
Wim Martens
University of Bayreuth

LDBC Meeting

@

SIGMOD/PODS'22

Path Representations

Work in progress (paper almost submission ready) with

Matthias Niewerth, Tina Popp, Stijn Vansummeren, Domagoj Vrgoč, Matthias Hofer

Some Challenges in Graph Queries

Some Challenges in Graph Queries
1. The exponential output challenge

Some Challenges in Graph Queries

Consider a query like

MATCH SHORTEST p = (x:A)-[:a+]->(y:B)

RETURN x, y, p

1. The exponential output challenge

Some Challenges in Graph Queries

Consider a query like

MATCH SHORTEST p = (x:A)-[:a+]->(y:B)

RETURN x, y, p

A B...

a a a a a a

a a a a a a

1. The exponential output challenge

Some Challenges in Graph Queries

Consider a query like

MATCH SHORTEST p = (x:A)-[:a+]->(y:B)

RETURN x, y, p

Returns many paths on a graph with nodes and edges2n O(n)

A B...

a a a a a a

a a a a a a

1. The exponential output challenge

}2n

x y p

Some Challenges in Graph Queries

Consider a query like

MATCH SHORTEST p = (x:A)-[:a+]->(y:B)

RETURN x, y, p

Returns many paths on a graph with nodes and edges2n O(n)

A B...

a a a a a a

a a a a a a

1. The exponential output challenge

(This is a lot more than the endpoint pairs from SPARQL and academic research)

}2n

x y p

Some Challenges in Graph Queries

Graph

query

Table

1. The exponential output challenge

2. The composability challenge

Some Challenges in Graph Queries

Graph

query

Table

?

1. The exponential output challenge

2. The composability challenge

Some Challenges in Graph Queries

Graph

query

Table

?

vs

Graph

query

Graph

query

1. The exponential output challenge

2. The composability challenge

Some Challenges in Graph Queries

Graph

query

Table

?

vs

Graph

query

Graph

query

Challenge exists on two levels

- representing the output of entire queries

- representing intermediate results in query plans

1. The exponential output challenge

2. The composability challenge

Some Challenges in Graph Queries
1. The exponential output challenge

2. The composability challenge

3. The "output representation" challenge

Some Challenges in Graph Queries

Graph

query

Table

1. The exponential output challenge

2. The composability challenge

3. The "output representation" challenge

Some Challenges in Graph Queries

Graph

query

Table

1. The exponential output challenge

2. The composability challenge

3. The "output representation" challenge

Some Challenges in Graph Queries

Graph

query

Table ??

make digestible

1. The exponential output challenge

2. The composability challenge

3. The "output representation" challenge

Some Challenges in Graph Queries

Graph

query

Table ??

make digestible

- table can be extremely large and complex

- graph projections look nice but are not lossless

1. The exponential output challenge

2. The composability challenge

3. The "output representation" challenge

Some Challenges in Graph Queries

Graph

query

Table ??

make digestible

- table can be extremely large and complex

- graph projections look nice but are not lossless

1. The exponential output challenge

2. The composability challenge

3. The "output representation" challenge

A

B

C

Some Challenges in Graph Queries

Graph

query

Table ??

make digestible

- table can be extremely large and complex

- graph projections look nice but are not lossless

1. The exponential output challenge

2. The composability challenge

3. The "output representation" challenge

A

B

C

shortest

even length

path
from A

to A

Some Challenges in Graph Queries

Graph

query

Table ??

make digestible

- table can be extremely large and complex

- graph projections look nice but are not lossless

1. The exponential output challenge

2. The composability challenge

3. The "output representation" challenge

A

B

C

shortest

even length

path
Table

from A

to A

Some Challenges in Graph Queries

Graph

query

Table ??

make digestible

- table can be extremely large and complex

- graph projections look nice but are not lossless

1. The exponential output challenge

2. The composability challenge

3. The "output representation" challenge

A

B

C

shortest

even length

path
Table

graph

projection

from A

to A

Some Challenges in Graph Queries

Graph

query

Table ??

make digestible

- table can be extremely large and complex

- graph projections look nice but are not lossless

1. The exponential output challenge

2. The composability challenge

3. The "output representation" challenge

A

B

C

shortest

even length

path
Table

graph

projection

A

B

C
from A

to A

What Do We Want to Do?

What Do We Want to Do?
1. The exponential output challenge

2. The composability challenge

3. The "output representation" challenge

Present an idea that may help here

What Do We Want to Do?
1. The exponential output challenge

2. The composability challenge

3. The "output representation" challenge

Present an idea that may help here

- Focus on 1. and 2.

- We've done a lot of thinking but it's still work in progress

- First paper is close to ready

- I think it's very promising

- We'll definitely keep working on it

What Do We Want to Do?
Store intermediate results of queries as graphs

- Can be exponentially more succinct than the table

- Never larger than the table

- Without losing information (as opposed to graph projection)

What Do We Want to Do?
Store intermediate results of queries as graphs

- Can be exponentially more succinct than the table

- Never larger than the table

- Without losing information (as opposed to graph projection)

Main idea:

What Do We Want to Do?
Store intermediate results of queries as graphs

- Can be exponentially more succinct than the table

- Never larger than the table

- Without losing information (as opposed to graph projection)

Main idea:

p = (x:A)-[:a+]->(y:B)

A

B

C

Query + Graph

D

What Do We Want to Do?
Store intermediate results of queries as graphs

- Can be exponentially more succinct than the table

- Never larger than the table

- Without losing information (as opposed to graph projection)

Main idea:

p = (x:A)-[:a+]->(y:B)

A

B

C

Query + Graph

D

Representation of Paths in Output

A

B

C

"All paths from A to B in this graph"

What Do We Want to Do?

Main idea:

p = (x:A)-[:(aa)+]->(y:A)

A1

B1 C1

Query + Graph Representation of Paths in Output

"All paths from A1 to A1 in this graph"

A2

B2C2

A

B

C

D

Store intermediate results of queries as graphs
- Can be exponentially more succinct than the table

- Never larger than the table

- Without losing information (as opposed to graph projection)

Path Representations
Let = be a graph, where

- maps edge ids to pairs of node ids

- maps each edge to a label

G (NG, EG, η, λ)
η : EG → (NG × NG)
λ

Path Representations

Definition
A path representation over graph is a tuple

 = ,

where

- is an unlabeled graph

- is a total homomorphism

- and

G
R (N, E, η, γ, S, T)

(N, E, η)
γ : (N ∪ E) → (NG ∪ EG)
S ⊆ N T ⊆ N

Let = be a graph, where

- maps edge ids to pairs of node ids

- maps each edge to a label

G (NG, EG, η, λ)
η : EG → (NG × NG)
λ

Path Representations

Definition
A path representation over graph is a tuple

 = ,

where

- is an unlabeled graph

- is a total homomorphism

- and

G
R (N, E, η, γ, S, T)

(N, E, η)
γ : (N ∪ E) → (NG ∪ EG)
S ⊆ N T ⊆ N

Let = be a graph, where

- maps edge ids to pairs of node ids

- maps each edge to a label

G (NG, EG, η, λ)
η : EG → (NG × NG)
λ

if connects to in ,

then should connect to in

e u v R
γ(e) γ(u) γ(v) G

Path Representations

Definition
A path representation over graph is a tuple

 = ,

where

- is an unlabeled graph

- is a total homomorphism

- and

G
R (N, E, η, γ, S, T)

(N, E, η)
γ : (N ∪ E) → (NG ∪ EG)
S ⊆ N T ⊆ N

Let = be a graph, where

- maps edge ids to pairs of node ids

- maps each edge to a label

G (NG, EG, η, λ)
η : EG → (NG × NG)
λ

if connects to in ,

then should connect to in

e u v R
γ(e) γ(u) γ(v) G

start nodes

Path Representations

Definition
A path representation over graph is a tuple

 = ,

where

- is an unlabeled graph

- is a total homomorphism

- and

G
R (N, E, η, γ, S, T)

(N, E, η)
γ : (N ∪ E) → (NG ∪ EG)
S ⊆ N T ⊆ N

Let = be a graph, where

- maps edge ids to pairs of node ids

- maps each edge to a label

G (NG, EG, η, λ)
η : EG → (NG × NG)
λ

if connects to in ,

then should connect to in

e u v R
γ(e) γ(u) γ(v) G

start nodes
target nodes

Path Representations

Definition
A path representation over graph is a tuple

 = ,

where

- is an unlabeled graph

- is a total homomorphism

- and

G
R (N, E, η, γ, S, T)

(N, E, η)
γ : (N ∪ E) → (NG ∪ EG)
S ⊆ N T ⊆ N

Let = be a graph, where

- maps edge ids to pairs of node ids

- maps each edge to a label

G (NG, EG, η, λ)
η : EG → (NG × NG)
λ

if connects to in ,

then should connect to in

e u v R
γ(e) γ(u) γ(v) G

start nodes
target nodes

 represents

"all paths from some node in to some node in "

R
S T

Path Representations

Definition
A path representation over graph is a tuple

 = ,

where

- is an unlabeled graph

- is a total homomorphism

- and

G
R (N, E, η, γ, S, T)

(N, E, η)
γ : (N ∪ E) → (NG ∪ EG)
S ⊆ N T ⊆ N

Let = be a graph, where

- maps edge ids to pairs of node ids

- maps each edge to a label

G (NG, EG, η, λ)
η : EG → (NG × NG)
λ

if connects to in ,

then should connect to in

e u v R
γ(e) γ(u) γ(v) G

start nodes
target nodes

 represents

"all paths from some node in to some node in "

R
S T

This is a lossless representation

of a set or multiset of paths in G

A1

B1 C1

A2

B2C2

A

B

C

D

Path Representations: Examples
The set of even length paths from A to B in

- Each Ai is mapped to A, etc.

- Start nodes:

- Target nodes:

Path Representation

A1

B1

B2

A B C

Path Representations: Examples
The path from A to C twice

- Each Ai is mapped to A, etc.

- Start nodes:

- Target nodes:

C1

Path Representation

Path Representations: Examples
The paths from A to B2n

A B...

a a a a a a

a a a a a a

A B...

a a a a a a

a a a a a a

Path Representation

Path Representations: Envisioned Use
Graph DB

σ π
⋈

π⋈

Query

Path Representations: Envisioned Use
Graph DB

σ π
⋈

π⋈

Query

σ

π⋈

evaluate

subqueries

represent

result

feed into

larger subqueries

PR

Internal query evaluation

Path Representations: Envisioned Use
Graph DB

σ π
⋈

π⋈

Query

σ

π⋈

evaluate

subqueries

represent

result

feed into

larger subqueries

PR

Internal query evaluation
produce

table

produce

graph

projection

Producing output

Path Representations: Envisioned Use
Graph DB

σ π
⋈

π⋈

Query

PRTable compress

decompress

Path Representations: Envisioned Use
Graph DB

σ π
⋈

π⋈

Query

PRTable compress

decompress

What we investigate(d)
Size of representation

Losslessness / Expressivity

Complexity of computing a PR

Complexity of applying upstream operators

Complexity of producing output

Path Representations: Properties

Path Representations: Properties
Representing Multisets of Paths

- PRs can represent any finite multiset of paths in G

Path Representations: Properties
Representing Multisets of Paths

- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset

Path Representations: Properties
Representing Multisets of Paths

- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
- But can be exponentially smaller

Path Representations: Properties
Representing Multisets of Paths

- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
- But can be exponentially smaller

- You can compute the table back from the PR

Path Representations: Properties
Representing Multisets of Paths

- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
- But can be exponentially smaller

- You can compute the table back from the PR
- This costs about linear time in the size of the table

Path Representations: Properties
Representing Multisets of Paths

- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
- But can be exponentially smaller

- You can compute the table back from the PR
- This costs about linear time in the size of the table

Optimization
- PRs can be optimized (make representation small)

Path Representations: Properties
Representing Multisets of Paths

- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
- But can be exponentially smaller

- You can compute the table back from the PR
- This costs about linear time in the size of the table

Optimization
- PRs can be optimized (make representation small)

- Testing multiset equivalence is in polynomial time (!)

Path Representations: Properties
Representing Multisets of Paths

- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
- But can be exponentially smaller

- You can compute the table back from the PR
- This costs about linear time in the size of the table

Optimization
- PRs can be optimized (make representation small)

- Testing multiset equivalence is in polynomial time (!)
- Doing multiset minimization is NP-complete

Path Representations: Properties
Representing Multisets of Paths

- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
- But can be exponentially smaller

- You can compute the table back from the PR
- This costs about linear time in the size of the table

Optimization
- PRs can be optimized (make representation small)

- Testing multiset equivalence is in polynomial time (!)
- Doing multiset minimization is NP-complete

- (But remember that it is exponentially succinct)

Path Representations: Properties
Representing Multisets of Paths

- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
- But can be exponentially smaller

- You can compute the table back from the PR
- This costs about linear time in the size of the table

Optimization
- PRs can be optimized (make representation small)

- Testing multiset equivalence is in polynomial time (!)
- Doing multiset minimization is NP-complete

- (But remember that it is exponentially succinct)

So I'm wondering...
Could PRs be a viable option

 for representing (the paths in)

intermediate results for graph queries?

Path Representations: Properties
Representing Multisets of Paths

- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
- But can be exponentially smaller

- You can compute the table back from the PR
- This costs about linear time in the size of the table

Optimization
- PRs can be optimized (make representation small)

- Testing multiset equivalence is in polynomial time (!)
- Doing multiset minimization is NP-complete

- (But remember that it is exponentially succinct)

So I'm wondering...
Could PRs be a viable option

 for representing (the paths in)

intermediate results for graph queries?

Helps the exponential output challenge

Path Representations: Properties
Representing Multisets of Paths

- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
- But can be exponentially smaller

- You can compute the table back from the PR
- This costs about linear time in the size of the table

Optimization
- PRs can be optimized (make representation small)

- Testing multiset equivalence is in polynomial time (!)
- Doing multiset minimization is NP-complete

- (But remember that it is exponentially succinct)

So I'm wondering...
Could PRs be a viable option

 for representing (the paths in)

intermediate results for graph queries?

Helps the exponential output challenge
Helps the composability challenge?

PRs for Query Evaluation
Regular Path Queries

PRs for Query Evaluation
Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time 

(as opposed to exponential time for tables)

PRs for Query Evaluation
Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time 

(as opposed to exponential time for tables)
- a graph projection of the output in linear time 

(as opposed to exponential time for tables)

PRs for Query Evaluation
Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time 

(as opposed to exponential time for tables)
- a graph projection of the output in linear time 

(as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:

- all paths

- all shortest paths

- "lexicographically shortest paths"

- simple paths

- trails

PRs for Query Evaluation
Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time 

(as opposed to exponential time for tables)
- a graph projection of the output in linear time 

(as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:

- all paths

- all shortest paths

- "lexicographically shortest paths"

even works

if the output

has infinitely

many paths

- simple paths

- trails

PRs for Query Evaluation
Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time 

(as opposed to exponential time for tables)
- a graph projection of the output in linear time 

(as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:

- all paths

- all shortest paths

- "lexicographically shortest paths"

even works

if the output

has infinitely

many paths

The above complexities need to be tweaked for different evaluation modes

- simple paths

- trails

PRs for Query Evaluation
Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time 

(as opposed to exponential time for tables)
- a graph projection of the output in linear time 

(as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:

- all paths

- all shortest paths

- "lexicographically shortest paths"

even works

if the output

has infinitely

many paths

The above complexities need to be tweaked for different evaluation modes
all paths ✔

- simple paths

- trails

PRs for Query Evaluation
Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time 

(as opposed to exponential time for tables)
- a graph projection of the output in linear time 

(as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:

- all paths

- all shortest paths

- "lexicographically shortest paths"

even works

if the output

has infinitely

many paths

The above complexities need to be tweaked for different evaluation modes
all paths ✔
shortest, lexicographically shortest similar⇝

- simple paths

- trails

PRs for Query Evaluation
Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time 

(as opposed to exponential time for tables)
- a graph projection of the output in linear time 

(as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:

- all paths

- all shortest paths

- "lexicographically shortest paths"

even works

if the output

has infinitely

many paths

The above complexities need to be tweaked for different evaluation modes
all paths ✔
shortest, lexicographically shortest similar⇝
simple paths, trails more expensive,  
 but PRs are still exp more succinct than tables

⇝

- simple paths

- trails

PRs for Query Evaluation

Regular Path Queries
From such a PR, we can

- count the number of paths in polynomial time

- uniformly sample a path of length in polynomial timen

Beyond RPQs?

Unions of Regular Path Queries

Beyond RPQs?

Unions of Regular Path Queries
- These are easy to deal with

- Essentially, one just needs a good multiset
semantics for PRs to deal with unions

- That's why we already incorporated multiset
semantics from the start

Beyond RPQs?

Unions of Regular Path Queries
- These are easy to deal with

- Essentially, one just needs a good multiset
semantics for PRs to deal with unions

- That's why we already incorporated multiset
semantics from the start

Conjunctive RPQs

Beyond RPQs?

Unions of Regular Path Queries
- These are easy to deal with

- Essentially, one just needs a good multiset
semantics for PRs to deal with unions

- That's why we already incorporated multiset
semantics from the start

Conjunctive RPQs
- We looked at conjunctions of RPQs (plus projection)

- PRs open up interesting aspects of query optimization

Beyond RPQs?

Unions of Regular Path Queries
- These are easy to deal with

- Essentially, one just needs a good multiset
semantics for PRs to deal with unions

- That's why we already incorporated multiset
semantics from the start

Conjunctive RPQs
- We looked at conjunctions of RPQs (plus projection)

- PRs open up interesting aspects of query optimization

We're looking into those

Conjunctions of (2)RPQs
Take the query

x:A :B

z:D

y:C

:E

r1 r2
r3

r4

πx,z()

Conjunctions of (2)RPQs
Take the query

x:A :B

z:D

y:C

:E

r1 r2
r3

r4

πx,z()
Step 1:

Take the A-nodes of the graph, apply the lemma to get candidates for :B

Lemma
For a given set of nodes and an RPQ , you can compute in linear time

- the set such that there's a path

- from some node in

- to some node in

- a PR that contains all these paths

U r
V

U
V

Conjunctions of (2)RPQs
Take the query

x:A :B

z:D

y:C

:E

r1 r2
r3

r4

πx,z()
Step 1':

Take the A-nodes of the graph, apply the lemma to get candidates for y:C

(With tables for intermediate results, already this step costs exponential time)

Lemma
For a given set of nodes and an RPQ , you can compute in linear time

- the set such that there's a path

- from some node in

- to some node in

- a PR that contains all these paths

U r
V

U
V

Conjunctions of (2)RPQs
Take the query

x:A :B

z:D

y:C

:E

r1 r2
r3

r4

πx,z()
Step 2:

Apply the lemma again to get candidates for z:D and :E

Lemma
For a given set of nodes and an RPQ , you can compute in linear time

- the set such that there's a path

- from some node in

- to some node in

- a PR that contains all these paths

U r
V

U
V

Step 3:

Trim everything; using backward reachability

Conjunctions of (2)RPQs
Take the query

x:A :B

z:D

y:C

:E

r1 r2
r3

r4

πx,z()
Step 4:

Use counting results to efficiently count cardinalities of endpoint pairs in the result

Lemma
For a given PR of and a pair of nodes of , we can compute

the number of paths from to represented by in linear time

R G (u, v) G
u v R

Conjunctions of (2)RPQs
Insight

A B

A B

Using PRs, we can represent

"all paths from A-nodes to B-nodes"

in different ways

1. As you see it here

S T

TS

Conjunctions of (2)RPQs

A B B

A B

A B

A B

Insight

S

S

T
T

This gives you a lot of flexibility

for CRPQ evaluation

2. In a way that allows you to 
get "endpoint pairs" quickly

Concluding
1. The exponential output challenge

2. The composability challenge

3. The "output representation" challenge

1. PRs are succinct, so they may help a lot

2. PRs are graphs, so they may help here too

3. We're not HCI experts, so we don't know how PRs help users to digest results

(but who knows?)

Concluding
1. The exponential output challenge

2. The composability challenge

3. The "output representation" challenge

1. PRs are succinct, so they may help a lot

2. PRs are graphs, so they may help here too

3. We're not HCI experts, so we don't know how PRs help users to digest results

(but who knows?)

Our contribution
We introduce the concept of PRs

that we believe can become quite helpful

for evaluating modern graph DB queries

in which paths are first-class citizens

Thanks!

Questions?
--> happy to chat here

--> feel free to reach out by email

