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Graph streams

* Possibly unbounded sequences of
timestamped relationships (edges)

e User interactions, financial
transactions, driver-client locations In
ridesharing services, etc.

* Continuously ingested from external,
often distributed sources



Graph streams

* Possibly unbounded sequences of
timestamped relationships (edges)

e User interactions, financial
transactions, driver-client locations In
ridesharing services, etc.

* Continuously ingested from external,
often distributed sources



Streaming edge partitioning
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Stateful edge partitioning has better performance
But state can grow indefinitely for unbounded streams

* Current assignment of vertices to
partitions needs to be stored
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Can we partition unbounded
graph streams with high quality
and bounded state?




ML-added graph partitioning

With graph representation learning
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Overview of GCNSplit
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GCNSplit offers partitioning quality on par with stateful partitioning

GCNSplit === HDRF
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GCNSplit requires considerably smaller state

Dataset GCNSplit state HDRF state
Twitch 153K 1.6MB 4.1MB
Deezer 125K 126KB 5.4MB
Bitcoin 234K 166KB 19MB
Reddit 5.9M 385KB 47MB

Synthetic 1.3B 115KB >116GB

Papers 1.6B 147KB >116GB




GCNSplit can leverage parallelism to improve throughput
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GCNSplit can generalize to unseen graph streams
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Limitations and future work

 Performance is highly dependent on the quality of training data
* Rich feature sets lead to lower replication factor

* High partitioning quality as long as the graph stream’s characteristics do
not change drastically

* |n case of major concept drift GCNSplit behaves like hash partitioning
* Constraints guarantee good load balance
* Partitioning decisions equivalent to random assignment
* Continual learning methods can be used to update the model incrementally

* Detect drift and use graph sampling to incorporate new knowledge while
maintaining old one

12



Learning to partition unbounded
graph streams

Vasiliki Kalavri, Boston University
vkalavri@bu.edu

Collaboration with Michal Zwolak, Zainab Abbas, Sonia Horchidan, Paris Carbone
(KTH Royal Institute of Technology)

LDBC TUC, Aug 16


mailto:vkalavri@bu.edu

