
GRainDB:

A Hybrid Graph-Relational DBMS
Semih Salihoğlu

Joint w/ Guodong Jin

1

Many Appeals of a Relational-core Hybrid System

2

1. No Perfect Data Model

2. No Perfect Query Language

3. Cheaper and quicker than building a completely separate GDBMS

Ø Hybrid System: An extended RDBMS w/ graph modeling, querying,
and visualization capabilities.

MATCH a-[:Transfer*]->b
WHERE a.owner=Alice

Tables
Ø Legacy data
Ø Non-binary relations of entities
Ø Good for normalization (e.g.,

zipcodes, days, dates)

Graphs
Ø Arguably closer to developers’

mental model of real-world
entities and relationships

SQL
Ø Very popular and established
Ø Suitable for standard data

analytics, preparation, etl…

Graph Query Languages
Ø Easier for recursive queries

GRainDB Vision

3

+ Pre-defined pointer-based joins

+ Factorization

+ Worst-case optimal joins

+ Recursive joins

G-SQL-style Seamless Table/Graph Querying

SELECT DISTINCT Address.zipcode
FROM (a:vPers)-[:eKnows*1..3]->(b:vPers),

Address
WHERE a.name=Alice AND b.addID=Address.ID

Address

Zipcode

Knows

Person

Graph Modeling

Person
vPerson

eKnows
Knows

Neo4j Bloom-style Graph Visualization

Predefined Pointer-based Joins in GDBMSs

4

MATCH a-[:Trnsfr]->b-[:Trnsfr]->c
WHERE b.owner = “Alice”

2 4 51

2

3

Ø Adjacency Lists = An Index Over Edges

Ø ID-based Nested Index Loop Joins

3

1

31

2

3

1

2 1

a b ca b c

1

a b c

3 1

a b c

3 1 2

a b c

3 1 4

a b c

3 1 5

1

owner: Alice

2

owner: Bob

4

owner: Dan

3

owner: Carol

5

owner: Liz

Transfer

700 800

900

500

400

Ø Primary Difference in Join Processing in GDBMSs vs RDBMSs:

Ø Pointer vs Value-based joins

Scan
Node (b) Extend(a) Extend(c)

Predefined Pointer-based Joins in GRainDB

5

Ø Step 1: Predefine a Primary Key-Foreign Key Join E.g.:

FROM: Accounts, Transfers

WHERE Accounts.owner = Transfers.From

Ø Columnar RDBMS use Row IDs (RIDs) as system-level pointers

SELECT a.owner, c.owner
FROM Acc a, b, c, Trn t1, t2
WHERE b.owner = Alice AND
a.owner=t1.From AND t1.To=b.owner AND
t1.To=t2.From AND t2.to=c.owner

Transfers
RID From To amount
1 Alice Bob 700
2 Bob Carol 800
3 Carol Alice 900
4 Alice Dan 500
5 Alice Liz 400
… … … …

Accounts
RID owner
1 Alice
2 Bob
3 Carol
… …

Step 1: RID Materialization and RID Index

6

Transfers
RID F(RID) From To amount
1 1 Alice Bob 700
2 2 Bob Carol 800
3 3 Carol Alice 900
4 1 Alice Dan 500
5 1 Alice Liz 400
… … … … …

Transfers
RID From To amount
1 Alice Bob 700
2 Bob Carol 800
3 Carol Alice 900
4 Alice Dan 500
5 Alice Liz 400
… … … …

Accounts
RID owner
1 Alice
2 Bob
3 Carol
… …

1 4 51

2

3

2

3

SELECT a.owner, c.owner
FROM Acc a, b, c, Trn t1, t2
WHERE b.owner = Alice AND
a.owner=t1.From AND t1.To=b.owner AND
t1.To=t2.From AND t2.to=c.owner

RID Index

Accounts
RIDs

Transfer
RIDs

Step 2: Rule-based Query Planning
SELECT a.owner, c.owner
FROM Acc a, b, c, Trn t1, t2
WHERE b.owner = Alice AND
a.owner=t1.From AND t1.To=b.owner AND
t1.To=t2.From AND t2.to=c.owner

Scan
Acc

owner=Alice

HashJoin
owner=from

Scan
Trn

Scan
Acc

Scan
Acc

Scan
Trn

HashJoin

HashJoin
owner=from

HashJoin

1. Replace some HashJoins -> SIPJoin or SIPJoinIdx

2. Replace some Scans -> ScanSemiJoins (ScanSJ)
7

Step 2: Rule-based Query Planning

8

SELECT a.owner, c.owner
FROM Acc a, b, c, Trn t1, t2
WHERE b.owner = Alice AND
a.owner=t1.From AND t1.To=b.owner AND
t1.To=t2.From AND t2.to=c.owner

SIPJoinIdx

ScanSJ
Trn

Scan
Acc

ScanSJ
Acc

ScanSJ
Trn

HashJoin

SIPJoin

Scan
Acc

owner=Alice

HashJoin

Step 3: Sideways Information Passing & Semijoins
Transfers

RID F(RID) From To amount
1 1 Alice Bob 700
2 2 Bob Carol 800
3 3 Carol Alice 900
4 1 Alice Dan 500
5 1 Alice Liz 400
… … … … …

Accounts
RID owner
1 Alice
2 Bob
3 Carol
… …

SELECT a.owner, c.owner
FROM Acc a, b, c, Trn t1, t2
WHERE b.owner = Alice AND
a.owner=t1.From AND t1.To=b.owner AND
t1.To=t2.From AND t2.to=c.owner

1 4 51

2

3

2

3

RID Index

Accounts
RIDs

Transfer
RIDs

SIPJoinIdx

ScanSJ
Trn

Scan
Acc

owner=Alice

…

…

RID owner

1 Alice

RID F(RID) From To amt

1 1 Alice Bob 700

4 1 Alice Dan 500

5 1 Alice Liz 400

semijoin mask

t1 t2 t3 t4 t5 t6 … t1M
1 0 0 1 1 0 … 0

Hash Table

key values

1 {1, Alice}

Ø Use RIDs as pointers

Ø All scans are sequential unlike

nested loop joins of GDBMSs

10

Experiment: LDBC Social Network Graph Benchmark

Ø LDBC 10 Benchmark: ~10GB

Ø Dual 2.6GHz Intel CPU, 256GB RAM

Ø In-Memory Performance

The researcher, engineer, and hero!

11

Guodong Jin Making RDBMSs Efficient on Graph
Workloads Through Predefined Joins

https://cs.uwaterloo.ca/~ssalihog/papers/predefined-tr.pdf

Thank you & Questions?

12

