM (c:Customer) -[b:Bought]-> (p:Product)

ACCUM float thisSaleRevenue = b.quantity*(1-b.discount)*p.price,

 c.@cSales += thisSaleRevenue,

 p.@pSales += thisSaleRevenue;

new active vertex set

Benefits of Accumulator-based Aggregation
(Transcend Graph Model)

• It subsumes SQL-style aggregation
– implemented SQL’s GROUP BY clause in GSQL as syntactic sugar

• Specifies queries whose evaluation is naturally parallelizable
→ performance!

• Facilitates specification of single-pass multi-aggregation (by
different grouping criteria)
– only partially supported even in SQL:
– SQL’s most sophisticated aggregation primitives result in wasteful

aggregation (may compute more aggregates than user needs)
– Experiments show up to 3x speedup of accumulator-based over

conventional (SQL-style) aggregation (see SIGMOD’20 paper)

Thank You

