Regularities in bisimulation reductions of big graphs

Yongming Luo 4, George Fletcher, Jan Hidders, Paul De Bra and Yuqing Wu

TU Eindhoven, TU Delft, IU Bloomington
Fourth TUC Meeting, April 2014, Amsterdam

Bisimulation reduction of graphs

- Bisimulation partitioning is an important concept in many fields (computer science, modal logic, etc.), in DB research as well (structural index, graph reduction)
- It can be seen as a way of clustering nodes

Bisimulation reduction of graphs

- Bisimulation partitioning is an important concept in many fields (computer science, modal logic, etc.), in DB research as well (structural index, graph reduction)
- It can be seen as a way of clustering nodes

Bisimulation reduction of graphs

- Bisimulation partitioning is an important concept in many fields (computer science, modal logic, etc.), in DB research as well (structural index, graph reduction)
- It can be seen as a way of clustering nodes

- Reduce graph size while preserving structural properties (e.g., reachability)
- Result can be seen as a (PB) graph
- What properties does the PB graph have?

Questions

Regularities, such as power-law distribution exists in real graphs.

Questions

Regularities, such as power-law distribution exists in real graphs.

- Do results under bisimulation reduction (e.g., PB graph) also have such properties?

Questions

Regularities, such as power-law distribution exists in real graphs.

- Do results under bisimulation reduction (e.g., PB graph) also have such properties?
- How would that knowledge help us?

Experimental setup for investigation

- Big graphs, from 1 Million to 1.4 Billion edges (Twitter, DBPedia, etc.)
- State-of-the-art external-memory algorithm for computing bisimulation reductions
- We use cumulative distribution function (CDF) to present distributions

Regularities - bisimulation result

Power-law also exists in many attributes for bisimulation partition results for real graphs. But this is not the case for synthetic graphs.

Regularities - partition block size distribution

synthetic graphs

\rightarrow Jamendo \rightarrow LinkedMDB \rightarrow DBLP \rightarrow DBPedia \rightarrow WikiLinks - - Twitter - Flickr-Grow - BSBM - SP2B - Power \rightarrow Random

Regularities - PB graph in-degree distribution

synthetic graphs

\rightarrow Jamendo \rightarrow - LinkedMDB \rightarrow DBLP \rightarrow DBPedia \rightarrow - WikiLinks - - Twitter - Flickr-Grow - BSBM - SP2B - Power \rightarrow Random

A close look at Social Intelligence Benchmark (old)

- What structure is exhibited by graphs generated by the Social Intelligence Benchmark?

A close look at Social Intelligence Benchmark (old)

- What structure is exhibited by graphs generated by the Social Intelligence Benchmark?
- Use s3g2130313.tar, downloaded from sourceforge.net/projects/sibenchmark/ (thanks to Minh-Duc Pham)
- Number of nodes: 2.6M, Number of edges: 12.6M
- Configuration: numtotalUser: 10000, 2010-1-1 to 2012-1-1

In-degree and out-degree of original graph

Partition block size \& signature length distribution

In-degree and out-degree of PB graph

Insights

- Power-law distributions in bisimulation results emphasize the fact that data skews are expected in applications (indexes, data partitioned among machines, ...)

Insights

- Power-law distributions in bisimulation results emphasize the fact that data skews are expected in applications (indexes, data partitioned among machines, ...)
- Some more work remains to be done for synthetic graph generators towards exhibiting the reduction properties of real graphs.

Insights

- Power-law distributions in bisimulation results emphasize the fact that data skews are expected in applications (indexes, data partitioned among machines, ...)
- Some more work remains to be done for synthetic graph generators towards exhibiting the reduction properties of real graphs.
- Bisimulation result/graph grows when original graph grows, which calls for scalable/adaptive algorithms (e.g., choose different k for different parts of the graph, different node/edge labeling)

Thank you! Q\&A

For more information, just google seeqr project or visit: bit.ly/seeqr

Definition of k-bisimilar

Definition

Let k be a non-negative integer and $G=\left\langle N, E, \lambda_{N}, \lambda_{E}\right\rangle$ be a graph. Nodes $u, v \in N$ are called k-bisimilar (denoted as $u \approx^{k} v$), iff the following holds:
(1) $\lambda_{N}(u)=\lambda_{N}(v)$,
(2) if $k>0$, then for any edge $\left(u, u^{\prime}\right) \in E$, there exists an edge $\left(v, v^{\prime}\right) \in E$, such that $u^{\prime} \approx^{k-1} v^{\prime}$ and $\lambda_{E}\left(u, u^{\prime}\right)=\lambda_{E}\left(v, v^{\prime}\right)$, and
(0) if $k>0$, then for any edge $\left(v, v^{\prime}\right) \in E$, there exists an edge $\left(u, u^{\prime}\right) \in E$, such that $v^{\prime} \approx^{k-1} u^{\prime}$ and $\lambda_{E}\left(v, v^{\prime}\right)=\lambda_{E}\left(u, u^{\prime}\right)$.

Definition of k-bisimilar

Definition

Let k be a non-negative integer and $G=\left\langle N, E, \lambda_{N}, \lambda_{E}\right\rangle$ be a graph. Nodes $u, v \in N$ are called k-bisimilar (denoted as $u \approx^{k} v$), iff the following holds:
(1) $\lambda_{N}(u)=\lambda_{N}(v)$,
(2) if $k>0$, then for any edge $\left(u, u^{\prime}\right) \in E$, there exists an edge $\left(v, v^{\prime}\right) \in E$, such that $u^{\prime} \approx^{k-1} v^{\prime}$ and $\lambda_{E}\left(u, u^{\prime}\right)=\lambda_{E}\left(v, v^{\prime}\right)$, and
(0) if $k>0$, then for any edge $\left(v, v^{\prime}\right) \in E$, there exists an edge $\left(u, u^{\prime}\right) \in E$, such that $v^{\prime} \approx^{k-1} u^{\prime}$ and $\lambda_{E}\left(v, v^{\prime}\right)=\lambda_{E}\left(u, u^{\prime}\right)$.

In this example graph, nodes 1 and 2 are 0 - and 1 - bisimilar but not 2-bisimilar.

In-degree distribution of original graphs

synthetic graphs

\rightarrow Jamendo - LinkedMDB \rightarrow DBLP \rightarrow DBPedia \longrightarrow WikiLinks - - Twitter - Flickr-Grow - BSBM - SP2B - Power - - Random

Out-degree distribution of original graphs

synthetic graphs

Signature length

synthetic graphs

- Jamendo - - LinkedMDB - Ditter - Flickr-Grow - BSBM - SP2B \rightarrow Power \rightarrow RikiLinks	

Out-degree of PB graph

synthetic graphs

\rightarrow Jamendo - LinkedMDB - DBLP \longrightarrow DBPedia \rightarrow WikiLinks - Twitter - Flickr-Grow - BSBM - SP2B - Power \rightarrow Random

Dynamics - a real growing social graph

- Dynamic social graph, from 17 Million to 33 Million edges (Flickr-grow)

Dynamics - a real growing social graph

- Dynamic social graph, from 17 Million to 33 Million edges (Flickr-grow)
- Does the bisimulation result grow when the original graph grows?

Dynamics - a real growing social graph

- Dynamic social graph, from 17 Million to 33 Million edges (Flickr-grow)
- Does the bisimulation result grow when the original graph grows?
- Yes.

Dynamics - a real growing social graph

- Dynamic social graph, from 17 Million to 33 Million edges (Flickr-grow)
- Does the bisimulation result grow when the original graph grows?
- Yes.
- How fast does it grow?

Dynamics - a real growing social graph

- Dynamic social graph, from 17 Million to 33 Million edges (Flickr-grow)
- Does the bisimulation result grow when the original graph grows?
- Yes.
- How fast does it grow?
- Linearly with respect to the original graph.

