%
) 5
4 R CHSRIeH

Empowering Investigative Journalism with
Graph-based Heterogeneous Data
Management

Angelos-Christos Anadiotis

Ecole Polytechnique and Institut Polytechnique de Paris

@ INSTITUT
Y4 ef"‘: EEEEEEEEEEEEE y 4
’ DE PARIS 7 5 2
ECOLE .
ppppppppppppp



%
A S
4 R CHSRIeH

Conflicts of Interest database

“A conflict of interest is any situation where a public interest
may interfere with a public or private interest, in such a way
that the public interest may be, or appear to be, unduly
influenced.”

French transparency law, 2011
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Biomedical domain

* Experts in the biomedical area advise national and

international officials on decisions with impact on public
health

 Companies with interests in this area may recruit experts
likely to be auditioned by regulatory boards

* Goal: establish a database of Cols where it would be easy to
"find the declared links of Dr. Alice with HealthStar"
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Biomedical domain

* Experts in the biomedical area advise national and

international officials on decisions with impact on public
health

 Companies with interests in this area may recruit experts
likely to be auditioned by regulatory boards

* Goal: establish a database of Cols where it would be easy to
"find the declared links of Dr. Alice with HealthStar"

Usually available, but technically buried information -



Landscape of heterogeneous data
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ConnectionlLens graph processing pipeline
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ConnectionlLens graph processing pipeline
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Problem statement

* Given the graph G = (N, E) built out of the datasets D and a query
keywords Q= {w;, ...,w_}, return the k highest-score minimal
answer trees

* An answer tree is a set of edges which (i) form a tree, and (ii) for
each w,, contain at least one node whose label matches w;

 We are interested in minimal answer trees, that is:

* Removing an edge from the tree should make it lack some query
keywords w.

* If a query keyword w; matches the label of more than one nodes in the
answer tree, then all these matching nodes must be equivalent



Problem statement

* Given the graph G = (N, E) built out of the datasets D and a query
keywords Q= {w;, ...,w_}, return the k highest-score minimal
answer trees

* An answer tree is a set of edges which (i) form a tree, and (ii) for
each w,, contain at least one node whose label matches w;

 We are interested in minimal answer trees, that is:

* Removing an edge from the tree should make it lack some query
keywords w.

* If a query keyword w; matches the label of more than one nodes in the
answer tree, then all these matching nodes must be equivalent

Related to GSTP + bidirectional edges
Return k highest-score trees among those found



Grow and Aggressive Merge
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Grow and Aggressive Merge
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Grow and Aggressive Merge
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Which tree to Grow or to Merge?

* Assign priorities to answer trees resulting from Grow/Merge
1. Prefer trees matching many query keywords
2. Prefer trees of smaller size
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* Assign priorities to answer trees resulting from Grow/Merge
1. Prefer trees matching many query keywords
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Which tree to Grow or to Merge?

* Assign priorities to answer trees resulting from Grow/Merge
1. Prefer trees matching many query keywords
2. Prefer trees of smaller size

Matches most

keywords
& &

o}b = Apply priority rules
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Which tree to Grow or to Merge?

* Assign priorities to answer trees resulting from Grow/Merge
1. Prefer trees matching many query keywords
2. Prefer trees of smaller size
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Which tree to Grow or to Merge?

* Assign priorities to answer trees resulting from Grow/Merge
1. Prefer trees matching many query keywords
2. Prefer trees of smaller size

9

03% 1. Grow answer tree
2. Merge with same-rooted answer trees

oo
Priority Queue  IMlixed BFS/DFS approach of graph search




In-memory graph layout
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In-memory graph layout
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Row-major, CPU-cache-friendly data layout 2



Duplicate work elimination

* The same answer tree may be created following different
combinations of Grow and Merge
» Duplicate work

* Maintain a history of explored trees

* Every answer tree is inserted only once:
* in the history of explored trees
* in the priority queue

24



Parallel search

e Cannot partition the graph:
* expensive, and we do not know which parts we will need
* no assumption on the shape of the graph

* DFS/BFS alternation incurs mixed scalability requirements

e P-GAM bottlenecks
e size of intermediate results
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Parallel search

e Cannot partition the graph:
* expensive, and we do not know which parts we will need
* no assumption on the shape of the graph

* DFS/BFS alternation incurs mixed scalability requirements

e P-GAM bottlenecks
e size of intermediate results

Shared-everything
Concurrent data structures .
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Experimental evaluation — Col application

* 450,000 PubMed bibliographic notices (2019, 2020)
e 42,000 PDF articles transformed to JSON

« 781 HTML pages describing relationships between people
and organizations

* Load the graph in the main memory

* Query thresholds:
e 1000 solutions
1 minute of execution time
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Col application results (anonymized)
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Conclusion

* ConnectionLens introduces an end-to-end pipeline for
constructing and querying graphs from heterogeneous data

* In-memory storage engine stores the graph data required for
guerying
* P-GAM queries the graph in parallel

29



Find out more about our work

* A. -C. Anadiotis, O. Balalau, C. Conceicao, H. Galhardas, M. Y. Haddad, I.
Manolescu, T. Merabti, J. You. Graph integration of structured,
semistructured and unstructured data for data journalism. Information

Systems (accepted for publication).

* A. -C. Anadiotis, O. Balalau, T. Bouganim, F. Chimienti, H. Galhardas, M.
Y. Haddad, S. Horel, I. Manolescu, Y. Youssef. Empowering Investigative
Journalism with Graph-based Heterogeneous Data Management. IEEE
Data Engineering Bulletin (accepted for publication).

e A. -C. Anadiotis, O. Balalau, T. Bouganim, F. Chimienti, H. Galhardas, M.
Y. Haddad, S. Horel, I. Manolescu, Y. Youssef. Discovering Conflicts of

Interest across Heterogeneous Data Sources with ConnectionlLens.
Demonstration in CIKM 2021.
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