Graph Pattern Matching in GQL and SQL/PGQ

SIGMOD 2022 (Industry Paper) + LDBC Presentation

A data model based on graphs where both nodes and relationships can have properties (attributes) and types (label)

Property Graphs

Property Graphs in Industry

- Multiple vendors:
 - Neo4j
 - Oracle
 - TigerGraph
 - Amazon
 - SAP
 - Redis
 - DataStax, etc.
- Widespread: used by 75% of Fortune 100 companies
- \bullet databases

Prediction (Gartner): in the next 5 years, up to 80% of all data analytics tasks will involve graph

Prediction (IDG): Graph database market will experience **600% growth** over the next decade

Querying Property Graphs

- Multiple declarative languages: Cypher, PGQL, GSQL, G-Core, etc...
 - They look like dialects of the same language rather then different ones
- New Standard: GQL (Graph Query Language)
 - in development since 2019
- Another standardization project: **SQL/PGQ** (SQL Property Graph Querying):
 - graphs are defined as views over a relational schema
 - in development since 2017
- The engine of a graph query language: graph pattern matching language (GPML)
 - shared by GQL and SQL/PGQ

ISO/IEC JTC1 SC32 WG3

SQL Standard Committee: 9075-16 - SQL/PGQ 39075 - GQL Standard

Linked Data Benchmark Council

Authors

Selecting nodes:

MATCH (x:Account) WHERE x.isBlocked = 'no'

Selecting nodes:

MATCH (x:Account) WHERE x.isBlocked = 'no'

All nodes:

MATCH (X)

Combining nodes and edges:

```
MATCH (x)-[e1:Transfer]->(y)
WHERE x.isBlocked = 'no'
  AND y.isBlocked = 'yes'
  AND el.amount \leq 5M
```


Multiple edge options: ~, -, ->, <-

Longer paths are defined via ASCII art:

MATCH (x) - [:Transfer] -> (y) < -[:Transfer] - (z)WHERE y.isBlocked = 'yes'

Specifying graph traversal:

MATCH (x:Account)-[t:Transfer]->{2,5}(y:Account) WHERE x.isBlocked = 'no' AND y.isBlocked = 'yes'

Specifying graph traversal:

MATCH (x:Account)-[t:Transfer]->{2,5}(y:Account) WHERE x.isBlocked = 'no' AND y.isBlocked = 'yes'

Allowed quantifiers: {m,n}, *, +

Path conditions can be added:

MATCH	(x:Account)
	-[t:Transfer WHERE t.a
	(y:Account)
WHERE	x.isBlocked = 'no' AND

It's not just single edges that can be repeated:

```
MATCH
      (x:Account)
      [ -[t:Transfer WHERE t.amount > 7M]->
      (y:Account)
WHERE x.isBlocked = 'no' AND y.isBlocked = 'yes'
```


Issues when returning paths:

```
MATCH
       (x WHERE x.owner = 'Mike'
     р
            -[:Transfer]->*
          WHERE y.owner = 'Jay')
       ( Y
```

To deal with this GPML allows restrictors and selectors:

- **restrictors** restrict the set of considered paths to be finite;
- selectors filter out the results to assure finiteness.

How do **restrictors** work?

MATCH SIMPLE p = (x WHERE x.owner = 'Mike') -[:Transfer]->* WHERE y.owner = 'Jay') (Y

Also available: **TRAIL**, **ACYCLIC**

Also available: ANY SHORTEST Can be combined with restrictors

GPML: Union, Optional

Two types of union: set-based and multiset-based (SQL UNION vs UNION ALL)

Conditional matches:
 MATCH (x)-[:Transfer]->(y)[-[:Transfer]->(z)]?
 WHERE y.isBlocked = 'yes'
Transfers to a blocked account, and, if available, all outgoing transfers.

GPML: Joins

Finally, we can combine all these into a single query:

MATCH	TRAIL	p =	= (x	:)	-[:
			(y)	-[:
			(X	: A	
			(y	: A	
WHERE	cl.nam	e =	= c2	• n	ame

Accounts in the same city, with both a direct transfer between them, and also a path that links them in the other direction (i.e. Aretha is laundering money).

:Transfer]-> (y), :Transfer]->+ (x), ount)-[:isIn]->(c1:City), ount)-[:isIn]->(c2:City) e AND y.isBlocked = 'yes'

Money laundering scheme:

MATCH	TRAIL	р	=	(X)	-[:]	Crans	sf
				(y)	-[:]	Crans	sf
				(x:/	Accoi	int)-	-[
				(y:2	Accoi	int)-	-[
WHERE	cl.nam	ne	=	c2.1	name	AND	У

Money laundering scheme:

MATCH	TRAIL	р	=	(X)	-[:]	Crans	sf
				(-[:]	Crans	sf
				(x:/	Accoi	int)-	-[
				(y:2	Accoi	int)-	-[
WHERE	cl.nam	ne	=	c2.1	name	AND	У

Money laundering scheme:

MATCH	TRAIL	p =	(X)	-[:1	[rans	sf
			(y)	-[:1	Frans	sf
			(x:2	Accoi	int)-	-[
			(y:2	Accoi	int)-	-[
WHERE	cl.nam	le =	c2.1	name	AND	У

GPML: Output

Can be embedded in GQL and in SQL/PGQ.

GPML output: a data structure that combines paths in graphs with bindings of variables

Timeline to Standards

SQL/PGQ Date Work started 2017 2018 CD Ballot End 2021-02-07 2022-02-20 DIS Ballot End 2022-12-04 Final Text to ISO 2023-01-30 SQL/PGQ IS Published 2023-03-13 2023-05-21 2023-07-30

2023-09-10

- GQL

Work started

CD Ballot End

DIS Ballot End Final Text to ISO **GQL IS Published**

Research Challenges

- Find a workable abstraction of GPML for research (systems and theory).
- Support aggregation
 MATCH (x)-[e:Flight]->*(y)
 WHERE x.name='Zembla'
 AND y.name='Ankh-Morpork'
 AND SUM(e.duration) < 24
- Optimize GMPL processing (vendors already working on it).