Generation techniques for consistent, realistic, diverse, and scalable graphs

Oszkár Semeráth, Kristóf Marussy, Aren A. Babikian, Percy Chen, Gábor Szárnyas, Daniel Varró, and others

Graph Models & Model Generation

• Graph models are widely used in software engineering

system designs, data structures, DB content

• Testing and benchmarking scenarios rely on models

Generating (consistent | realistic | diverse | scalable) models!

• Generic, domain-independent generators

Model generation setup

- Generation of valid models = challenging mathematical problem
- Generic, domain-independent model generation

Model generation: Requirements & Objectives

the CoREDISc model

What is consistency?

Invalid configurations

- Inconsistent models invalidate testing / benchmarking - Constraints (queries) \rightarrow validate graph models

invalidTime(p1,p2):= replyTo(p2,p1) \created(p1,t1) \created(p2,t2) \crea

Model validation + Configure generators

Consistent generators

- **Correct:** all constraints are satisfied

××

Consistent models

generator

X

X

X

- Complete: all consistent models can be derived

Extremely challenging logic + numeric reasoning problem

• We constructed scalable logic solvers for the generation of valid graph models. Maximal model size

	Largest model (#Objects)		
	Graph Solver	Sat4J	MiniSat
FAM+WF	6250	58	61
FAM-WF	7000	87	92
Yak+WF	1000	_	_
Yak-WF	7250	86	90
FS	4750	87	89
Ecore	2000	38	41

FAM: Industrial, Avionics FS: File System example of Alloy 5 min timeout

Yakindu: Industrial, Statemachine Ecore: Metamodelling language

Example comparison

Our solver generates ~two orders of magnitude larger models

Semeráth, Oszkár, András Szabolcs Nagy, and Dániel Varró. "A graph solver for the automated generation of consistent domain-specific models." Proceedings of the 40th International Conference on Software Engineering. 2018.

When is Realistic?

- Cannot be distinguished from real model

Distribution of models

Set of generated models is close to real ones

××

X

– In custom generators, realistic nature ensured manually

Realistic

Consistent

• We measured several graph metrics to characterize realistic models

Szárnyas, G., Kővári, Z., Salánki, Á., & Varró, D. (2016, October). Towards the characterization of realistic models: evaluation of multidisciplinary graph metrics. In *Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems* (pp. 87-94).

• Configured graph generator to construct models with the same values

Example evaluation of Multiplex participation coefficient

We were able to derive statistically similar graph models wrt. relevant metrics

Semeráth, O., Babikian, A. A., Chen, B., Li, C., Marussy, K., Szárnyas, G., & Varró, D. (2021). Automated generation of consistent, diverse and structurally realistic graph models. *Software and Systems Modeling*, *20*(5), 1713-1734.

Diverse

Single models are not symmetric
 e.g. copy-paste-models (used frequently)

The distance between **any pairs** of models is large
 E.g. all equivalence classes are covered

- Critical for testing graph processing systems

- Proposed diversity metrics that correlate with mutation score
- Better diversity ⇔
 More faults detected

- Proposed diversity metrics that correlate with mutation score
- Better diversity ⇔
 More faults detected

Alloy (def) < Alloy (s=0) < Human < GS

Correlation between Diversity and Mutation Score in Alloy+GS+Human

Semeráth, O., Farkas, R., Bergmann, G., & Varró, D. (2020). Diversity of graph models and graph generators in mutation testing. *International Journal on Software Tools for Technology Transfer*, *22*(1), 57-78.

Scalability

- In size: ability to generate huge graphs
- In quantity: generation time of next model does not grow

- Interactions between CoRe-DiSc elements
- Consistency is challenging
- Large inconsistent models cannot be transformed to consistent

Tool support

- Implemented in the VIATRA Solver Framework
- Standard EMF as input + output | visualization | config. language

- Structural: VIATRA Query incremental query engine
- Numerical: Microsoft Z3 SMT solver
- Open source: <u>github.com/viatra/VIATRA-Generator</u>

A VIATRA

Research

Z٦