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Many Appeals of a Relational-core Hybrid System

» Hybrid System: An extended RDBMS w/ graph modeling, querying,
and visualization capabilities.

1. No Perfect Data Model

Tables Graphs
» Legacy data » Arguably closer to developers’
» Non-binary relations of entities mental model of real-world
» Good for normalization (e.g., entities and relationships

zipcodes, days, dates)
2. No Perfect Query Language
SQL Graph Query Lanquages

» Very popular and established » Easier for recursive queries
» Suitable for standard data
analytics, preparation, etl...

MATCH a-[:Transfer*]->b
WHERE a.owner=Alice

3. Cheaper and quicker than building a completely separate GDBMS



GRainDB Vision

Neo4j Bloom-style Graph Visualization

NN

G-SQL-style Seamless Table/Graph Querying

SELECT DISTINCT Address.zipcode

FROM (a:vPers)-[:eKnows*1..3]->(b:vPers),
Address

WHERE a.name=Alice AND b.addID=Address.ID

Graph Modeling

eKnows

+ Pre-defined pointer-based joins

+ Factorization

DUCKDBu

+ Recursive joins

+ Worst-case optimal joins




Predefined Pointer-based Joins in GDBMSs

» Primary Difference in Join Processing in GDBMSs vs RDBMSs:

» Pointer vs Value-based joins
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MATCH a-[:Trnsfr]->b-[:Trnsfr]->c
I 1 ' 1L WHERE b.owner = “Alice”
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Predefined Pointer-based Joins in GRainDB

SELECT a.owner, c.owner
FROM Acc a, b, ¢, Trn t1, t2
WHERE b.owner = Alice AND

Alice Alice Bob 700
a.owner=tl.From AND tl1.To=b.owner AND
tl.To=t2.From AND t2.to=c.owner Bob Bob Carol 300
Carol Carol Alice 900

Alice Dan 500
Alice Liz 400

» Step 1: Predefine a Primary Key-Foreign Key Join Eg
FROM: Accounts, Transfers
WHERE Accounts.owner = Transfers.From

» Columnar RDBMS use Row IDs (RIDs) as system-level pointers
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Step 1: RID Materialization and RID Index

SELECT a.owner, c.owner

FROM Acc a, b, ¢, Trn t1, t2

WHERE b.owner = Alice AND
a.owner=tl.From AND tl1l.To=b.owner AND
tl.To=t2.From AND t2.to=c.owner

Accounts Transfer
RIDs RIDs

1 1->[1 ][4 [5]

2 > 2

3 ™3

RID Index
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Alice 1 Alice Bob 700
Bob 2 Bob Carol 800
Carol 3 Carol Alice 900
1 Alice Dan 500

1 Alice Liz 400




Step 2: Rule-based Query Planning

SELECT a.owner, c.owner

FROM Acc a, b, ¢, Trn t1, t2

WHERE b.owner = Alice AND
a.owner=tl.From AND tl1l.To=b.owner AND
tl.To=t2.From AND t2.to=c.owner

HashJoin
owner=from

[ HashdJoin } [ HashdJoin }

/\ /\

Scan Scan Scan HashdJoin
Acc Trn Acc owner=from
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Scan
Scan
Acc
Trn A
owner=Alice

1. Replace some HashdJoins -> SIPJoin or SIPJoinldx

2. Replace some Scans -> ScanSemidJoins (ScanSJ)
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Step 2: Rule-based Query Planning

SELECT a.owner, c.owner

FROM Acc a, b, ¢, Trn t1, t2

WHERE b.owner = Alice AND
a.owner=tl.From AND tl1l.To=b.owner AND
tl.To=t2.From AND t2.to=c.owner

[ SIPJoin }
[ HashdJoin } [ HashdJoin }

[ ScanSJ } [ ScanSJ } [ Scan SIPJoinldx \

Acc Trn Acc

Scan
ScanSJ
Acc
Trn A
owner=Alice
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Step 3: Sideways Information Passing & Semijoins

SELECT a.owner, c.owner
FROM Acc a, b, ¢, Trn t1, t2
WHERE b.owner = Alice AND

Alice Alice Bob 700
a.owner=tl.From AND tl1.To=b.owner AND
tl.To=t2.From AND t2.to=c.owner Bob Bob Carol 300
Carol Carol Alice 900

Alice Dan 500
Alice Liz 400

Accounts Transfer
RIDs RIDs
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RID Index
¥ 1 Aice Bob 700 /
> UseRIDsaspointers | pice  pan  5p6 1\ Alice
. . / \
> All scans are seguentiall unlikee [ Lz 400 Scan
. ScanSJ Acc

nested loop joins of GDBMSs Trn
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Experiment: LDBC Social Network Graph Benchmark

> LDBC 10 Benchmark: ~10GB
» Dual 2.6GHz Intel CPU, 256GB RAM

» In-Memory Performance
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Guodong Jin
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https://cs.uwaterloo.ca/~ssalihog/papers/predefined-tr.pdf

Thank you & Questions?



