
SIGMOD 2022 (Industry Paper) + LDBC Presentation

Graph Pattern Matching
in GQL and SQL/PGQ

Property Graphs
• A data model based on graphs where both nodes and relationships can have

properties (attributes) and types (label)

owner: Aretha
isBlocked: no

owner: Jay
isBlocked: yes

Account

date: 3/1/2020
amount: 10M

Transfer

owner: Dave
isBlocked: no

owner: Mike
isBlocked: no

date: 6/1/2020
amount: 10M

Transfer

date: 2/1/2020
amount: 10M

Transfer

date: 7/1/2020
amount: 5M

Transfer

date: 4/1/2020
amount: 10M

Transfer

Account

Account

name: Ankh-Morpork
City, Country

Account
isIn

isInproperties

types

Property Graphs in Industry
• Multiple vendors:

• Neo4j
• Oracle
• TigerGraph
• Amazon
• SAP
• Redis
• DataStax, etc.

• Widespread: used by 75% of Fortune 100 companies

• Prediction (Gartner): in the next 5 years, up to 80% of all data analytics tasks will involve graph
databases

• Prediction (IDG): Graph database market will experience 600% growth over the next decade

Querying Property Graphs
• Multiple declarative languages: Cypher, PGQL, GSQL, G-Core, etc...

• They look like dialects of the same language rather then different ones

• New Standard: GQL (Graph Query Language)

• in development since 2019

• Another standardization project: SQL/PGQ (SQL Property Graph Querying):

• graphs are defined as views over a relational schema

• in development since 2017

• The engine of a graph query language: graph pattern matching language (GPML)

• shared by GQL and SQL/PGQ

Standards: Process

Working groups

ISO/IEC JTC1 SC32 WG3

SQL Standard Committee:
9075-16 - SQL/PGQ

39075 - GQL Standard

Linked Data Benchmark Council

Formal Semantics Working Group (FSWG)

Liaison

analyzes design decisions;

provides feedback

Authors
ALIN DEUTSCH (UCSD & TigerGraph)
NADIME FRANCIS (U Gustave Eiffel)
ALASTAIR GREEN (LDBC & Birkbeck)
KEITH HARE (JCC Consulting & Neo4j)
BEI LI (Google)
LEONID LIBKIN (U Edinburgh &
TOBIAS LINDAAKER (DataStax)
VICTOR MARSAULT (CNRS)
WIM MARTENS (U Bayreuth)
JAN MICHELS (Oracle)
FILIP MURLAK (U Warsaw)
STEFAN PLANTIKOW (Neo4j)
PETRA SELMER (Neo4j)
HANNES VOIGT (Neo4j)
OSKAR VAN REST (Oracle)
DOMAGOJ VRGOČ (PUC Chile & IMFD)
MINGXI WU (TigerGraph)
FRED ZEMKE (Oracle)

chair

convenor

vice-chair

ISO WG3 FSWG

LDBC

part-of
RelationalAI & ENS)

GPML: Nodes
Selecting nodes:

 MATCH (x:Account)

 WHERE x.isBlocked = 'no'

owner: Aretha
isBlocked: no

owner: Jay
isBlocked: yes

Account

date: 3/1/2020
amount: 10M

Transfer

owner: Dave
isBlocked: no

owner: Mike
isBlocked: no

date: 6/1/2020
amount: 10M

Transfer

date: 2/1/2020
amount: 10M

Transfer

date: 7/1/2020
amount: 5M

Transfer

date: 4/1/2020
amount: 10M

Transfer

Account

Account

Account

GPML: Nodes
Selecting nodes:

 MATCH (x:Account)

 WHERE x.isBlocked = 'no'

owner: Aretha
isBlocked: no

owner: Jay
isBlocked: yes

Account

date: 3/1/2020
amount: 10M

Transfer

owner: Dave
isBlocked: no

owner: Mike
isBlocked: no

date: 6/1/2020
amount: 10M

Transfer

date: 2/1/2020
amount: 10M

Transfer

date: 7/1/2020
amount: 5M

Transfer

date: 4/1/2020
amount: 10M

Transfer

Account

Account

Account

GPML: Nodes
All nodes:

 MATCH (x)

owner: Aretha
isBlocked: no

owner: Jay
isBlocked: yes

Account

date: 3/1/2020
amount: 10M

Transfer

owner: Dave
isBlocked: no

owner: Mike
isBlocked: no

date: 6/1/2020
amount: 10M

Transfer

date: 2/1/2020
amount: 10M

Transfer

date: 7/1/2020
amount: 5M

Transfer

date: 4/1/2020
amount: 10M

Transfer

Account

Account

Account

GPML: Paths
Combining nodes and edges:

owner: Aretha
isBlocked: no

owner: Jay
isBlocked: yes

Account

date: 3/1/2020
amount: 10M

Transfer

owner: Dave
isBlocked: no

owner: Mike
isBlocked: no

date: 6/1/2020
amount: 10M

Transfer

date: 2/1/2020
amount: 10M

Transfer

date: 7/1/2020
amount: 5M

Transfer

date: 4/1/2020
amount: 10M

Transfer

Account

Account

Account

owner: Jay
isBlocked: yes

Account

owner: Mike
isBlocked: no

Account
date: 7/1/2020
amount: 5M

Transfer

 MATCH (x)-[e1:Transfer]->(y)

 WHERE x.isBlocked = 'no'

 AND y.isBlocked = 'yes'

 AND e1.amount <= 5M

GPML: Paths

Multiple edge options: ~, -, ->, <-

Longer paths are defined via ASCII art:

owner: Aretha
isBlocked: no

owner: Jay
isBlocked: yes

Account

date: 3/1/2020
amount: 10M

Transfer

owner: Dave
isBlocked: no

owner: Mike
isBlocked: no

date: 6/1/2020
amount: 10M

Transfer

date: 2/1/2020
amount: 10M

Transfer

date: 7/1/2020
amount: 5M

Transfer

date: 4/1/2020
amount: 10M

Transfer

Account

Account

Account

date: 3/1/2020
amount: 10M

Transfer

owner: Aretha
isBlocked: no

Account

owner: Jay
isBlocked: yes

Account

owner: Mike
isBlocked: no

Account
date: 7/1/2020
amount: 5M

Transfer

 MATCH (x)-[:Transfer]->(y)<-[:Transfer]-(z)

 WHERE y.isBlocked = 'yes'

GPML: Path traversal

Specifying graph traversal:

owner: Aretha
isBlocked: no

owner: Jay
isBlocked: yes

Account

date: 3/1/2020
amount: 10M

Transfer

owner: Dave
isBlocked: no

owner: Mike
isBlocked: no

date: 6/1/2020
amount: 10M

Transfer

date: 2/1/2020
amount: 10M

Transfer

date: 7/1/2020
amount: 5M

Transfer

date: 4/1/2020
amount: 10M

Transfer

Account

Account

Account

 MATCH (x:Account)-[t:Transfer]->{2,5}(y:Account)

 WHERE x.isBlocked = 'no' AND y.isBlocked = 'yes'

GPML: Path traversal

Specifying graph traversal:

owner: Aretha
isBlocked: no

owner: Jay
isBlocked: yes

Account

date: 3/1/2020
amount: 10M

owner: Dave
isBlocked: no

owner: Mike
isBlocked: no

date: 6/1/2020
amount: 10M

Transfer

date: 2/1/2020
amount: 10M

date: 7/1/2020
amount: 5M

date: 4/1/2020
amount: 10M

Transfer

Account

Account

Account

 MATCH (x:Account)-[t:Transfer]->{2,5}(y:Account)

 WHERE x.isBlocked = 'no' AND y.isBlocked = 'yes'

Transfer

Transfer

Transfer

GPML: Path traversal
Allowed quantifiers: {m,n}, *, +

Path conditions can be added:

 MATCH (x:Account)

 -[t:Transfer WHERE t.amount > 7M]->{2,5}

 (y:Account)

 WHERE x.isBlocked = 'no' AND y.isBlocked = 'yes'

owner: Aretha
isBlocked: no

owner: Jay
isBlocked: yes

Account

date: 3/1/2020
amount: 10M

Transfer

owner: Dave
isBlocked: no

owner: Mike
isBlocked: no

date: 6/1/2020
amount: 10M

Transfer

date: 2/1/2020
amount: 10M

Transfer

date: 7/1/2020
amount: 5M

Transfer

date: 4/1/2020
amount: 10M

Transfer

Account

Account

Account

GPML: Path traversal

It’s not just single edges that can be repeated:

 MATCH (x:Account)

 [-[t:Transfer WHERE t.amount > 7M]->

 [t1: Transfer WHERE t1.amount > 3M] ->]{2,5}

 (y:Account)

 WHERE x.isBlocked = 'no' AND y.isBlocked = 'yes'

owner: Aretha
isBlocked: no

owner: Jay
isBlocked: yes

Account

date: 3/1/2020
amount: 10M

Transfer

owner: Dave
isBlocked: no

owner: Mike
isBlocked: no

date: 6/1/2020
amount: 10M

Transfer

date: 2/1/2020
amount: 10M

Transfer

date: 7/1/2020
amount: 5M

Transfer

date: 4/1/2020
amount: 10M

Transfer

Account

Account

Account

GPML: Simple, Trail, Shortest
Issues when returning paths:

To deal with this GPML allows restrictors and selectors:

• restrictors restrict the set of considered paths to be finite;

• selectors filter out the results to assure finiteness.

owner: Aretha
isBlocked: no

owner: Jay
isBlocked: yes

Account

date: 3/1/2020
amount: 10M

Transfer

owner: Dave
isBlocked: no

owner: Mike
isBlocked: no

date: 6/1/2020
amount: 10M

Transfer

date: 2/1/2020
amount: 10M

Transfer

date: 7/1/2020
amount: 5M

Transfer

date: 4/1/2020
amount: 10M

Transfer

Account

Account

Account

 MATCH

 p = (x WHERE x.owner = 'Mike')

 -[:Transfer]->*

 (y WHERE y.owner = 'Jay')

GPML: Simple, Trail, Shortest
How do restrictors work?

Also available: TRAIL, ACYCLIC

owner: Aretha
isBlocked: no

owner: Jay
isBlocked: yes

date: 3/1/2020
amount: 10M

Transfer

owner: Dave
isBlocked: no

owner: Mike
isBlocked: no

date: 6/1/2020
amount: 10M

Transfer

date: 2/1/2020
amount: 10M

Transfer

date: 7/1/2020
amount: 5M

Transfer

date: 4/1/2020
amount: 10M

Transfer

Account

Account

 MATCH SIMPLE

 p = (x WHERE x.owner = 'Mike')

 -[:Transfer]->*

 (y WHERE y.owner = 'Jay')

Account

Account

GPML: Simple, Trail, Shortest
How selectors work?

Also available: ANY SHORTEST

Can be combined with restrictors

owner: Aretha
isBlocked: no

owner: Jay
isBlocked: yes

date: 3/1/2020
amount: 10M

Transfer

owner: Dave
isBlocked: no

owner: Mike
isBlocked: no

date: 6/1/2020
amount: 10M

Transfer

date: 2/1/2020
amount: 10M

Transfer

date: 7/1/2020
amount: 5M

Transfer

date: 4/1/2020
amount: 10M

Transfer

Account

Account

 MATCH ALL SHORTEST

 p = (x WHERE x.owner = 'Mike')

 -[:Transfer]->*

 (y WHERE y.owner = 'Jay')

GPML: Union, Optional

Two types of union: set-based and multiset-based (SQL UNION vs UNION ALL)

Conditional matches:
 MATCH (x)-[:Transfer]->(y)[-[:Transfer]->(z)]?

 WHERE y.isBlocked = 'yes'

Transfers to a blocked account, and, if available, all outgoing transfers.

GPML: Joins
Finally, we can combine all these into a single query:

Accounts in the same city, with both a direct transfer between them, and also a path that links
them in the other direction (i.e. Aretha is laundering money).

 MATCH TRAIL p = (x) -[:Transfer]-> (y),

 (y) -[:Transfer]->+ (x),

 (x:Account)-[:isIn]->(c1:City),

 (y:Account)-[:isIn]->(c2:City)

 WHERE c1.name = c2.name AND y.isBlocked = 'yes'

GPML: Joins

Money laundering scheme:

 MATCH TRAIL p = (x) -[:Transfer]-> (y),

 (y) -[:Transfer]->+ (x),

 (x:Account)-[:isIn]->(c1:City),

 (y:Account)-[:isIn]->(c2:City)

 WHERE c1.name = c2.name AND y.isBlocked = 'yes'

owner: Aretha
isBlocked: no

owner: Jay
isBlocked: yes

Account

date: 3/1/2020
amount: 10M

Transfer

owner: Dave
isBlocked: no

owner: Mike
isBlocked: no

date: 6/1/2020
amount: 10M

Transfer

date: 2/1/2020
amount: 10M

Transfer

date: 7/1/2020
amount: 5M

Transfer

date: 4/1/2020
amount: 10M

Transfer

Account

Account

Account

name: Ankh-Morpork
City, Country

isIn

isIn

GPML: Joins

Money laundering scheme:

 MATCH TRAIL p = (x) -[:Transfer]-> (y),

 (y) -[:Transfer]->+ (x),

 (x:Account)-[:isIn]->(c1:City),

 (y:Account)-[:isIn]->(c2:City)

 WHERE c1.name = c2.name AND y.isBlocked = 'yes'

owner: Aretha
isBlocked: no

owner: Jay
isBlocked: yes

Account

date: 3/1/2020
amount: 10M

Transfer

owner: Dave
isBlocked: no

owner: Mike
isBlocked: no

date: 6/1/2020
amount: 10M

Transfer

date: 2/1/2020
amount: 10M

Transfer

date: 7/1/2020
amount: 5M

Transfer

date: 4/1/2020
amount: 10M

Transfer

Account

Account

Account

name: Ankh-Morpork
City, Country

isIn

isIn

GPML: Joins

Money laundering scheme:

 MATCH TRAIL p = (x) -[:Transfer]-> (y),

 (y) -[:Transfer]->+ (x),

 (x:Account)-[:isIn]->(c1:City),

 (y:Account)-[:isIn]->(c2:City)

 WHERE c1.name = c2.name AND y.isBlocked = 'yes'

owner: Aretha
isBlocked: no

owner: Jay
isBlocked: yes

Account

date: 3/1/2020
amount: 10M

Transfer

owner: Dave
isBlocked: no

owner: Mike
isBlocked: no

date: 6/1/2020
amount: 10M

Transfer

date: 2/1/2020
amount: 10M

Transfer

date: 7/1/2020
amount: 5M

Transfer

date: 4/1/2020
amount: 10M

Transfer

Account

Account

Account

name: Ankh-Morpork
City, Country

isIn

isIn

Can be embedded in GQL and in SQL/PGQ.

GPML: Output
GPML output: a data structure that combines paths in graphs with bindings of variables

Timeline to Standards
Conference, Date, Place Deutsch et al.

Graph pattern

Graph DB

GPML processor output

SQL/PGQ table

GQL

table

graph view

new graph

Figure 9: Conceptual diagram of GPML, SQL/PGQ and GQL

6.6 Query Outputs
How should the result of pattern matching be represented to pro-
duce the output of a query? We have seen that executing a GPML
statement results in a set of path bindings. Presenting this to the
user depends on the host language, SQL/PGQ or GQL. Figure 9
shows the relationship between GPML and its two host languages.
The output of the GPML processor is consumed by the host to
produce the �nal output requested by the user. For SQL/PGQ, it
will be a table, obtained from the computed reduced path bindings.
For GQL, the output could be more varied, including a graph view,
or new graph. Indeed, each path binding de�nes a subgraph of the
input graph given by its nodes and edges, together with annota-
tions, given by variables assigned to them in the path binding. This
opens up more possibilities for structuring query outputs. While
in the initial release of the GQL standard, outputs will be in line
with those of SQL/PGQ, it is anticipated that in the future more
advanced options will be added.

7 LOOKING FORWARD
In this section we outline the ongoing work on the development of
the SQL/PGQ and GQL standards and list several research problems
that have arisen in the process of designing the GPML.

7.1 Standards Process: Steps and Timing
The SQL/PGQ and GQL standards are being developed in the inter-
national standards committee ISO/IEC JTC1 SC32 WG3 "Database
Languages" with input from various national bodies. In particular,
the US committee INCITS DM32 "Data Management and Inter-
change" and DM32’s SQL/PGQ and GQL expert groups review all
signi�cant US change proposals before they are considered byWG3.

The ISO/IEC JTC1 process has a number of steps with ballots to
transition between the stages. The high-level overview is:

• Initial e�ort – develop and expand the draft;
• Committee Draft (CD) Ballot – 12 weeks;
• Draft International Standard (DIS) Ballot – 20 weeks;
• International Standard (IS) published.

After each ballot, time is needed to resolve the comments submitted.
The current schedule for the progression of the SQL/PGQ and

GQL standards is shown in Figure 10.5 By the time the DIS ballot
starts, the technical speci�cation is fairly stable. Since GPML is
the same for GQL and SQL/PGQ, GQL GPML will be fairly stable
when SQL/PGQ begins DIS ballot. As SC32 WG3 makes progress
on the drafts, it accumulates Language Opportunities (LOs). LOs are

5The schedule depends on work that has not been completed and so could change.

Date SQL/PGQ GQL

2017 Work started
2018 Work started
2021-02-07 CD Ballot End
2022-02-20 CD Ballot End
2022-12-04 DIS Ballot End
2023-01-30 Final Text to ISO
2023-03-13 SQL/PGQ IS Published
2023-05-21 DIS Ballot End
2023-07-30 Final Text to ISO
2023-09-10 GQL IS Published

Figure 10: SQL/PGQ and GQL Timeline

capabilities that are potentially useful, but are not yet ready for the
current versions of the draft standards. Below we provide a sample
of LOs pertaining to GPML:

• Constraining a graph pattern through the introduction of
isomorphic match modes: for example, an edge-isomorphic
match requires all edges matched across all constituent path
patterns in the graph pattern to di�er from each other.

• Queries on multiple graphs in a single concatenated MATCH.
• Path macros for multiple use in a query.
• Outputting the interleaving of bindings in nested quanti�ers,
such as [[(p)−>(q)]* −>(r)]*.

• Cheapest path search, by adding weights to edges.
• Exporting a graph element or path binding to JSON.

GQL also has LOs that go beyond those common with SQL/PGQ.
Examples include property graph keys and constraints [?], system
versioned graphs, and stored queries, procedures, and functions.
As discussed in Section 6.6, formats such as JSON could potentially
be used for returning a raw multi-path binding.

7.2 Research Questions
There are many open questions related to GPML, including estab-
lishing the complexity of its various fragments and extending it to
capture additional aspects of data, such as the temporal aspect.

Some of the most intriguing questions concern processing un-
bounded paths. The innocently looking MATCH (x)−[e]−>*(y)
WHERE AVG(e.a)<1 KEEP ANY SHORTEST may not terminate.
Are there interesting classes of predicates on aggregates of group
variables for which termination can be guaranteed? How to solve
e�ciently shortest path queries with arbitrary regular expressions,
not just −>* as in Dijkstra’s algorithm? Can we handle more com-
plex optimization problems, such as maximizing an objective func-
tion subject to an upper bound on the length or cost of the path (e.g.,
“What is the most scenic route to the airport in at most 2 hours?”).

Another direction is to consider fully recursive graph patterns,
permitting multiple self-references, not just a single one like in the
* operator. Such patterns might be used to search for trees and
other structures more complex than paths. Is there intuitive syntax
to express such patterns? What real-world problems might they
address? What is the cost of adding them to GPML?

Research Challenges
• Find a workable abstraction of GPML for research (systems and theory).

• Support aggregation
MATCH (x)-[e:Flight]->*(y)

WHERE x.name='Zembla'

 AND y.name='Ankh-Morpork'

 AND SUM(e.duration) < 24

• Optimize GMPL processing (vendors already working on it).

