
1

Sortledton: a universal, transactional
graph data structure

Per Fuchs, Domagoj Margan and

Jana Giceva

Submitted for VLDB 2022:

Graph use-cases are diverse and dynamic
● diverse: use multiple graph workload categories, e.g. analytics, traversals and

graph pattern matching (GPM)
● dynamic: requires insertions and deletions

● Examples:
○ Alibaba: analytics and traversals in anti-fraud-pipelines [VLDB’20]
○ Twitter: use of traversals and GPM for recommendations [VLDB’14, ’15]
○ Both require up to 2 million edge insertions per second

2

New challenges in graph data structures:
striking a good trade-off for all workloads

3
References: Livegraph [VLDB’20], Graphone [FAST’19], LLama [ICDE’15], Stinger, Teseo [VLDB’21]

New challenges in graph data structures:
striking a good trade-off for all workloads

4
References: Livegraph [VLDB’20], Graphone [FAST’19], LLama [ICDE’15], Stinger, Teseo [VLDB’21]

New challenges in graph data structures:
striking a good trade-off for all workloads

5
References: Livegraph [VLDB’20], Graphone [FAST’19], LLama [ICDE’15], Stinger, Teseo [VLDB’21]

New challenges in graph data structures:
striking a good trade-off for all workloads

6
References: Livegraph [VLDB’20], Graphone [FAST’19], LLama [ICDE’15], Stinger, Teseo [VLDB’21]

New challenges in graph data structures:
striking a good trade-off for all workloads

7
References: Livegraph [VLDB’20], Graphone [FAST’19], LLama [ICDE’15], Stinger, Teseo [VLDB’21]

Contributions
1. Comparison of fundamental graph data structure designs
2. Analysis of access patterns in graph workloads
3. A simple dynamic data structure design with memory consumption (2x CSR)

and analytical performance (1.2x CSR)

4. Design of a graph specialized, serializable MVCC system (in the paper)

8

Comparison of fundamental graph data structures

+ sequential vertex access

9

Comparison of fundamental graph data structures

+ sequential vertex access

10

+ independent neighbourhoods
+ cheap index maintenance
+ reuse of existing data structures

Graph access patterns

11

Inner PageRank loop

Graph access patterns

12

Inner PageRank loop

1. Sequential Vertex Access

Graph access patterns

13

Inner PageRank loop

1. Sequential Vertex Access

2. Sequential Neighbourhood Access

Graph access patterns

14

Inner PageRank loop

1. Sequential Vertex Access

2. Sequential Neighbourhood Access
3. Random Algorithmic-Specific Access

Graph access patterns

15

Inner PageRank loop

1. Sequential Vertex Access

2. Sequential Neighbourhood Access
3. Random Algorithmic-Specific Access

Optimizing for 2 and 3 has higher impact because mostly |E| / |V| > 30.

Sortledton: simple and sorted

16

● optimal for scanning with
512 edges per block

● fast updates
● sorted for intersections

● optimal for scanning with 512
edges per block

● fast updates by splitting and
merging

● sorted for intersections
Optimal for random vertex access.

Sortledton: simple and sorted

17

● optimal for scanning with 512
edges per block

● fast updates by splitting and
merging

● sorted for intersections
Optimal for random vertex access.

Evaluation
● Update performance: how many updates can the data structures process?

○ Challenge is to find the existing edges

● Graphalytics Benchmark: what is the slowdown for different workload
categories compared to a CSR?

● Not in the presentation:
○ Mixing updates and deletions to expose aging effects
○ Memory consumption over aging

18

Update performance - power law graphs

19

Update performance - uniform graphs

20

Graphalytics benchmark performance

21

Dataset:
Graph500-24

Graph Pattern Matching Graph Analytics Graph Traversals

Graphalytics benchmark performance

22

Dataset:
Graph500-24

Graph Pattern Matching Graph Analytics Graph Traversals

Conclusions
● adjacency list-like designs are simpler than CSR-like designs while showing

equal performance

● we need to store neighbourhoods as sets to support GPM, updates, deletions

and consistency

23

Memory Footprint

24

Graph500-24

18.3 GB = 2.2x CSR

Graphalytics Benchmark Performance

25

Dense vertex identifier for algorithmic specific access
● we translate arbitrary vertex identifier {0, 5, 1000, …} on insertion into the

dense domain [0, 1, 2, …] for better analytical performance

sparse -> dense dense -> sparse

high performance analytics

26

Sorted Blocks for Sequential Edge Access with
intersections

27

Sorted Vector for neighbourhoods (optimal,
static)

Sorted blocks for neighbourhoods

normalized against

Graphalytics Algorithms

Optimizing for Sequential Vertex Access

28

normalized against

Graphalytics Algorithms

Which Vertex ID Domain to Store for Random
Algorithmic-Specific Access?

29

Graphalytics Algorithms

sparse domain: {0, 3, 1000, 1001, ...}

dense domain: [0, 1, 2, 3, …]

normalized against

Transactions in Graphs

Fall into two categories (mostly):
1. long-running, read-only transactions

a. between seconds and multiple minutes
b. e.g. PageRank (analytics), SSSP (traversals), triangle counting (GPM)

2. simple write-only transactions,
a. with a-priori known read- and write-sets
b. e.g. edge insertions

30

Transactions on Graphs (cont.)
● versioned records are 8 Bytes or less
● requires low overhead per version

○ we expect mostly 1 or 2 versions for each record

● our overhead is 0 for single versions, 8 Bytes for 2 versions and 16 Byte per
additional version

31

Requirements for Concurrency Control
1. decouple reads from writes → use MVCC
2. high throughput for simple writes with known write-set → conservative two

phase locking with fixed locking order

32

Transactions
● Example: inserting the undirected edge (a, b) with b < a

1. Acquire locks for vertex b then a
2. Check if a and b exists, ensure neither (a, b) nor (b, a) exist
3. Draw commit timestamp
4. Insert (a, b) and (b, a)
5. Release locks

Avoids overheads of other protocols, e.g. drawing two timestamps, deadlock
detection, and rollback handling.

33

Real world graph workloads are diverse

● analytical
● neighborhood
● traversals
● graph pattern matching

○ used in analytical and
transactional settings

Top 5 most common graph workloads according to a
survey [VLDB, 2017]

Workload categories [arxiv, 2019]

34

Aging throughput over time
● Teseo and Sortledton provide

high, stable throughput
● Livegraph has low, stable

throughput
● LLama throughput diminishes

over time
● Graphone has severe issues

with edge removals

35

Properties of existing approaches

36

GraphOne LLama Stinger Livegraph Teseo Us

Intersections No No No No Sorted Sorted

Sequential
Scans

blocks blocks blocks vector blocks blocks

Skewed
insertions

O(D) N/A O(D) O(D) O(log D) O(log D)

Vertex
identifiers

dense user needs
to provide
dense
vertices

dense (no
deletions)

user needs
to provide
dense
vertices

sparse concurrent
sparse to
dense
translation

Edge
Contiguous

no partially no no yes no

