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Challenge - meeting people where they are…

Graphs + Navigational queries + Conceptual modelers are preferred by 
graph community (LPG + triple stores)

Tables + SQL + BI Tools are preferred by business analyst community

Tensors + Linear Algebra + Notebooks are preferred by data science and 
ML community

JSON + GraphQL + IDE/Editors are preferred by the developer community

Can we implement these abstractions as views on common internal 
representation? Can we have these abstractions and high performance?
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Key Insight

The Table, Tensor, Graph, and JSON abstractions are just views on Graph 
Normal Form (aka 6NF + “things”) relational schema.  

A GNF relation is a key plus at most one other value. It is irreducible.

Using GNF in traditional SQL RDBMS’s is performance suicide!  

Recent advances in worst-case optimal joins and semantic optimization make it 
possible to support GNF.
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Use Case:
Business 
Intelligence



TPC-H Schema
LineItem

SF ✕ 6000K
L_ORDERKEY
L_LINENUMBER
L_PARTKEY
L_SUPPKEY
L_QUANTITY
L_EXTENDEDPRICE
L_DISCOUNT
L_TAX
L_RETURNFLAG
L_LINESTATUS
L_SHIPDATE
L_COMMITDATE
L_RECEIPTDATE
L_SHIPINSTRUCT
L_SHIPMODE
L_COMMENT

Orders
SF ✕ 1500K

O_ORDERKEY
O_CUSTKEY
O_ORDERSTATUS
O_TOTALPRICE
O_ORDERDATE
O_ORDERPRIORITY
O_CLERK
O_SHIPPRIORITY
O_COMMENT

Customer
SF ✕ 150K

C_CUSTKEY
C_NAME
C_ADDRESS
C_NATIONKEY
C_PHONE
C_ACCTBAL
C_MKTSEGMENT
C_COMMENT

PartSupp
SF ✕ 800K

PS_PARTKEY
PS_SUPPKEY
PS_AVAILQTY
PS_SUPPLYCOST
PS_COMMENT

Supplier
SF ✕ 10K

S_SUPPKEY
S_NAME
S_ADDRESS
S_NATIONKEY
S_PHONE
S_ACCTBAL
S_COMMENT

Nation
25

N_NATIONKEY
N_NAME
N_REGIONKEY
N_COMMENT

Part
SF ✕ 200K

P_PARTKEY
P_NAME
P_MFGR
P_BRAND
P_TYPE
P_SIZE
P_CONTAINER
P_RETAILPRICE
P_COMMENT

Region
5

R_REGIONKEY
R_NAME
R_COMMENT

TableName
cardinality

Primary Key
Other columns
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TPC-H Schema Mapping
L_PARTKEY

L_ORDERKEY
L_LINENUMBER
L_PARTKEY

LineItem
L_ORDERKEY
L_LINENUMBER
L_PARTKEY
L_SUPPKEY
L_QUANTITY
L_EXTENDEDPRICE
L_DISCOUNT
L_TAX
L_RETURNFLAG
L_LINESTATUS
L_SHIPDATE
L_COMMITDATE
L_RECEIPTDATE
L_SHIPINSTRUCT
L_SHIPMODE
L_COMMENT

L_SUPPKEY
L_ORDERKEY
L_LINENUMBER
L_SUPPKEY

L_QUANTITY
L_ORDERKEY
L_LINENUMBER
L_QUANTITY

L_EXTENDEDPRICE
L_ORDERKEY
L_LINENUMBER
L_EXTENDEDPRICE

L_DISCOUNT
L_ORDERKEY
L_LINENUMBER
L_DISCOUNT

L_TAX
L_ORDERKEY
L_LINENUMBER
L_TAX

L_RETURNFLAG
L_ORDERKEY
L_LINENUMBER
L_RETURNFLAG

L_LINESTATUS
L_ORDERKEY
L_LINENUMBER
L_LINESTATUS

L_SHIPDATE
L_ORDERKEY
L_LINENUMBER
L_SHIPDATE

L_COMMITDATE
L_ORDERKEY
L_LINENUMBER
L_COMMITDATE

L_RECEIPTDATE
L_ORDERKEY
L_LINENUMBER
L_RECEIPTDATE

L_SHIPINSTRUCT
L_ORDERKEY
L_LINENUMBER
L_SHIPINSTRUCT

L_SHIPMODE
L_ORDERKEY
L_LINENUMBER
L_SHIPMODE

L_COMMENT
L_ORDERKEY
L_LINENUMBER
L_COMMENT

Graph normal form (GNF) decomposes 
relations to irreducible components.

For example, for the lineitem table, all the 
value columns become separate relations.
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Q1-b

select
sum(l_extendedprice)

from
Lineitem

  

sum[extendedprice]

// The auto-generated RAI TPC-H schema
// uses the SQL column names

// As RAI supports types and overloading,
// it's not necessary to use Hungarian
// notation (i.e. the letter/underscore prefix)

// Names are easier to read without the
// Hungarian prefix so we’ll omit them here

Total extended price

SQL Tensor Notation
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Q1-d

select
sum(l_extendedprice *

        (1 - l_discount) *
         (1 + l_tax))

from
lineitem

sum[extendedprice *
(1 - discount) *
(1 + tax)

]

Sum of all charges

SQL Tensor Notation
(point-free)
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Q1-d

select
sum(l_extendedprice *
   (1 - l_discount) *
   (1 + l_tax))

from
lineitem

sum[extendedprice[o, num] *
(1 - discount[o, num]) *
(1 + tax[o, num])
for o, num

]

Sum of all charges

SQL Tensor Notation
(point-wise)
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Q1-d

select
sum(l_extendedprice *
   (1 - l_discount) *
   (1 + l_tax))

from
lineitem

def result = sum[charge]

def charge = 
    extendedprice *

(1 - discount) *
(1 + tax)

Sum of all charges

SQL Tensor Notation
(composition)
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Q5-u

select c_custkey
from customer, nation, region
where c_nationkey = n_nationkey and

n_regionkey = r_regionkey and
r_name = 'ASIA'

def result(c) =
nationkey(c, n) and
regionkey(n, r) and
name[r] = "ASIA"
forany n, r

All customers in Asia (Join)

SQL Relational Notation
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Q5-u

select c_custkey
from customer, nation, region
where c_nationkey = n_nationkey and

n_regionkey = r_regionkey and
r_name = 'ASIA'

def result(c) = 
c.nationkey.regionkey.name = "ASIA"

All customers in Asia (Join)

SQL

"ASIA"c

nationkey regionkey name

Navigational Notation
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TPC-H Stacked Query Duration SF100
● SF100 ≈ 100GB of CSV data
● Hardware: EC2 r4.4xlarge (16 vCPU, 122 GB RAM)
● Databricks: EC2 i3.4xlarge (16 vCPU, 122 GB RAM)
● 1 vCPU = 1 hyper thread
● RelationalAI use hand generated query plans
● Spark SQL uses open source Spark on r4.4xl
● Databricks is Spark with proprietary optimizations
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Tables as a Collection of (Hyper)Edge Relations
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 orderkey customer date  price

 1  500  2022-03-27  75

 2  23  2022-03-27  43

1
75

500

price

date

customer

2

2022-03-27

43

23

price

date

customer

    customer(1, 500)
    customer(2, 23)

    date(1, 2022-03-27)
    date(2, 2022-03-27)

    price(1, 75)
    price(2, 43)

date

SQL tables are in a sense a modularity construct, 
grouping relations with the same primary key.



Use Case:
Graph 
Intelligence
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Challenge

Business Intelligence was easy, but how about Graph Intelligence?

The good news is we can express (hyper-)graph use cases using an “edge” relation and:
- Self-joins
- Aggregation
- Recursion (through aggregation)

Using self-joins and recursion in traditional SQL RDBMS’s is performance suicide!
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Degree Query 

SQL
SELECT source AS id, COUNT(*)
FROM edge
GROUP BY id 

Spark Dataframes result = edges.groupBy("src").agg(count("*"))

Spark GraphFrames g = GraphFrame(nodes, edges)
result = g.outDegrees

Neo4J Cypher MATCH (n:node)-[r]->()
RETURN n.id, COUNT(DISTINCT r) as degree

Tensor Notation def degree[x] = count[edge[x]]

3

1

2

0

Sample graph where every 
node is labelled with its 
degree:  the number of 
outgoing edges for that node.
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Triangle Count for Entire Graph

Neo4J Cypher

MATCH( (a:node)-[:POINTSTO]->(b:node) )
MATCH( (b:node)-[:POINTSTO]->(c:node) )
MATCH( (a:node)-[:POINTSTO]->(c:node) )
WHERE a.id < b.id < c.id
RETURN COUNT(*);

SQL

SELECT COUNT(*)
FROM edge e1, edge e2, edge e3
WHERE
  e1.source = e2.source AND
  e1.dest   = e3.source AND
  e2.dest   = e3.dest   AND
  e1.source < e3.source AND
  e3.source < e2.dest

Relational 
Notation

def distinct_triangle(a, b, c) =
    edge(a, b) and
    edge(a, c) and
    edge(b, c) and 
    a < b and b < c 

def result = count[distinct_triangle]

a

b

c

Triangle count is one of the most 
studied  graph analytical queries. One 
of its uses is to compute the clustering 
coefficient, which is a useful descriptive 
statistics of a graph. 

Triangle count has been applied for 
spam detection, and in random graph 
models.

Triangle 
pattern
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Path Count per Node (3 hops)

Neo4J Cypher

MATCH( (a:node)-[:POINTSTO]->(b:node) )
MATCH( (b:node)-[:POINTSTO]->(c:node) )
MATCH( (c:node)-[:POINTSTO]->(d:node) )
RETURN a.id, COUNT(*);

SQL

SELECT e1.source, COUNT(*)
FROM edge e1, edge e2, edge e3
WHERE
  e1.dest = e2.source AND
  e2.dest = e3.source AND
GROUP BY e1.source

Tensor 
Notation

def path3(a, b, c, d) =
    edge(a, b) and
    edge(b, c) and
    edge(c, d)

def result[a] = count[path3[a]]

a

b

c

d
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Results: Path Count per Node (3 hops)
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Graph Analytics

No explicit syntax for graphs

module graph_analytics[G]
  with G use node, edge

  def neighbor(x, y) = edge(x, y) or edge(y, x)
  def outdegree[x] = count[edge[x]]
  def degree[x] = count[neighbor[x]]
  def cn[x, y] = count[intersect[neighbor[x], neighbor[y]]]    // Count of Common Neighbors

  def reachable = edge; reachable.edge // Recursive!
  def reachable_undirected = neighbor; reachable_undirected.neighbor // Recursive!

  def scc[x] = min[v: reachable(x, v) and reachable(v, x)]     // Strongly Connected Component
  def wcc[x] = min[reachable_undirected[x]]                        // Weakly Connected Component

  def cosine_sim[x, y]  = cn[x, y] / sqrt[degree[x] * degree[y]]
  def jaccard_sim[x, y] = cn[x, y] / count[neighbor[x]] + count[neighbor[y]] - cn[x, y]
  …
end



Graph AnalyticsDependencies

From the definition of edge, we build neighbor, from there we can 
build reachable undirected and that gives us the ability to build 
weakly connected components.

From neighbor we can build common neighbors and then jaccard 
similarity which depends on both.

module graph_analytics[G]
  with G use node, edge

  def neighbor(x, y) = edge(x, y) or edge(y, x)
  def outdegree[x] = count[edge[x]]
  def degree[x] = count[neighbor[x]]
  def cn[x, y] = count[intersect[neighbor[x], neighbor[y]]]   

  def reachable = edge; reachable.edge

  def reachable_undirected = neighbor; reachable_undirected.neighbor

  def scc[x] = min[v: reachable(x, v) and reachable(v, x)]  
  def wcc[x] = min[reachable_undirected[x]]                     

  def cosine_sim[x, y]  = cn[x, y] / sqrt[degree[x] * degree[y]]
  def jaccard_sim[x, y] = cn[x, y] / count[neighbor[x]] + count[neighbor[y]] - cn[x, y]
  …
end



Labelled Property Graphs as Relational Graphs
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      Movie
                                   title: Dune
                                   year: 2021
                      id: 3

      

     Director
      Writer
      name: Villeneuve
                   id: 2

      
       Actor
  name: Chalamet
                     id: 1

movie(3)
title(3, "Dune")
year(3, 2021)

director(2)
writer(2)
name(2, "Villeneuve")

directed(2, 3)

actor(1)
name(1, "Chalamet")

acted(1, 3)
role(1, 3, "Paul Atreides")

acted
role: Paul Atreides

directed



Conclusion

We can have relational representation of graphs in a system with... 
- Indexes and index organized relations

- To store adjacency lists
- Materialized views based on the full-query language

- To store precomputed links between nodes (e.g. c.nation.region.name)
- Worst-case optimal multi-way join algorithms

- For efficient evaluation of queries with many joins (like the kind you would seen with in GNF schema)
- For self-joins

- Semantic query optimizer
- To take advantage of graph structure to eliminate exponential amount of redundant work
- To speedup aggregations
- To take advantage of materialized views

- Recursion (implemented with double differencing and demand transformation)
- To optimize fixpoint queries

- Higher order syntax
- To quantify over relation names
- To support property graph and triple-store abstractions (the latter is a view on the former)
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Conclusion (cont.)

For the first time we can have a relational graph management system that supports
- expressive reasoning
- hyper graphs
- temporal features
- performance: JIT, Worst-case optimal joins, semantic query optimization
- scalability: Cloud-native (i.e. separation of compute & storage)
- derived and materialized views 
- streaming support with expressive incremental view maintenance
- versioning
- integrity constraints
- BI - with SQL/Table abstraction
- (Auto)ML - with LA/Tensor abstraction



Use Case:
Linear Algebra



Challenge

How about linear algebra? Can we handle sparse and dense use cases?

Again, the good news is that we can express Linear Algebra operations using:

- Joins
- Aggregation
- Recursion

Using joins and recursion in traditional SQL RDBMS’s is performance suicide!
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Tensor Notation for TPC-H Schema

LineItem
L_ORDERKEY
L_LINENUMBER
L_PARTKEY
L_SUPPKEY
L_QUANTITY
L_EXTENDEDPRICE
L_DISCOUNT
L_TAX
L_RETURNFLAG
L_LINESTATUS
L_SHIPDATE
L_COMMITDATE
L_RECEIPTDATE
L_SHIPINSTRUCT
L_SHIPMODE
L_COMMENT

1 1552 93 1 17 24710.35 0.04 0.02 N O 1996-03-13 1996-02-12 1996-03-22 DELIVER IN PERSON TRUCK
1  674 75 2 36 56688.12 0.09 0.06 N O 1996-04-12 1996-02-28 1996-04-20 TAKE BACK RETURN  MAIL
1  637 38 3  8 12301.04 0.10 0.02 N O 1996-01-29 1996-03-05 1996-01-31 TAKE BACK RETURN  REG AIR
...

l_extendedprice[o, num] 

l_shipdate[o, num]       

l_shipmode[o, num]

1 1552  24710.35
1  674  56688.12
1  637  12301.04
...

1 1552 1996-03-13
1  674 1996-04-12
1  637 1996-01-29
...

1 1552  TRUCK
1  674  MAIL
1  637  REG AIR
...

lineitem.csv

Tensor Notation

...

...

...

...

SQL Table
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Tensors as Relations

29

A relational database system that is effective for tensors
would be an outstanding proof-point for the relational model.

(and imagine the data management benefits this would have for ML systems!)

(1, 4)
(2, 1)
(3, 8)

(1, 1, -1.3)
(1, 2,  0.6)
(2, 1, 20.4)
(2, 2,  5.5)
(3, 1,  9.7)
(3, 2, -6.2)

binary relationvector

matrix ternary relation



Tensors as Relations: Matrix Multiplication

def C[i, j] = sum[k: A[i, k] * B[k, j]]

Rel Our new relational language

Matrix multiplication diagram.svg, CC BY-SA 3.0, User:Bilou

SQL
SELECT A.row, B.col, SUM(A.val * B.val)
FROM A INNER JOIN B ON A.col = B.row
GROUP BY A.row, B.col

MathDeep Learning with Relations at NeurIPS 

https://slideslive.com/38970787/deep-learning-with-relations?ref=account-folder-92050-folders


Use Case:
JSON & 
semi-structured 
data

{

  "first_name": "John",

  "last_name": "Smith",

  "address": { "city": "Seattle",

               "state": "WA" },

  "phone": [

    { "type": "home",

      "number": "206-456" },

    { "type": "work",

      "number": "206-123" }

  ]

}
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Relational Representation of JSON

We can represent JSON with first-order relations in graph normal form
After parsing, JSON is typically represented as a tree (right)

{

  "first_name": "John",

  "last_name": "Smith",

  "address": { "city": "Seattle",

               "state": "WA" },

  "phone": [

    { "type": "home",

      "number": "206-456" },

    { "type": "work",

      "number": "206-123" }

  ]

}

first_name

last_name

address city

state

John

Smith

Seattle

WA

phone 0 type

number

home

206-456

1 type

number

work

206-123
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Relational Representation of JSON

Next, we organize the data by the path abstraction.
This is a relational representation of JSON

{

  "first_name": "John",

  "last_name": "Smith",

  "address": { "city": "Seattle",

               "state": "WA" },

  "phone": [

    { "type": "home",

      "number": "206-456" },

    { "type": "work",

      "number": "206-123" }

  ]

}

first_name

last_name

address city

state

John

Smith

Seattle

WA

phone 0type home

1 work

206-123

address

1

0number 206-456phone
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JSON on GNF benefits

Complete and Efficient Array Support
- GNF makes it possible to support arbitrary nested usage of arrays efficiently.

No Schema Inference and Inefficient Handling of `Erroneous` Data 
- Relations can efficiently be overloaded by type (as opposed to a boxing type), so for JSON there 

is no need to infer a schema. All data is stored equally efficiently

Import+Query as well as Construct+Export
- Because a JSON document is a GNF relation, the same representation can also be constructed 

and exported as a JSON document. Import followed by export results in logically identical 
documents.

No special constructs in Query Language
- Because a JSON document is a relation, there is no need for constructs that mix relational and 

nested data. A document and subdocuments can be passed as arguments to abstractions.



GNF lets us support domain specific syntax

Rel - for relational and tensor dialects (see docs.relational.ai)

SQL - preliminary support using DuckDB

Legend - preliminary support via direct transpilation

GraphQL - TBD

SPARQL - TBD

GQL - TBD

…
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GNF lets us support domain specific syntax

Time-series abstraction is easily expressed in GNF databases (special case of 
vector/tensor)

So is functional programming (pointwise and point-free)

So are diagrammatic languages (e.g. conceptual modeling in ORM - see appendix)

Mapping is left as “exercise to the reader”  
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GNF lets us support domain specific syntax.  What else?
- Eliminates the need for nulls and multi-valued logics [Hoare’s “billion dollar mistake”][Date][Libkin]. 

- Supports DML, i.e. insert, update, upsert, delete —> incrementally maintained materialized views

- Improves semantic stability by making the addition or removal of schema information easier as the 
application evolves (also schema on demand)

- Improves analytic query performance of queries that involve a smaller number of attributes than 
would normally exist in a wide table. The low information entropy of normalized tables allows 
compression schemes and efficiency approaching that of column stores

- Supports temporal features like transaction time and valid time for each piece of information in the 
database

That’s a lot of abstraction goodness that we’ve been too scared to use because of fear of the 
performance hit of binary joins and incomplete query optimization

37



RelationalAI, Inc. All rights reserved 2022

Appendix



The Essence of the Relational Model

39

Have relational database systems been sufficiently ambitious on this point?



40

Most people have 

never used a 

Relational 

Database



Vision Reality

Relational  Databases



Betweenness Centrality

One of many of graph centrality measures which are useful 
for assessing the importance of a node.

High Level Definition: Number of times a node appears on 
shortest paths within a network

Why it’s Useful: Identify which nodes control information 
flow between different areas of the graph; also called 
“Bridge Nodes”

Business Use-Cases:
Communication Analysis: Identify important people 

which communicate across different groups

Retail Purchase Analysis: Which products introduce 
customers to new categories



Betweenness Centrality

Brandes Algorithm is applied as follows:

1. For each pair of nodes, compute all 
shortest paths and capture nodes (less 
endpoints) on said path(s)

2. For each pair of nodes, assign each node 
along path a value of one if there is only 
one shortest path, or the fractional 
contribution (1/n) if n shortest paths

3. Sum the value from step 2 for each node; 
this is the Betweenness Centrality



Betweenness Centrality
// Shortest path between s and t when they are the same is 0. 
def shortest_path[s, t] = Min[
     v, w:
     (shortest_path(s, t, w) and v = 1) or
     (w = shortest_path[s,v] +1 and E(v, t))
 ]

// When s and t are the same, there is only one shortest path between 
// them, namely the one with length 0.

def nb_shortest(s, t, n) = V(s) and V(t) and s = t and n = 1

// When s and t are *not* the same, it is the sum of the number of 
// shortest paths between s and v for all the v's adjacent to t and 
// on the shortest path between s and t.
def nb_shortest(s, t, n) =
    s != t and
    n = sum[v, m:
        shortest_path[s, v] + 1 = shortest_path[s, t] and E(v, t) and
        nb_shortest(s, v, m)
    ]

// sum over all t's such that there is an edge between v and t,
// and v is on the shortest path between s and t
def C[s, v] = sum[t, r:
    E(v, t) and shortest_path[s, t] = shortest_path[s, v] + 1 and
    (
        a = C[s, t] or
        not C(s, t, _) and a = 0.0
    ) and
    r = (nb_shortest[s, v] / nb_shortest[s, t]) * (1 + a)
] from a

// Note that below we divide by 2 because we are double 
counting every edge.

def betweenness_centrality_brandes[v] = 
sum[s, p : s != v and C[s, v] = p]/2
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Unnormalized

ISBN# Title Author Author 
Nationality

Format Price Subject Pages Thickness Publisher Publisher 
Country

Publication 
Type

Genre 
ID

Genre 
Name

1590593324 Beginning MySQL 
Database Design 
and Optimization

Chad 
Russell

American Hardcover 49.99 520 Thick Apress USA Book 1 Tutorial
MySQL

Database

Design



First level of normalization - 1NF

ISBN# Title Author Author 
Nationality

Format Price Pages Thickness Publisher Publisher 
Country

Publication 
Type

Genre ID Genre 
Name

1590593324 Beginning MySQL Database 
Design and Optimization

Chad 
Russell

American Hardcover 49.99 520 Thick Apress USA Book 1 Tutorial

1590593324 Beginning MySQL Database 
Design and Optimization

Chad 
Russell

American E-book 22.34 520 Thick Apress USA Book 1 Tutorial

1234567890 The Relational Model for Database 
Management: Version 2

E. F. 
Codd

British E-book 13.88 538 Thick Addison-W
esley

USA Book 2 Popular 
Science

1234567890 The Relational Model for Database 
Management: Version 2

E. F. 
Codd

British Paperback 39.99 538 Thick Addison-W
esley

USA Book 2 Popular 
Science

ISBN# Subject

1590593324 MySQL

1590593324 Database

1590593324 Design

Book

Subject



Next level of normalization - 2NF

ISBN# Title Author Author 
Nationality

Pages Thickness Publisher Publisher 
Country

Publication 
Type

Genre ID Genre 
Name

1590593324 Beginning MySQL Database 
Design and Optimization

Chad 
Russell

American 520 Thick Apress USA Book 1 Tutorial

1234567890 The Relational Model for Database 
Management: Version 2

E. F. 
Codd

British 538 Thick Addison-W
esley

USA Book 2 Popular 
Science

ISBN# Subject

1590593324 MySQL

1590593324 Database

1590593324 Design

Book

Subject

ISBN# Format Price

1590593324 Hardcover 49.99

1590593324 E-book 22.34

1234567890 E-book 13.88

1234567890 Paperback 39.99

Format- Price



Next level of normalization - 3NF

ISBN# Title Author Pages Thickness Publisher Publication 
Type

Genre ID

1590593324 Beginning MySQL Database 
Design and Optimization

Chad 
Russell

520 Thick Apress Book 1

1234567890 The Relational Model for Database 
Management: Version 2

E. F. 
Codd

538 Thick Addison-W
esley

Book 2

ISBN# Subject

1590593324 MySQL

1590593324 Database

1590593324 Design

Book

Subject

ISBN# Format Price

1590593324 Hardcover 49.99

1590593324 E-book 22.34

1234567890 E-book 13.88

1234567890 Paperback 39.99

Format- Price Author Genre

Author Author 
Nationality

Chad 
Russell

American

E. F. 
Codd

British

Genre ID Genre 
Name

1 Tutorial

2 Popular 
Science

Publisher

Publisher Publisher 
Country

Apress USA

Addison-
Wesley

USA



Other normal forms

EKNF: Elementary key normal form

BCNF: Boyce–Codd normal form

4NF: Fourth normal form

ETNF: Essential tuple normal form

5NF: Fifth normal form

DKNF: Domain-key normal form

6NF: Sixth normal form

Each of the above eliminates some form of redundancy and decomposes the model into 
its elementary (atomic) building blocks.



Ultimate level of normalization - GNF

Book ISBN#

1 1590593324

2 1234567890

Book Subject

1 MySQL

1 Database

1 Design

hasISBN#

hasSubject

Book Format Price

1 1 49.99

1 2 22.34

2 2 13.88

2 3 39.99

FormatHasPrice hasNationality hasName

Author Name

1 Chad 
Russell

2 E. F. 
Codd

Genre Name

1 Tutorial

2 Popular 
Science

hasCountry

Publisher Name

1 Apress

2 Addison- 
Wesley

Book Title

1 Beginning MySQL Database Design and 
Optimization

2 The Relational Model for Database 
Management: Version 2

Book Author

1 Chad 
Russell

2 E. F. 
Codd

Book Pages

1 520

2 538

Book Publisher

1 Apress

2 Addison-W
esley

Book Genre

1 1

2 2

hasAuthorhasTitle hasPublisherhasNumPages

... ...

hasGenre

Author Nationality

1 American

2 British

hasName

Publisher Country

1 USA

2 USA

hasName



Ultimate level of normalization - GNF 

Book ISBN#

1 1590593324

2 1234567890

Book Subject

1 MySQL

1 Database

1 Design

hasISBN#

hasSubject

Book Format Price

1 1 49.99

1 2 22.34

2 2 13.88

2 3 39.99

FormatHasPrice hasNationality hasName

Author Name

1 Chad 
Russell

2 E. F. 
Codd

Genre Name

1 Tutorial

2 Popular 
Science

hasCountry

Publisher Name

1 Apress

2 Addison- 
Wesley

Book Title

1 Beginning MySQL Database Design and 
Optimization

2 The Relational Model for Database 
Management: Version 2

Book Author

1 Chad 
Russell

2 E. F. 
Codd

Book Pages

1 520

2 538

Book Publisher

1 Apress

2 Addison-W
esley

Book Genre

1 1

2 2

hasAuthorhasTitle hasPublisherhasNumPages

... ...

hasGenre

Author Nationality

1 American

2 British

hasName

Publisher Country

1 USA

2 USA

hasName

Similar concept?



Ta-da -- A Relational Knowledge Graph!
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How should we 
represent graphs?



How do you represent relationships in a graph?

With pointers in an adjacency list

https://www.javatpoint.com/graph-theory-graph-representations



How do you represent relationships in a graph?

With an adjacency matrix



How do you represent relationships in a graph?

With an edge relation
SRC DEST

A B

A C

B D

B E

C D

D A

D D

D E



C

A

B

D

Directed Graphs as a Relation

edge(B, A)
edge(B, D)

edge(C, A)
edge(C, B)
edge(C, D)
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Relations are a universal abstraction!

Graph → Binary relation

Hypergraph → n-ary relation with n > 2

Function → Relation with functional dependency constraint

Tensor → Function mapping tuple of integer indexes to a numeric value

Set → Unary relation

Bag → Function from set element to count

…

You can seperate the abstraction from the implementation...



Separation of the what from the how - data structures

Edge relation
SRC DEST

A B

A C

B D

B E

C D

D A

D D

D E



Separation of the what from the how - data structures

Edge relation - src to dest index
SRC DEST

A B

C

B D

E

C D

D A

D

E



Separation of the what from the how - data structures

Edge relation
DEST SRC

A D

B A

C A

D B

D C

D D

E B

E D



Separation of the what from the how - data structures

Edge relation - dest to src index
DEST SRC

A D

B A

C A

D B

C

D

E B

D


