Path Representations

Wim Martens
University of Bayreuth

LDBC Meeting
@ SIGMOD/PODS'22

Work in progress (paper almost submission ready) with Matthias Niewerth, Tina Popp, Stijn Vansummeren, Domagoj Vrgoč, Matthias Hofer
Some Challenges in Graph Queries
Some Challenges in Graph Queries

1. The exponential output challenge
Some Challenges in Graph Queries

1. The exponential output challenge

Consider a query like

MATCH SHORTEST p = (x:A)-[:a+]->(y:B)
RETURN x, y, p
Some Challenges in Graph Queries

1. The exponential output challenge

Consider a query like

MATCH SHORTEST p = (x:A)-[::a+]->(y:B)
RETURN x, y, p

A

B

...
Some Challenges in Graph Queries

1. The exponential output challenge

Consider a query like

MATCH SHORTEST p = (x:A)-[:a+]->(y:B)
RETURN x, y, p

Returns 2^n many paths on a graph with $O(n)$ nodes and edges
Some Challenges in Graph Queries

1. The exponential output challenge

Consider a query like

```sql
MATCH SHORTEST p = (x:A)-[:a+]->(y:B)
RETURN x, y, p
```

Returns 2^n many paths on a graph with $O(n)$ nodes and edges

(This is a lot more than the endpoint pairs from SPARQL and academic research)
Some Challenges in Graph Queries

1. The exponential output challenge
2. The composability challenge
Some Challenges in Graph Queries

1. The exponential output challenge
2. The composability challenge
Some Challenges in Graph Queries

1. The exponential output challenge
2. The composability challenge

Graph \(\rightarrow\) query \(\rightarrow\) Table \(\rightarrow\) ?

vs

Graph \(\rightarrow\) query \(\rightarrow\) Graph
Some Challenges in Graph Queries

1. The exponential output challenge
2. The composability challenge

Challenge exists on two levels
- representing the output of entire queries
- representing intermediate results in query plans
Some Challenges in Graph Queries

1. The exponential output challenge
2. The composability challenge
3. The "output representation" challenge
Some Challenges in Graph Queries

1. The exponential output challenge
2. The composability challenge
3. The "output representation" challenge
Some Challenges in Graph Queries

1. The exponential output challenge
2. The composability challenge
3. The "output representation" challenge
Some Challenges in Graph Queries

1. The exponential output challenge
2. The composability challenge
3. The "output representation" challenge

Graph \(\xrightarrow{\text{query}} \) Table \(\xrightarrow{\text{make digestible}} \) ??
Some Challenges in Graph Queries

1. The exponential output challenge
2. The composability challenge
3. The "output representation" challenge

- table can be extremely large and complex
- graph projections look nice but are not lossless
Some Challenges in Graph Queries

1. The exponential output challenge
2. The composability challenge
3. The "output representation" challenge

- table can be extremely large and complex
- graph projections look nice but are not lossless
Some Challenges in Graph Queries

1. The exponential output challenge
2. The composability challenge
3. The "output representation" challenge

- Table can be extremely large and complex
- Graph projections look nice but are not lossless

Diagram:
- Graph query
- Make digestible
- Table
- Shortest even length path from A to A
Some Challenges in Graph Queries

1. The exponential output challenge
2. The composability challenge
3. The "output representation" challenge

- Table can be extremely large and complex
- Graph projections look nice but are not lossless

Diagram:
- Graph query
- Make digestible
- Shortest even length path from A to A
Some Challenges in Graph Queries

1. The exponential output challenge
2. The composability challenge
3. The "output representation" challenge

- Table can be extremely large and complex
- Graph projections look nice but are not lossless
Some Challenges in Graph Queries

1. The exponential output challenge
2. The composability challenge
3. The "output representation" challenge

- table can be extremely large and complex
- graph projections look nice but are not lossless
What Do We Want to Do?
What Do We Want to Do?

1. The exponential output challenge
2. The composability challenge
3. The "output representation" challenge

Present an idea that may help here
What Do We Want to Do?

1. The exponential output challenge
2. The composability challenge
3. The "output representation" challenge

Present an idea that may help here

- Focus on 1. and 2.
- We've done a lot of thinking but it's still work in progress
 - First paper is close to ready
- I think it's very promising
 - We'll definitely keep working on it
What Do We Want to Do?

Store intermediate results of queries as graphs

- Can be exponentially more succinct than the table
- Never larger than the table
- Without losing information (as opposed to graph projection)
What Do We Want to Do?

Store intermediate results of queries as graphs

- Can be exponentially more succinct than the table
- Never larger than the table
- Without losing information (as opposed to graph projection)

Main idea:
What Do We Want to Do?

Store intermediate results of queries as graphs
- Can be exponentially more succinct than the table
- Never larger than the table
- Without losing information (as opposed to graph projection)

Main idea:

Query + Graph

\[p = (x:A) -[:a+]-> (y:B) \]
What Do We Want to Do?

Store intermediate results of queries as graphs
- Can be exponentially more succinct than the table
- Never larger than the table
- Without losing information (as opposed to graph projection)

Main idea:

```
p = (x:A)-[:a+]->(y:B)
```

Query + Graph

```
p = (x:A)-[:a+]->(y:B)
```

Representation of Paths in Output

"All paths from A to B in this graph"
What Do We Want to Do?

Store intermediate results of queries as graphs
- Can be exponentially more succinct than the table
- Never larger than the table
- Without losing information (as opposed to graph projection)

Main idea:

Query + Graph

\[p = (x:A) - [\cdot : (aa) +] \rightarrow (y:A) \]

Representation of Paths in Output

"All paths from A1 to A1 in this graph"
Let $G = (N_G, E_G, \eta, \lambda)$ be a graph, where

- $\eta : E_G \rightarrow (N_G \times N_G)$ maps edge ids to pairs of node ids
- λ maps each edge to a label
Let $G = (N_G, E_G, \eta, \lambda)$ be a graph, where
- $\eta : E_G \to (N_G \times N_G)$ maps edge ids to pairs of node ids
- λ maps each edge to a label

Definition

A **path representation** over graph G is a tuple

$$R = (N, E, \eta, \gamma, S, T),$$

where
- (N, E, η) is an unlabeled graph
- $\gamma : (N \cup E) \to (N_G \cup E_G)$ is a total homomorphism
- $S \subseteq N$ and $T \subseteq N$
Path Representations

Let $G = (N_G, E_G, \eta, \lambda)$ be a graph, where
- $\eta : E_G \rightarrow (N_G \times N_G)$ maps edge ids to pairs of node ids
- λ maps each edge to a label

A path representation over graph G is a tuple
$$R = (N, E, \eta, \gamma, S, T),$$
where
- (N, E, η) is an unlabeled graph
- $\gamma : (N \cup E) \rightarrow (N_G \cup E_G)$ is a total homomorphism
- $S \subseteq N$ and $T \subseteq N$

if e connects u to v in R, then $\gamma(e)$ should connect $\gamma(u)$ to $\gamma(v)$ in G
Path Representations

Let \(G = (N_G, E_G, \eta, \lambda) \) be a graph, where
- \(\eta : E_G \rightarrow (N_G \times N_G) \) maps edge ids to pairs of node ids
- \(\lambda \) maps each edge to a label

Definition

A path representation over graph \(G \) is a tuple
\[
R = (N, E, \eta, \gamma, S, T),
\]
where
- \((N, E, \eta) \) is an unlabeled graph
- \(\gamma : (N \cup E) \rightarrow (N_G \cup E_G) \) is a total homomorphism
- \(S \subseteq N \) and \(T \subseteq N \)

If \(e \) connects \(u \) to \(v \) in \(R \), then \(\gamma(e) \) should connect \(\gamma(u) \) to \(\gamma(v) \) in \(G \).
Path Representations

Let \(G = (N_G, E_G, \eta, \lambda) \) be a graph, where
- \(\eta : E_G \to (N_G \times N_G) \) maps edge ids to pairs of node ids
- \(\lambda \) maps each edge to a label

Definition

A **path representation** over graph \(G \) is a tuple
\[
R = (N, E, \eta, \gamma, S, T),
\]
where
- \((N, E, \eta) \) is an unlabeled graph
- \(\gamma : (N \cup E) \to (N_G \cup E_G) \) is a total homomorphism
- \(S \subseteq N \) and \(T \subseteq N \)

If \(e \) connects \(u \) to \(v \) in \(R \), then \(\gamma(e) \) should connect \(\gamma(u) \) to \(\gamma(v) \) in \(G \).
Path Representations

Let $G = (N_G, E_G, \eta, \lambda)$ be a graph, where
- $\eta : E_G \rightarrow (N_G \times N_G)$ maps edge ids to pairs of node ids
- λ maps each edge to a label

A path representation over graph G is a tuple
$$R = (N, E, \eta, \gamma, S, T),$$
where
- (N, E, η) is an unlabeled graph
- $\gamma : (N \cup E) \rightarrow (N_G \cup E_G)$ is a total homomorphism
- $S \subseteq N$ and $T \subseteq N$

if e connects u to v in R, then $\gamma(e)$ should connect $\gamma(u)$ to $\gamma(v)$ in G

R represents "all paths from some node in S to some node in $T"
Path Representations

Let $G = (N_G, E_G, \eta, \lambda)$ be a graph, where

- $\eta : E_G \to (N_G \times N_G)$ maps edge ids to pairs of node ids
- λ maps each edge to a label

Definition

A path representation over graph G is a tuple

$$R = (N, E, \eta, \gamma, S, T),$$

where

- (N, E, η) is an unlabeled graph
- $\gamma : (N \cup E) \to (N_G \cup E_G)$ is a total homomorphism
- $S \subseteq N$ and $T \subseteq N$

if e connects u to v in R, then $\gamma(e)$ should connect $\gamma(u)$ to $\gamma(v)$ in G

R represents "all paths from some node in S to some node in $T"$

This is a lossless representation of a set or multiset of paths in G
Path Representations: Examples

The set of even length paths from A to B in

- Each Ai is mapped to A, etc.
- Start nodes:
- Target nodes:
Path Representations: Examples

The path from A to C twice

Path Representation

- Each Ai is mapped to A, etc.
- Start nodes:
- Target nodes:
Path Representations: Examples

The 2^n paths from A to B

Path Representation
Path Representations: Envisioned Use
Path Representations: Envisioned Use

Graph DB

Query

σ

π

viders

evaluate

represent

result

feed into

larger subqueries

PR

Internal query evaluation
Path Representations: Envisioned Use

- Graph DB
- Query
- \(\sigma\)
- \(\pi\)
- \(\bowtie\)
- \(\pi\)
- \(\sigma\)
- \(\bowtie\)
- \(Q\)
- \(\text{evaluate subqueries}\)
- \(\text{represent result}\)
- \(\text{feed into larger subqueries}\)
- \(\text{Internal query evaluation}\)
- \(\text{produce table}\)
- \(\text{produce graph projection}\)
- \(\text{Producing output}\)
Path Representations: Envisioned Use

Graph DB

Query

Table

compress

decompress

PR
Path Representations: Envisioned Use

What we investigate(d)
- Size of representation
- Losslessness / Expressivity
- Complexity of computing a PR
- Complexity of applying upstream operators
- Complexity of producing output

Graph DB

Query

\[\sigma \pi \bowtie \pi \Rightarrow Q \]

Table

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

compress

decompress

PR
Path Representations: Properties
Path Representations: Properties

Representing Multisets of Paths

- PRs can represent any finite multiset of paths in G
Path Representations: Properties

Representing Multisets of Paths

- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
Path Representations: Properties

<table>
<thead>
<tr>
<th>Representing Multisets of Paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>- PRs can represent any finite multiset of paths in G</td>
</tr>
<tr>
<td>- This is never larger than the table representing this multiset</td>
</tr>
<tr>
<td>- But can be exponentially smaller</td>
</tr>
</tbody>
</table>
Path Representations: Properties

Representing Multisets of Paths

- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
- But can be exponentially smaller
- You can compute the table back from the PR
Path Representations: Properties

Representing Multisets of Paths

- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
- But can be exponentially smaller
- You can compute the table back from the PR
- This costs about linear time in the size of the table
Path Representations: Properties

Representing Multisets of Paths
- PRs can represent any finite multiset of paths in G.
 - This is never larger than the table representing this multiset.
 - But can be exponentially smaller.
- You can compute the table back from the PR.
 - This costs about linear time in the size of the table.

Optimization
- PRs can be optimized (make representation small).
Path Representations: Properties

Representing Multisets of Paths
- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
- But can be exponentially smaller
- You can compute the table back from the PR
- This costs about linear time in the size of the table

Optimization
- PRs can be optimized (make representation small)
- Testing multiset equivalence is in polynomial time (!)
Path Representations: Properties

Representing Multisets of Paths
- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
- But can be exponentially smaller
- You can compute the table back from the PR
- This costs about linear time in the size of the table

Optimization
- PRs can be optimized (make representation small)
- Testing multiset equivalence is in polynomial time (!)
- Doing multiset minimization is NP-complete
Path Representations: Properties

Representing Multisets of Paths
- PRs can represent any finite multiset of paths in G
 - This is never larger than the table representing this multiset
 - But can be exponentially smaller
- You can compute the table back from the PR
 - This costs about linear time in the size of the table

Optimization
- PRs can be optimized (make representation small)
 - Testing multiset equivalence is in polynomial time (!)
- Doing multiset minimization is NP-complete
 - (But remember that it is exponentially succinct)
Path Representations: Properties

Representing Multisets of Paths
- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
- But can be exponentially smaller
- You can compute the table back from the PR
- This costs about linear time in the size of the table

Optimization
- PRs can be optimized (make representation small)
- Testing multiset equivalence is in polynomial time (!)
- Doing multiset minimization is NP-complete
 - (But remember that it is exponentially succinct)

So I'm wondering...

Could PRs be a viable option for representing (the paths in) intermediate results for graph queries?
Path Representations: Properties

Representing Multisets of Paths
- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
- But can be exponentially smaller
- You can compute the table back from the PR
- This costs about linear time in the size of the table

Optimization
- PRs can be optimized (make representation small)
- Testing multiset equivalence is in polynomial time (!)
- Doing multiset minimization is NP-complete
 - (But remember that it is exponentially succinct)

So I'm wondering...
Could PRs be a viable option for representing (the paths in) intermediate results for graph queries?

Helps the exponential output challenge
Path Representations: Properties

Representing Multisets of Paths
- PRs can represent any finite multiset of paths in G
- This is never larger than the table representing this multiset
- But can be exponentially smaller
- You can compute the table back from the PR
- This costs about linear time in the size of the table

Optimization
- PRs can be optimized (make representation small)
- Testing multiset equivalence is in polynomial time (!)
- Doing multiset minimization is NP-complete
 - (But remember that it is exponentially succinct)

So I'm wondering...
Could PRs be a viable option for representing (the paths in) intermediate results for graph queries? Helps the exponential output challenge Helps the composability challenge?
PRs for Query Evaluation

Regular Path Queries
Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time
 (as opposed to exponential time for tables)
Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time
 (as opposed to exponential time for tables)
- a graph projection of the output in linear time
 (as opposed to exponential time for tables)
Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time
 (as opposed to exponential time for tables)
- a graph projection of the output in linear time
 (as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:
- all paths
- all shortest paths
- "lexicographically shortest paths"
- simple paths
- trails
Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time
 (as opposed to exponential time for tables)
- a graph projection of the output in linear time
 (as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:
- all paths
- all shortest paths
- "lexicographically shortest paths"
- simple paths
- trails
- even works if the output has infinitely many paths
Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time (as opposed to exponential time for tables)
- a graph projection of the output in linear time (as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:
- all paths
- all shortest paths
- "lexicographically shortest paths"

The above complexities need to be tweaked for different evaluation modes.
PRs for Query Evaluation

Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time (as opposed to exponential time for tables)
- a graph projection of the output in linear time (as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:
- all paths
- all shortest paths
- "lexicographically shortest paths"

The above complexities need to be tweaked for different evaluation modes
all paths ✔
PRs for Query Evaluation

Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time
 (as opposed to exponential time for tables)
- a graph projection of the output in linear time
 (as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:
- all paths
- all shortest paths
- "lexicographically shortest paths"

The above complexities need to be tweaked for different evaluation modes
all paths ✔
shortest, lexicographically shortest ⇝ similar
Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time (as opposed to exponential time for tables)
- a graph projection of the output in linear time (as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:
- all paths
- all shortest paths
- "lexicographically shortest paths"

The above complexities need to be tweaked for different evaluation modes
- all paths ✓
- shortest, lexicographically shortest ⊆ similar
- simple paths, trails ⊆ more expensive,
 but PRs are still exp more succinct than tables
PRs for Query Evaluation

Regular Path Queries

From such a PR, we can
- count the number of paths in polynomial time
- uniformly sample a path of length n in polynomial time
Beyond RPQs?

Unions of Regular Path Queries
Beyond RPQs?

Unions of Regular Path Queries

- These are easy to deal with
- Essentially, one just needs a good multiset semantics for PRs to deal with unions
- That's why we already incorporated multiset semantics from the start
Beyond RPQs?

Unions of Regular Path Queries
- These are easy to deal with
- Essentially, one just needs a good multiset semantics for PRs to deal with unions
- That's why we already incorporated multiset semantics from the start

 Conjunctive RPQs
Beyond RPQs?

Unions of Regular Path Queries
- These are easy to deal with
- Essentially, one just needs a good multiset semantics for PRs to deal with unions
- That's why we already incorporated multiset semantics from the start

 Conjunctive RPQs
- We looked at conjunctions of RPQs (plus projection)
- PRs open up interesting aspects of query optimization
Beyond RPQs?

Unions of Regular Path Queries
- These are easy to deal with
- Essentially, one just needs a good multiset semantics for PRs to deal with unions
- That's why we already incorporated multiset semantics from the start

Conjunctive RPQs
- We looked at conjunctions of RPQs (plus projection)
- PRs open up interesting aspects of query optimization
 We're looking into those
Conjunctions of (2)RPQs

Take the query

\[\pi_{x,z}(x:A \mathcal{R}_1 y:C \mathcal{R}_2 z:D \mathcal{R}_3 r_1 \mathcal{R}_2 \mathcal{R}_3 \mathcal{R}_4 y:E) \]
Conjunctions of (2)RPQs

Take the query

\[\pi_{x,z}(x:A :B z:D :C :E) \]

Step 1:
Take the A-nodes of the graph, apply the lemma to get candidates for :B

Lemma
For a given set of nodes \(U \) and an RPQ \(r \), you can compute in linear time
- the set \(V \) such that there's a path
- from some node in \(U \)
- to some node in \(V \)
- a PR that contains all these paths
Conjunctions of (2)RPQs

Take the query

\[
\pi_{x,z}(x:A \cdot_r B \cdot_r C \cdot_r D \cdot_r E)
\]

Step 1':
Take the A-nodes of the graph, apply the lemma to get candidates for y:C

(With tables for intermediate results, already this step costs exponential time)
Conjunctions of (2)RPQs

Take the query

\[\pi_{x,z}(x:A \leftarrow r_1 \mapsto B \leftarrow r_2 \mapsto y:C \leftarrow r_3 \mapsto z:D \leftarrow r_4 \mapsto :E) \]

Lemma

For a given set of nodes \(U \) and an RPQ \(r \), you can compute in linear time

- the set \(V \) such that there's a path
- from some node in \(U \)
- to some node in \(V \)
- a PR that contains all these paths

Step 2:
Apply the lemma again to get candidates for \(z:D \) and \(:E \)

Step 3:
Trim everything; using backward reachability
Conjunctions of (2)RPQs

Take the query

\[\pi_{x,z} (x:A \rightarrow r_1 \rightarrow B \rightarrow r_2 \rightarrow y:C \rightarrow r_3 \rightarrow z:D \rightarrow r_4 \rightarrow E) \]

Step 4:
Use counting results to efficiently count cardinalities of endpoint pairs in the result

Lemma
For a given PR R of G and a pair of nodes (u, v) of G, we can compute the number of paths from u to v represented by R in linear time
Using PRs, we can represent "all paths from A-nodes to B-nodes" in different ways.

1. As you see it here
Conjunctions of (2)RPQs

Insight

2. In a way that allows you to get "endpoint pairs" quickly

This gives you a lot of flexibility for CRPQ evaluation.
Concluding

1. The exponential output challenge
2. The composability challenge
3. The "output representation" challenge

1. PRs are succinct, so they may help a lot
2. PRs are graphs, so they may help here too
3. We're not HCI experts, so we don't know how PRs help users to digest results (but who knows?)
Concluding

1. The exponential output challenge
2. The composability challenge
3. The "output representation" challenge

1. PRs are succinct, so they may help a lot
2. PRs are graphs, so they may help here too
3. We're not HCI experts, so we don't know how PRs help users to digest results (but who knows?)

Our contribution

We introduce the concept of PRs that we believe can become quite helpful for evaluating modern graph DB queries in which paths are first-class citizens
Thanks!

Questions?
--> happy to chat here
--> feel free to reach out by email