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Bisimulation reduction of graphs

@ Bisimulation partitioning is an important concept in many fields
(computer science, modal logic, etc.), in DB research as well
(structural index, graph reduction)

@ It can be seen as a way of clustering nodes

1 P P1
p) (4) (7) P3
(5) (8) P4

3
P2

bit.ly/seeqr TU/e


bit.ly/seeqr

Bisimulation reduction of graphs

@ Bisimulation partitioning is an important concept in many fields
(computer science, modal logic, etc.), in DB research as well
(structural index, graph reduction)
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Bisimulation reduction of graphs

@ Bisimulation partitioning is an important concept in many fields
(computer science, modal logic, etc.), in DB research as well
(structural index, graph reduction)

@ It can be seen as a way of clustering nodes
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@ Reduce graph size while preserving structural properties (e.g.,
reachability)

@ Result can be seen as a (PB) graph

@ What properties does the PB graph have?
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Questions

Regularities, such as power-law distribution exists in real
graphs.
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Questions

Regularities, such as power-law distribution exists in real
graphs.

o Do results under bisimulation reduction (e.g., PB
graph) also have such properties?

e How would that knowledge help us?

bit.ly/seeqr TU/e


bit.ly/seeqr

Experimental setup for investigation

e Big graphs, from 1 Million to 1.4 Billion edges
(Twitter, DBPedia, etc.)

e State-of-the-art external-memory algorithm for
computing bisimulation reductions

o We use cumulative distribution function (CDF) to
present distributions
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Result

Regularities - bisimulation result

Power-law also exists in many attributes for
bisimulation partition results for real graphs. But
this is not the case for synthetic graphs.
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Regularities - partition block size distribution

real graphs synthetic graphs
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Regularities - PB graph in-degree distribution

real graphs synthetic graphs
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A close look at Social Intelligence Benchmark (old)

e What structure is exhibited by graphs generated by
the Social Intelligence Benchmark?
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Result

A close look at Social Intelligence Benchmark (old)

e What structure is exhibited by graphs generated by
the Social Intelligence Benchmark?

e Use s3g2130313.tar, downloaded from
sourceforge.net/projects/sibenchmark/

(thanks to Minh-Duc Pham)
e Number of nodes: 2.6M, Number of edges: 12.6M

e Configuration: numtotalUser: 10000, 2010-1-1 to
2012-1-1
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In-degree and out-degree of original graph

cumulative % of nodes with > x
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Partition block size & signature length distribution
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In-degree and out-degree of PB graph
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Insights
e Power-law distributions in bisimulation results
emphasize the fact that data skews are expected in

applications (indexes, data partitioned among
machines, . ..)
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Insights

e Power-law distributions in bisimulation results
emphasize the fact that data skews are expected in
applications (indexes, data partitioned among
machines, . ..)

e Some more work remains to be done for synthetic
graph generators towards exhibiting the reduction
properties of real graphs.

o Bisimulation result/graph grows when original graph
grows, which calls for scalable/adaptive algorithms
(e.g., choose different k for different parts of the
graph, different node/edge labeling)
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Insights

Thank you! Q&A

For more information, just google seeqr project or

visit: bit.ly/seeqr
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Insights

Definition of k-bisimilar
Definition

Let k be a non-negative integer and G = (N, E, Ay, )\E) be a graph.
Nodes u, v € N are called k-bisimilar (denoted as u ~* v), iff the
following holds:

Q@ \(u) = An(v),
@ if k > 0, then for any edge (u, v’) € E, there exists an edge

(v, V') € E, such that v/ ~*=1 v/ and A\g(u, u') = Ag(v, V'), and
@ if k > 0, then for any edge (v, V') € E, there exists an edge

(u, ') € E, such that v/ &~k v/ and \g(v, V') = A\g(u, ).
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Insights

Definition of k-bisimilar

Definition

Let k be a non-negative integer and G = (N, E, Ay, )\E) be a graph.

Nodes u, v € N are called k-bisimilar (denoted as u ~* v), iff the
following holds:

Q Mn(u) = An(v),
@ if k > 0, then for any edge (u, v’) € E, there exists an edge

(v, V') € E, such that v/ ~*=1 v/ and A\g(u, u') = Ag(v, V'), and

@ if k > 0, then for any edge (v, V') € E, there exists an edge
(u, ') € E, such that v/ &~k v/ and \g(v, V') = A\g(u, ).

m wm

@l w In this example graph, nodes 1
2 N and 2 are 0- and 1- bisimilar but
() (6) not 2-bisimilar.
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In-degree distribution of original graphs
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Out-degree distribution of original graphs

cumulative % of nodes with > x
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Signature length

real graphs

T T T T

1078 L i i I

o

10 10° 10* 10°
x (signature length)

cumulative % of nodes with > x

synthetic graphs

TTTTT

Ll

T T T T T T T T T T T T T T

T T T A 1| B Wi

10 10! 102 10% 10%

x (signature length)

—e— Jamendo —#— LinkedMDB —e— DBLP —+— DBPedia —— WikiLinks
- - - Twitter - -# - Flickr-Grow —e— BSBM —=— SP2B —e— Power —— Random

bit.ly/seeqr

TU/e


bit.ly/seeqr

Out-degree of PB graph

cumulative % of Ny with > x
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Dynamics - a real growing social graph

e Dynamic social graph, from 17 Million to 33 Million
edges (Flickr-grow)
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Dynamics - a real growing social graph

e Dynamic social graph, from 17 Million to 33 Million
edges (Flickr-grow)

e Does the bisimulation result grow when the original
graph grows?

o Yes.

e How fast does it grow?
o Linearly with respect to the original graph.
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