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Consider a query like

MATCH SHORTEST  p = (x:A)-[:a+]->(y:B) 

RETURN x, y, p

Returns  many paths on a graph with  nodes and edges2n O(n)

A B...

a a a a a a

a a a a a a

1. The exponential output challenge

(This is a lot more than the endpoint pairs from SPARQL and academic research)
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Challenge exists on two levels

- representing the output of entire queries

- representing intermediate results in query plans
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What Do We Want to Do?
1. The exponential output challenge

2. The composability challenge

3. The "output representation" challenge

Present an idea that may help here

- Focus on 1. and 2.

- We've done a lot of thinking but it's still work in progress


- First paper is close to ready

- I think it's very promising


- We'll definitely keep working on it
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What Do We Want to Do?

Main idea:

p = (x:A)-[:(aa)+]->(y:A)

A1

B1 C1

Query + Graph Representation of Paths in Output

"All paths from A1 to A1 in this graph"

A2

B2C2

A

B
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D

Store intermediate results of queries as graphs
- Can be exponentially more succinct than the table

- Never larger than the table

- Without losing information (as opposed to graph projection)
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 represents 

"all paths from some node in  to some node in "

R
S T

This is a lossless representation 

of a set or multiset of paths in G
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Path Representations: Examples
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- Each Ai is mapped to A, etc.
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- Target nodes:
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The  paths from A to B2n

A B...
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Path Representations: Envisioned Use
Graph DB

σ π
⋈

π⋈

Query

PRTable compress

decompress

What we investigate(d)
Size of representation

Losslessness / Expressivity

Complexity of computing a PR

Complexity of applying upstream operators

Complexity of producing output
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Path Representations: Properties
Representing Multisets of Paths

- PRs can represent any finite multiset of paths in  G
- This is never larger than the table representing this multiset
- But can be exponentially smaller

- You can compute the table back from the PR
- This costs about linear time in the size of the table

Optimization
- PRs can be optimized (make representation small)

- Testing multiset equivalence is in polynomial time (!)
- Doing multiset minimization is NP-complete

- (But remember that it is exponentially succinct) 

So I'm wondering...
Could PRs be a viable option


 for representing (the paths in) 

intermediate results for graph queries?

Helps the exponential output challenge
Helps the composability challenge?



PRs for Query Evaluation
Regular Path Queries



PRs for Query Evaluation
Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time 

(as opposed to exponential time for tables)



PRs for Query Evaluation
Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time 

(as opposed to exponential time for tables)
- a graph projection of the output in linear time 

(as opposed to exponential time for tables)



PRs for Query Evaluation
Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time 

(as opposed to exponential time for tables)
- a graph projection of the output in linear time 

(as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:

- all paths

- all shortest paths

- "lexicographically shortest paths"

- simple paths

- trails



PRs for Query Evaluation
Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time 

(as opposed to exponential time for tables)
- a graph projection of the output in linear time 

(as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:

- all paths

- all shortest paths

- "lexicographically shortest paths"

even works

if the output

has infinitely 

many paths

- simple paths

- trails



PRs for Query Evaluation
Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time 

(as opposed to exponential time for tables)
- a graph projection of the output in linear time 

(as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:

- all paths

- all shortest paths

- "lexicographically shortest paths"

even works

if the output

has infinitely 

many paths

The above complexities need to be tweaked for different evaluation modes

- simple paths

- trails



PRs for Query Evaluation
Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time 

(as opposed to exponential time for tables)
- a graph projection of the output in linear time 

(as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:

- all paths

- all shortest paths

- "lexicographically shortest paths"

even works

if the output

has infinitely 

many paths

The above complexities need to be tweaked for different evaluation modes
all paths ✔

- simple paths

- trails



PRs for Query Evaluation
Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time 

(as opposed to exponential time for tables)
- a graph projection of the output in linear time 

(as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:

- all paths

- all shortest paths

- "lexicographically shortest paths"

even works

if the output

has infinitely 

many paths

The above complexities need to be tweaked for different evaluation modes
all paths ✔
shortest, lexicographically shortest  similar⇝

- simple paths

- trails



PRs for Query Evaluation
Regular Path Queries

Given an RPQ, we can compute
- a PR for the set of paths in its output in linear time 

(as opposed to exponential time for tables)
- a graph projection of the output in linear time 

(as opposed to exponential time for tables)

In our draft paper, we study PRs for RPQs under different evaluation modes:

- all paths

- all shortest paths

- "lexicographically shortest paths"

even works

if the output

has infinitely 

many paths

The above complexities need to be tweaked for different evaluation modes
all paths ✔
shortest, lexicographically shortest  similar⇝
simple paths, trails  more expensive,  
                                         but PRs are still exp more succinct than tables

⇝

- simple paths

- trails



PRs for Query Evaluation

Regular Path Queries
From such a PR, we can


- count the number of paths in polynomial time

- uniformly sample a path of length  in polynomial timen
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Beyond RPQs?

Unions of Regular Path Queries
- These are easy to deal with


- Essentially, one just needs a good multiset 
semantics for PRs to deal with unions


- That's why we already incorporated multiset 
semantics from the start

Conjunctive RPQs
- We looked at conjunctions of RPQs (plus projection)

- PRs open up interesting aspects of query optimization

We're looking into those
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Conjunctions of (2)RPQs
Take the query

x:A :B

z:D

y:C

:E

r1 r2
r3

r4

πx,z( )
Step 1':

Take the A-nodes of the graph, apply the lemma to get candidates for y:C

(With tables for intermediate results, already this step costs exponential time)

Lemma
For a given set of nodes  and an RPQ , you can compute in linear time 


- the set  such that there's a path

- from some node in 

- to some node in 


- a PR that contains all these paths
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Conjunctions of (2)RPQs
Take the query

x:A :B

z:D

y:C

:E

r1 r2
r3

r4

πx,z( )
Step 2:

Apply the lemma again to get candidates for z:D and :E

Lemma
For a given set of nodes  and an RPQ , you can compute in linear time 


- the set  such that there's a path

- from some node in 

- to some node in 


- a PR that contains all these paths

U r
V

U
V

Step 3:

Trim everything; using backward reachability



Conjunctions of (2)RPQs
Take the query

x:A :B

z:D

y:C

:E

r1 r2
r3

r4

πx,z( )
Step 4:

Use counting results to efficiently count cardinalities of endpoint pairs in the result

Lemma
For a given PR  of  and a pair of nodes  of , we can compute 

the number of paths from  to  represented by  in linear time

R G (u, v) G
u v R



Conjunctions of (2)RPQs
Insight

A B

A B

Using PRs, we can represent 

"all paths from A-nodes to B-nodes"

in different ways

1. As you see it here

S T



TS

Conjunctions of (2)RPQs

A B B

A B

A B

A B

Insight

S

S

T
T

This gives you a lot of flexibility

for CRPQ evaluation

2. In a way that allows you to 
get "endpoint pairs" quickly
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Concluding
1. The exponential output challenge

2. The composability challenge

3. The "output representation" challenge

1. PRs are succinct, so they may help a lot

2. PRs are graphs, so they may help here too

3. We're not HCI experts, so we don't know how PRs help users to digest results

(but who knows?)

Our contribution
We introduce the concept of PRs 

that we believe can become quite helpful 

for evaluating modern graph DB queries

in which paths are first-class citizens



Thanks!

Questions?
--> happy to chat here

--> feel free to reach out by email


