Efficient sparse matrix computations and their generalization to graph computing applications

Albert-Jan Yzelman
Parallel Computing and Big Data
Paris Research Centre
10th of February, 2017

Introduction

Given a sparse $m \times n$ matrix A, and corresponding vectors x, y.

- How to calculate $y=A x$ as fast as possible?
- How to make the code usable?

Figure: Wikipedia link matrix ('07) with on average ≈ 12.6 nonzeroes per row.

Shared-memory:

- inefficient cache use,
- limited memory bandwidth, and
- non-uniform memory access (NUMA).

Distributed-memory:

- inefficient network use.

Shared-memory:

- inefficient cache use,
- limited memory bandwidth, and
- non-uniform memory access (NUMA).

Distributed-memory:

- inefficient network use.

Shared-memory and distributed-memory share their objectives: minimisation of data movement.

Cache-oblivious sparse matrix-vector multiplication by using sparse matrix partitioning methods by A. N. Yzelman \& Rob
H. Bisseling in SIAM Journal of Scientific Computation 31(4), pp. 3128-3154 (2009).

Visualisation of the SpMV multiplication $A x=y$ with nonzeroes processed in row-major order:

Accesses on the input vector are completely unpredictable.

Enhanced cache use: nonzero reorderings

Blocking to cache subvectors, and cache-oblivious traversals.

Other approaches: no blocking (Haase et al.), Morton Z-curves and bisection (Martone et al.), Z-curve within blocks (Buluç et al.), composition of low-level blocking (Vuduc et al.), ...

Ref.: Yzelman and Roose, "High-Level Strategies for Parallel Shared-Memory Sparse Matrix-Vector Multiplication", IEEE Transactions on Parallel and Distributed Systems, doi: 10.1109/TPDS.2013.31 (2014).

Enhanced cache use: nonzero reorderings

Blocking to cache subvectors, and cache-oblivious traversals.

Sequential SpMV multiplication on the Wikipedia '07 link matrix: 345 (CRS), 203 (Hilbert), 245 (blocked Hilbert) ms/mul.

Enhanced cache use: matrix permutations

Cache-oblivious sparse matrix-vector multiplication by using sparse matrix partitioning methods by A. N. Yzelman \& Rob H. Bisseling in SIAM Journal of Scientific Computation 31(4), pp. 3128-3154 (2009).

Enhanced cache use: matrix permutations

Practical gains:

Figure: the Stanford link matrix (left) and its 20-part reordering (right).
Sequential execution using CRS on Stanford:
18.99 (original), 9.92 (1D), 9.35 (2D) ms/mul.

Ref.: Two-dimensional cache-oblivious sparse matrix-vector multiplication by A. N. Yzelman \& Rob H. Bisseling in Parallel Computing 37(12), pp. 806-819 (2011).

Theoretical turnover points: Intel Xeon E3-1225

- 64 operations per word (with vectorisation)
- 16 operations per word (without vectorisation)

Consequence: compression leads to better performance.

- Coordinate format storage: $\Theta(3 n z)$
- Compressed Row Storage (CRS): $\Theta(2 n z+m+1)$
- Bi-directional Incremental CRS: $\Theta(2 n z+$ row_jumps +1$)$

$$
A=\left(\begin{array}{llll}
4 & 1 & 3 & 0 \\
0 & 0 & 2 & 3 \\
1 & 0 & 0 & 2 \\
7 & 0 & 1 & 1
\end{array}\right)
$$

Need to consider the whole picture; good cache efficiency but no compression or compression but no cache optimisation? No gain!

Ref.: Yzelman and Bisseling, "A cache-oblivious sparse matrix-vector multiplication scheme based on the Hilbert curve", Progress in Industrial Mathematics at ECMI 2010, pp. 627-634 (2012).

Efficient bandwidth use

With BICRS you can

- vectorise,
- compress,
- do blocking,
- have arbitrary nonzero or block orders.

Optimised BICRS takes less than or equal to $2 n z+m$ of memory.

Ref.: Buluç, Fineman, Frigo, Gilbert, Leiserson (2009). Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks. In Proceedings of the twenty-first annual symposium on Parallelism in algorithms and architectures (pp. 233-244). ACM.

Ref.: Yzelman and Bisseling (2009). Cache-oblivious sparse matrix-vector multiplication by using sparse matrix partitioning methods. In SIAM Journal of Scientific Computation 31(4), pp. 3128-3154.
Ref.: Yzelman and Bisseling (2012). A cache-oblivious sparse matrix-vector multiplication scheme based on the Hilbert curve". In Progress in Industrial Mathematics at ECMI 2010, pp. 627-634.
Ref.: Yzelman and Roose (2014). High-Level Strategies for Parallel Shared-Memory Sparse Matrix-Vector Multiplication. In IEEE Transactions on Parallel and Distributed Systems, doi: 10.1109/TPDS.2013.31.

Ref.: Yzelman, A. N. (2015). Generalised vectorisation for sparse matrix: vector multiplication. In Proceedings of the 5th Workshop on Irregular Applications: Architectures and Algorithms. ACM.

Each socket has local main memory where access is fast.

CPUs

Memory

Memory access between sockets is slower, leading to non-uniform memory access (NUMA).

Coarse-grain row-wise distribution, compressed, cache-optimised:

- explicit allocation of separate matrix parts per core,
- explicit allocation of the output vector on the various sockets,
- interleaved allocation of the input vector,

Ref.: Yzelman and Roose, "High-Level Strategies for Parallel Shared-Memory Sparse Matrix-Vector Multiplication", IEEE Transactions on Parallel and Distributed Systems, doi: 10.1109/TPDS.2013.31 (2014).

wo-dimensional data placement

Distribute row- and column-wise (individual nonzeroes):

- most work touches only local data,
- inter-process communication minimised by partitioning;
- incurs cost of partitioning.

Ref.: Yzelman and Roose, High-Level Strategies for Parallel Shared-Memory Sparse Matrix-Vector Multiplication, IEEE Trans. Parallel and Distributed Systems, doi:10.1109/TPDS.2013.31 (2014).

Ref.: Yzelman, Bisseling, Roose, and Meerbergen, MulticoreBSP for C: a high-performance library for shared-memory narallel programming, Intl. J. Parallel Programming, doi:10.1007/s10766-013-0262-9 (2014).

Sequential CRS on Wikipedia '07: $472 \mathrm{~ms} / \mathrm{mul} .40$ threads BICRS:

$$
21.3 \text { (1D), } 20.7 \text { (2D) ms/mul. Speedup: } \approx 22 x \text {. }
$$

Sequential CRS on Wikipedia '07: $472 \mathrm{~ms} / \mathrm{mul} .40$ threads BICRS:

$$
21.3 \text { (1D), } 20.7 \text { (2D) ms/mul. Speedup: } \approx 22 \mathrm{x} \text {. }
$$

Average speedup on six large matrices:

	2×6	4×10	8×8
,- 1D fine-grained, CRS*	4.6	6.8	6.2
Hilbert, Blocking, 1D, BICRS* *	5.4	19.2	24.6
Hilbert, Blocking, 2D, BICRS			

${ }^{\dagger}$: uses an updated test set. (Added for reference versus a good 2 D algorithm.)

As NUMA scales up, 1D algorithms lose efficiency.

[^0]
Wish list:

- Performance and scalability.
- Better usability. Standardised API? Generalised Sparse BLAS:

GraphBLAS.org

- Interoperability with Big Data:

EYWA, Spark, Hadoop, DSLs, ...

- Interoperability with classic HPC:

MPI + \{ PThreads, Cilk, OpenMP, ...\}

Ref.: Kepner \& Gilbert, Linear Algebra in the Language of Linear Algebra, ISBN 978-0-898719-90-1, 2011
Ref.: Stepanov \& McJones, The Elements of Programming, ISBN 978-0-321-63537-2, 2009
Ref.: Buluç \& Gilbert, The Combinatorial BLAS, ICHPCA, 2011
Ref.: Zhang, Zalewski, Lumsdaine, Misurda, \& McMillan, GBTL-CUDA, IPDPS, 2016
Ref.: Ekanadham, Horn, Kumar, Jann, Moreira, Pattnaik, Serrano, Tanase, \& Yu, Graph programming interface (GPI), ACM ICCF, 2016

A 'generalised' semiring is given by

$$
<D_{1}, D_{2}, D_{3}, D_{4}, \oplus, \otimes, 0,1>
$$

with

$$
\begin{array}{ll}
\oplus: & D_{3} \times D_{4} \rightarrow D_{4} \\
\otimes: & D_{1} \times D_{2} \rightarrow D_{3}
\end{array}
$$

These operators have to follow some basic rules, such as:
$\oplus(a, b)=\oplus(b, a), \quad \oplus(\oplus(a, b), c)=\oplus(a, \oplus(b, c)), \quad \otimes(\otimes(a, b), c)=$
$\otimes(a, \otimes(b, c)), \quad \otimes(a, \oplus(b, c))=\oplus(\otimes(a, b), \otimes(b, c)), \quad \oplus(a, 0)=$
$\oplus(0, a)=a, \quad \otimes(a, 1)=\otimes(1, a)=a, \quad \otimes(a, 0)=\otimes(0, a)=0$.
If these are true, (sparse) linear algebra 'works'; we can apply all of our performance optimisations regardless of the operators selected!

Platforms like Spark allow programmers to ignore data placement issues, thus negatively impacting performance. It's a classic tradeoff:
automatic mode vs. direct mode ease-of-use vs. performance

Ref.: Valiant, L. G. (1990). A bridging model for parallel computation. Communications of the ACM, 33(8).

and Big Data

Platforms like Spark allow programmers to ignore data placement issues, thus negatively impacting performance. It's a classic tradeoff:

automatic mode vs. direct mode ease-of-use vs. performance

Ref.: Valiant, L. G. (1990). A bridging model for parallel computation. Communications of the ACM, 33(8).
A bridge between Big Data and HPC:

- Spark I/O via native RDDs and native Scala interfaces;
- Rely on serialisation and the JNI to switch to C;
- Intercept Spark's execution model to switch to direct mode;
- Set up and enable inter-process RDMA communications.

Both usable and performant!

We have a shared-memory prototype. Preliminary results:

- SpMM multiply, SpMV multiply, and basic vector operations;
- one machine learning application, plus one on graph analysis.

Cage15, $n=5154$ 859, $n z=99199$ 551. Using the 1D method:

SpMV multiplication performance compared

This is ongoing work. Performance will be improved, functionality extended.

We know how to do fast sparse computations

- use same techniques for graph computing.

Future work:

- faster partitioning to enable scalable 2D sparse computations,
- sparse power kernels,
- symmetric matrix support,
- hypergraph and sparse tensor computations,
- support various hardware and execution platforms (Hadoop?).

The high performance (non-generalised) SpMV multiplication codes are free:
http://albert-jan.yzelman.net/software\#SL

Thank you!

Backup slides

A working example:
\#include <graphblas.hpp>
int main() \{
const size_t num_cities = ... //some input matrix size grb::init();
grb: :Matrix< double > distances(num_cities, num_cities); grb: build(distances, ...); //input data from file //or memory

```
grb::Vector< double > x( num_cities ), y( num_cities );
```

grb: :set ($x, 0.0,4$); //set city number 4 to //have distance 0.0

A working example (continued):
//declare an alternative semiring on doubles: grb::Semiring< double, double, double, double, grb::operators::min, //'plus' grb::operators::add, //'multiply' grb::identities::infinity //'0’ grb::identitites::zero //'1’
> ring;
//calculate the shortest distances from all cities to //city \#4, allowing only a single path grb::mxv(y, distances, x, ring);

A working example (continued):
//calculate the shortest distances from all cities to //city \#4, allowing only a single path grb::mxv(y, distances, x, ring);
//calculate the shortest distances from all cities to //city \#4, allowing two 'hops' grb: :mxv(x, distances, y, ring);
//example output via iterators and exit: writeResult (x.cbegin(), x.cend(), ...); grb::finalize();
return 0;

Cross platform results over 24 matrices:

	Structured	Unstructured	Average
Intel Xeon Phi	21.6	8.7	15.2
2x Ivy Bridge CPU	23.5	14.6	19.0
NVIDIA K20X GPU	16.7	13.3	15.0

If we must, some generalising statements:

- Large structured matrices: GPUs.
- Large unstructured matrices: CPUs or GPUs.
- Smaller matrices: Xeon Phi or CPUs.

Ref.: Yzelman, A. N. (2015). Generalised vectorisation for sparse matrix: vector multiplication. In Proceedings of the 5th
Workshop on Irregular Applications: Architectures and Algorithms. ACM.

	V	4	1			0		4	1	3				V	3		0	3	3	0	
	Δ J	0				0				2		3		Δ J	2		0	1	1	0	
A	V	7			1	0		1				2		\checkmark	2		0	1	1	1	
	Δ J	0				0		7		1				Δ J	3		0	-	1	0	

V	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$
$\Delta \mathrm{~J}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$
$\Delta \mathrm{I}$	$\mathbf{3 2}$	$-3-1$	0	0
			22	

[^0]: *: Yzelman and Roose, High-Level Strategies for Parallel Shared-Memory Sparse Matrix-Vector Multiplication, IEEE Trans. Parallel and Distributed Systems, doi:10.1109/TPDS.2013.31 (2014).
 ${ }^{\dagger}$: Yzelman, Bisseling, Roose, and Meerbergen, MulticoreBSP for C: a high-performance library for shared-memory parallel programming, Intl. J. Parallel Programming, doi:10.1007/s10766-013-0262-9 (2014).

