Regularities in bisimulation reductions of big graphs

Yongming Luo &, George Fletcher, Jan Hidders, Paul De Bra and Yuqing Wu

TU Eindhoven, TU Delft, IU Bloomington Fourth TUC Meeting, April 2014, Amsterdam

・ 母 ト ・ ヨ ト

Bisimulation reduction of graphs

 Bisimulation partitioning is an important concept in many fields (computer science, modal logic, etc.), in DB research as well (structural index, graph reduction)

TU/e

• It can be seen as a way of clustering nodes

Bisimulation reduction of graphs

- Bisimulation partitioning is an important concept in many fields (computer science, modal logic, etc.), in DB research as well (structural index, graph reduction)
- It can be seen as a way of clustering nodes

Bisimulation reduction of graphs

- Bisimulation partitioning is an important concept in many fields (computer science, modal logic, etc.), in DB research as well (structural index, graph reduction)
- It can be seen as a way of clustering nodes

- Reduce graph size while preserving structural properties (e.g., reachability)
- Result can be seen as a (PB) graph
- What properties does the PB graph have?

bit.ly/seeqr

Questions

Regularities, such as power-law distribution exists in real graphs.

Questions

Regularities, such as power-law distribution exists in real graphs.

• Do results under bisimulation reduction (e.g., PB graph) also have such properties?

・ロト ・聞ト ・ヨト ・ヨト

Questions

Regularities, such as power-law distribution exists in real graphs.

• Do results under bisimulation reduction (e.g., PB graph) also have such properties?

・ロト ・ 日 ・ ・ 日 ・ ・

TU/e

• How would that knowledge help us?

Experimental setup for investigation

- Big graphs, from 1 Million to 1.4 Billion edges (Twitter, DBPedia, etc.)
- State-of-the-art external-memory algorithm for computing bisimulation reductions
- We use cumulative distribution function (CDF) to present distributions

<ロ> (四) (四) (三) (三) (三)

Regularities - bisimulation result

Power-law also exists in many attributes for bisimulation partition results for *real graphs*. But this is not the case for *synthetic graphs*.

Regularities - partition block size distribution

Result

Regularities - PB graph in-degree distribution

 A close look at Social Intelligence Benchmark (old)

• What structure is exhibited by graphs generated by the Social Intelligence Benchmark?

A close look at Social Intelligence Benchmark (old)

- What structure is exhibited by graphs generated by the Social Intelligence Benchmark?
- Use s3g2130313.tar, downloaded from sourceforge.net/projects/sibenchmark/ (thanks to Minh-Duc Pham)
- Number of nodes: 2.6M, Number of edges: 12.6M
- Configuration: numtotalUser: 10000, 2010-1-1 to 2012-1-1

Result

In-degree and out-degree of original graph

Result

Partition block size & signature length distribution

In-degree and out-degree of PB graph

Insights

 Power-law distributions in bisimulation results emphasize the fact that data skews are expected in applications (indexes, data partitioned among machines, ...)

Insights

- Power-law distributions in bisimulation results emphasize the fact that data skews are expected in applications (indexes, data partitioned among machines, ...)
- Some more work remains to be done for synthetic graph generators towards exhibiting the reduction properties of real graphs.

Insights

- Power-law distributions in bisimulation results emphasize the fact that data skews are expected in applications (indexes, data partitioned among machines, ...)
- Some more work remains to be done for synthetic graph generators towards exhibiting the reduction properties of real graphs.
- Bisimulation result/graph grows when original graph grows, which calls for scalable/adaptive algorithms (e.g., choose different k for different parts of the graph, different node/edge labeling)

Thank you! Q&A

For more information, just google **seeqr project** or

<ロ> (四) (四) (三) (三) (三)

TU/e

visit: bit.ly/seeqr

bit.ly/seeqr

Definition of *k*-bisimilar

Definition

Let k be a non-negative integer and $G = \langle N, E, \lambda_N, \lambda_E \rangle$ be a graph. Nodes $u, v \in N$ are called k-bisimilar (denoted as $u \approx^k v$), iff the following holds:

② if k > 0, then for any edge (u, u') ∈ E, there exists an edge (v, v') ∈ E, such that u' ≈^{k-1} v' and $\lambda_E(u, u') = \lambda_E(v, v')$, and

・ロッ ・ 一 ・ ・ ・ ・

TU/e

if k > 0, then for any edge (v, v') ∈ E, there exists an edge (u, u') ∈ E, such that v' ≈^{k-1} u' and λ_E(v, v') = λ_E(u, u').

Definition of *k*-bisimilar

Definition

Let k be a non-negative integer and $G = \langle N, E, \lambda_N, \lambda_E \rangle$ be a graph. Nodes $u, v \in N$ are called k-bisimilar (denoted as $u \approx^k v$), iff the following holds:

② if k > 0, then for any edge (u, u') ∈ E, there exists an edge (v, v') ∈ E, such that u' ≈^{k-1} v' and $\lambda_E(u, u') = \lambda_E(v, v')$, and

if k > 0, then for any edge (v, v') ∈ E, there exists an edge (u, u') ∈ E, such that v' ≈^{k-1} u' and λ_E(v, v') = λ_E(u, u').

In this example graph, nodes 1 and 2 are 0- and 1- bisimilar but not 2-bisimilar.

TU/e

bit.ly/seeqr

In-degree distribution of original graphs

bit.ly/seeqr

Out-degree distribution of original graphs

(日)、

э

Signature length

Out-degree of PB graph

• Dynamic social graph, from 17 Million to 33 Million edges (Flickr-grow)

<ロ> (四) (四) (三) (三) (三)

- Dynamic social graph, from 17 Million to 33 Million edges (Flickr-grow)
- Does the bisimulation result grow when the original graph grows?

- Dynamic social graph, from 17 Million to 33 Million edges (Flickr-grow)
- Does the bisimulation result grow when the original graph grows?

TU/e

• Yes.

- Dynamic social graph, from 17 Million to 33 Million edges (Flickr-grow)
- Does the bisimulation result grow when the original graph grows?

(4 同) (4 回)

- Yes.
- How fast does it grow?

- Dynamic social graph, from 17 Million to 33 Million edges (Flickr-grow)
- Does the bisimulation result grow when the original graph grows?
 - Yes.
- How fast does it grow?
 - Linearly with respect to the original graph.

