GRainDB:

A Hybrid Graph-Relational DBMS
Semih Salihoglu

Joint w/ Guodong Jin
waTERLOO | DBE #

Systems
Group

Many Appeals of a Relational-core Hybrid System

» Hybrid System: An extended RDBMS w/ graph modeling, querying,
and visualization capabilities.

1. No Perfect Data Model

Tables Graphs
» Legacy data » Arguably closer to developers’
» Non-binary relations of entities mental model of real-world
» Good for normalization (e.g., entities and relationships

zipcodes, days, dates)
2. No Perfect Query Language
SQL Graph Query Lanquages

» Very popular and established » Easier for recursive queries
» Suitable for standard data
analytics, preparation, etl...

MATCH a-[:Transfer*]->b
WHERE a.owner=Alice

3. Cheaper and quicker than building a completely separate GDBMS

GRainDB Vision

Neo4j Bloom-style Graph Visualization

NN

G-SQL-style Seamless Table/Graph Querying

SELECT DISTINCT Address.zipcode

FROM (a:vPers)-[:eKnows*1..3]->(b:vPers),
Address

WHERE a.name=Alice AND b.addID=Address.ID

Graph Modeling

eKnows

+ Pre-defined pointer-based joins

+ Factorization

DUCKDBu

+ Recursive joins

+ Worst-case optimal joins

Predefined Pointer-based Joins in GDBMSs

» Primary Difference in Join Processing in GDBMSs vs RDBMSs:

» Pointer vs Value-based joins

2
3

MATCH a-[:Trnsfr]->b-[:Trnsfr]->c
I 1 ' 1L WHERE b.owner = “Alice”
2 |4 |5

3
1 [Nfg:r(‘b) H Extend(a) H Extend(c) }

Transfer
owher: Dan owner: Bob

v

3

—>
%1

w
N
[ERY

owner: Alice

500 700 g0
» Adjacency Lists = An Index Over Edges Q
900

owner: Liz

» |D-based Nested Index Loop Joins Q 400 : :

owner: Carol
Svslems
Group

4

Predefined Pointer-based Joins in GRainDB

SELECT a.owner, c.owner
FROM Acc a, b, ¢, Trn t1, t2
WHERE b.owner = Alice AND

Alice Alice Bob 700
a.owner=tl.From AND tl1.To=b.owner AND
tl.To=t2.From AND t2.to=c.owner Bob Bob Carol 300
Carol Carol Alice 900

Alice Dan 500
Alice Liz 400

» Step 1: Predefine a Primary Key-Foreign Key Join Eg
FROM: Accounts, Transfers
WHERE Accounts.owner = Transfers.From

» Columnar RDBMS use Row IDs (RIDs) as system-level pointers

Data 5
Systems
Group

Step 1: RID Materialization and RID Index

SELECT a.owner, c.owner

FROM Acc a, b, ¢, Trn t1, t2

WHERE b.owner = Alice AND
a.owner=tl.From AND tl1l.To=b.owner AND
tl.To=t2.From AND t2.to=c.owner

Accounts Transfer
RIDs RIDs

1 1->[1][4 [5]

2 > 2

3 ™3

RID Index

Data
Systems
Group

Alice 1 Alice Bob 700
Bob 2 Bob Carol 800
Carol 3 Carol Alice 900
1 Alice Dan 500

1 Alice Liz 400

Step 2: Rule-based Query Planning

SELECT a.owner, c.owner

FROM Acc a, b, ¢, Trn t1, t2

WHERE b.owner = Alice AND
a.owner=tl.From AND tl1l.To=b.owner AND
tl.To=t2.From AND t2.to=c.owner

HashJoin
owner=from

[HashdJoin } [HashdJoin }

/\ /\

Scan Scan Scan HashdJoin
Acc Trn Acc owner=from

_—

Scan
Scan
Acc
Trn A
owner=Alice

1. Replace some HashdJoins -> SIPJoin or SIPJoinldx

2. Replace some Scans -> ScanSemidJoins (ScanSJ)

Data
Systems
Group

Step 2: Rule-based Query Planning

SELECT a.owner, c.owner

FROM Acc a, b, ¢, Trn t1, t2

WHERE b.owner = Alice AND
a.owner=tl.From AND tl1l.To=b.owner AND
tl.To=t2.From AND t2.to=c.owner

[SIPJoin }
[HashdJoin } [HashdJoin }

[ScanSJ } [ScanSJ } [Scan SIPJoinldx \

Acc Trn Acc

Scan
ScanSJ
Acc
Trn A
owner=Alice

_

Data
Systems
Group

Step 3: Sideways Information Passing & Semijoins

SELECT a.owner, c.owner
FROM Acc a, b, ¢, Trn t1, t2
WHERE b.owner = Alice AND

Alice Alice Bob 700
a.owner=tl.From AND tl1.To=b.owner AND
tl.To=t2.From AND t2.to=c.owner Bob Bob Carol 300
Carol Carol Alice 900

Alice Dan 500
Alice Liz 400

Accounts Transfer
RIDs RIDs

T]]—>1 4 |5 |
2 > 2 L \
3

R R WN R

key values

% .
3 SIPJoinldx | |t {1 Alicel
RID Index
¥ 1 Aice Bob 700 /
> UseRIDsaspointers | pice pan 5p6 1\ Alice
. . / \
> All scans are seguentiall unlikee [Lz 400 Scan
. ScanSJ Acc

nested loop joins of GDBMSs Trn

Dta owner=Alice
PR,

lllll

Experiment: LDBC Social Network Graph Benchmark

> LDBC 10 Benchmark: ~10GB
» Dual 2.6GHz Intel CPU, 256GB RAM

» In-Memory Performance

S .
o)
— 3
% 10 o (@)
S (@]
(@))]
2 1024
O
Q
(V)]
E 4
£ 104
)]
E
S 100
DUCKDB GRAINDB GRAPHFLOWDB

The researcher, engineer, and hero!

Guodong Jin

Making RDBMSs Efficient on Graph Workloads Through

Predefined Joins
Guodong Jin Semih Salihoglu
jinguodong@ruc.edu.cn lu@uwaterloo.ca
Renmin University of China University of Waterloo, Canada.

ABSTRACT

over many-to-many friendship relationships or n financial fraud

predetined t0the e s s, whic e desd n adcency

st indices and serve as pointers. This.

to-many money transfers across bank accounts.

researchers to investigate ways to integrate pled:ﬁned joins. it
DBM:

qceping vty il Wnbi: For iumple 172008
ccialized GDBMSs are extracted

rectly into R
data and

otk [y piren) In many enterprises, sers replicate

processor uses left-deep and index nested loop joins for a subset
‘may be suboptimal,

parts of the tabular data stored in RDBMS to a GDBMS because
n

Fjolns. This

some queries. Wi ap-

addition, many applications require other processing on ther graph.
joins, such as

regations, for which RDBMSs already employ effcent techniques.
B

Jons between any two s which s o mlcnz.\mng RIDs in
the

RID index to pere primarly in bash ppesling
users can avoid the challenges of duplicating data and keeping
setings, » from scratch it this ool and research
uery plans. Our approach d ph-speciic
an DB they alo target

ity joins that can be predefined. We integrated our approach to
GRainDB.

s oo bl o GDRSs
veral pri

that GRainDB far improves the performance of DuckDB on rela-
i

e cpack ‘workoads,One approac smply exposes a < separte

with o or minimal

i s a

verhendsoerwie dcaon e gy prcsor o i FORNS T pproac

1. INTRODUCTION ‘mercial products, such as IBM DB2 Graph [48], SQLGraph [17]‘
hich th S 3 ()

graph-specific query pr

a grphs, whih e the core structures of severl s of
ty of

ssor This
s been most ecentlyadopid by he GR-Fusion sysem (29,21

s (s o i, e Neot], igerGraph 7]
DGraph [2], and GraphllowDB [22, 2, 34-

ing bl s o gnph: The toplogies ofthese views,

oper preference for using a graph-specific iy query
P

ey s ndexe, wh\chmuxd Ay sy s

workloads, which refer to workloads that contain large many-lo-
‘many joins. For example, these workloads appear in social net-

iew graph-specific
Cpeatore, sueh s Edgesean nd Pothsean. Pt of ueres that

peopl operators, while the non- graph parts of queries compile to existing
e
g oy ot P d
oy bt pemisonty for graphs. RDBMS but u“ -
ol bicaon g hors' cnvisioned integrat s similar to
n«m.mmmm.mx ed 32)is simlar
ceadings o e VLDB Endomoes, Vol o

Making RDBMSs Efficient on Graph

Workloads Through Predefined Joins

11

https://cs.uwaterloo.ca/~ssalihog/papers/predefined-tr.pdf

Thank you & Questions?

