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Motivation

Bisimulation reduction of graphs

Bisimulation partitioning is an important concept in many fields
(computer science, modal logic, etc.), in DB research as well
(structural index, graph reduction)
It can be seen as a way of clustering nodes
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bisimulation partitioning

Reduce graph size while preserving structural properties (e.g.,
reachability)
Result can be seen as a (PB) graph
What properties does the PB graph have?
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Motivation

Questions

Regularities, such as power-law distribution exists in real
graphs.

Do results under bisimulation reduction (e.g., PB
graph) also have such properties?

How would that knowledge help us?
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Experimental setup

Experimental setup for investigation

Big graphs, from 1 Million to 1.4 Billion edges
(Twitter, DBPedia, etc.)

State-of-the-art external-memory algorithm for
computing bisimulation reductions

We use cumulative distribution function (CDF) to
present distributions
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Result

Regularities - bisimulation result

Power-law also exists in many attributes for

bisimulation partition results for real graphs. But

this is not the case for synthetic graphs.
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Result

Regularities - partition block size distribution
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Result

Regularities - PB graph in-degree distribution
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Result

A close look at Social Intelligence Benchmark (old)

What structure is exhibited by graphs generated by
the Social Intelligence Benchmark?

Use s3g2130313.tar, downloaded from
sourceforge.net/projects/sibenchmark/

(thanks to Minh-Duc Pham)

Number of nodes: 2.6M, Number of edges: 12.6M

Configuration: numtotalUser: 10000, 2010-1-1 to
2012-1-1
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Result

In-degree and out-degree of original graph
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Result

Partition block size & signature length distribution
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Result

In-degree and out-degree of PB graph
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Insights

Insights

Power-law distributions in bisimulation results
emphasize the fact that data skews are expected in
applications (indexes, data partitioned among
machines, . . .)

Some more work remains to be done for synthetic
graph generators towards exhibiting the reduction
properties of real graphs.

Bisimulation result/graph grows when original graph
grows, which calls for scalable/adaptive algorithms
(e.g., choose different k for different parts of the
graph, different node/edge labeling)
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Insights

Thank you! Q&A

For more information, just google seeqr project or

visit: bit.ly/seeqr
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Insights

Definition of k-bisimilar

Definition

Let k be a non-negative integer and G = 〈N ,E , λN , λE 〉 be a graph.
Nodes u, v ∈ N are called k-bisimilar (denoted as u ≈k v), iff the
following holds:

1 λN(u) = λN(v),

2 if k > 0, then for any edge (u, u′) ∈ E , there exists an edge
(v , v ′) ∈ E , such that u′ ≈k−1 v ′ and λE (u, u′) = λE (v , v ′), and

3 if k > 0, then for any edge (v , v ′) ∈ E , there exists an edge
(u, u′) ∈ E , such that v ′ ≈k−1 u′ and λE (v , v ′) = λE (u, u′).

1

M

2

M

4
P

3
P

5
P

6
P

w

l

w

ll

l

l

In this example graph, nodes 1
and 2 are 0- and 1- bisimilar but
not 2-bisimilar.
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Insights

In-degree distribution of original graphs
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Insights

Out-degree distribution of original graphs
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Insights

Signature length
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Insights

Out-degree of PB graph
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Insights

Dynamics - a real growing social graph

Dynamic social graph, from 17 Million to 33 Million
edges (Flickr-grow)

Does the bisimulation result grow when the original
graph grows?

Yes.

How fast does it grow?
Linearly with respect to the original graph.

|N |

|N
k
|

|E |

|E
k
|
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