
Stardog
Experience
with LDBC
Evren Sirin
CTO & Co-Founder
Stardog

x

Stardog
Platform
Overview

• Data model based on RDF

• Edge property extension
(RDF-star)

• Load graph data into Stardog
OR virtualize SQL & NoSQL
databases as graphs

• Data storage in RocksDB,
virtualization built on top of
Calcite with MySQL protocol

• Query with SPARQL,
GraphQL or SQL

A
p

p
s

St
ar

d
o

g
 P

la
tf

o
rm

D
at

a
So

u
rc

es

BI Tools &
Applications

App 2

APIs, Spark
Jobs

App 1

Graph Services

Semantic Layer

C
at

al
o

g

Data Science
Notebooks &
Workbench

Structured
Unstructured
Semi-structured

Inference Engine
Virtualization Engine

Explorer

Studio

Designer

SQL ML Services

Virtual Cache

Graph Data

M
ap

p
in

g

C
at

al
o

g

S
ta

rd
og

 fr
on

t e
nd

 to
ol

s
fo

r c
re

at
io

n,

ex
pl

or
at

io
n

an
d

m
an

ag
em

en
t o

f g
ra

ph
s

SQL Data

Stardog and LDBC

● Following LDBC from a
distance

● Started looking at SNB in
more detail last year
○ Read-only workloads
○ Interactive Complex (IC) queries
○ Data materialized in Stardog
○ Only SPARQL query answering

Tooling Challenges1

RDF Challenges2

SPARQL Challenges3

Query Optimizations Challenges4

LDBC
Challenges

RDF Challenge - Edge Attributes

RDF/SPARQL Representation

snvoc:Person
snvoc:knows snvoc:hasPerson

snvoc:creationDate

2012-07-26T21:23:21.185Z

snvoc:Person
An additional node
is required in RDF to
represent edge
attributes

This results in
additional joins for
the SPARQL queries

RDF-star/SPARQL-star Representation

snvoc:Person
snvoc:knows

snvoc:creationDate

2012-07-26T21:23:21.185Z

snvoc:Person
No additional node
required in RDF-star

Results in simpler
and more performant
SPARQL queries
(20-30% faster)

SPARQL Challenge - Property Paths

● All patterns in SPARQL are directional
○ Need to use union property paths (|) with inverse paths (^)

● Property paths in SPARQL do not have {min, max} limits
○ Need to use explicit UNION clauses

SPARQL Challenge - Shortest Paths

● No shortest path feature in SPARQL
● Stardog provides a SPARQL extension for shortest paths

○ Next step: Try embedded path queries to solve the previous problem

PATHS
START ?person1 {
 ?person1 a snvoc:Person .
 ?person1 snvoc:id "28587302322515"^^xsd:long .
}
END ?person2 {
 ?person2 a snvoc:Person .
 ?person2 snvoc:id "4398046518685"^^xsd:long .
}
VIA {
 ?person1 ((snvoc:knows/snvoc:hasPerson)|^(snvoc:knows/snvoc:hasPerson)) ?person2
}

Query Planning in Stardog

● Stardog implements the Volcano model where each
algebraic expression corresponds to some executable
operators (cf. Graefe work on Cascades framework)
○ triple patterns → index scans
○ BGPs → joins over scans
○ joins → merge, hash, loop (etc.) join algorithms

● Information (SPARQL solutions) flows bottom-up

Query Planning Steps

?message

Comment

?creator

“John”

a

hasCreator

firstName

?message a :Comment

?message :creator ?creator

?message

?creator :name “John”

?creator

 ?message a :Comment .

 ?message :hasCreator ?creator .

 ?creator :firstName "John"

SPARQL Query

Graph representation of the
query

Join Graph

Join order optimization in Stardog

● Each join order (JO) corresponds to an algebraic expression
(query plan)

● Each query plan has an associated cost
● The JO optimiser tries to find the plan with the least cost

?message a :Comment ?message :creator ?creator

⨝ ?creator :name “John”

⨝

⨝

⨝

?creator :name “John”?message :creator ?creator

?message a :Comment

Join order optimization in Stardog

● A bit more complex than this because:
○ need to pick join algorithms too (merge, hash, bind, nested loops, …)
○ choice of join algorithm depends on order of solutions from children
○ huge search space (> factorial)

?message a :Comment ?message :creator ?creator

MJ ?creator :name “John”

HJ

MJ

MJ

?creator :name “John”?message :creator ?creator

?message a :Comment Sort

Query Optimization Challenges

● Complex queries have a lot of joins
○ SPARQL query does not provide any execution hints
○ JO optimization has to deal with a large search space

● Accurate cardinality estimations needed
○ Need to avoid snowball effect for misestimations
○ Deal with renamings - FILTER(?x = ?y) BIND(123 AS ?id)
○ Estimations for patterns/chains with and without constants

■ Auto compute characteristic sets for star-shaped graphs
■ Combine it with probabilistic count-min sketches to track frequent nodes
■ Detect functional relationships, collect statistics about 2-hop chains, …

● Eliminate non-determinism during planning

Some Observations / Suggestions

● Access patterns are very similar in all queries
○ Every query takes person ID as an input parameter
○ Why not look up person by email (multi-valued attribute)?

● Schema flexibility is an important differentiator for graphs
○ Why not have updates that modify graph schema/structure?

● Queries differ very widely based on implementations
○ Is any query change really ok as long as you get the same results?

?rootPerson a snvoc:Person .

?rootPerson snvoc:id ?rootId .

?fr a snvoc:Person .

?fr snvoc:id ?frId .

FILTER(?frId != ?rootId) .

?rootPerson snvoc:id ?rootId .

?fr snvoc:id ?frId .

FILTER(?frId != ?rootId) .

