REGULAR PATH QUERIES IN
MILLENNIUMDB

Domagoj Vrgoc¢

PUC Chile &
A N F Fundamentos
nstitute ftor Foundational Research on Data Jd¢t de IOS datos

MILLENNIUMDB

= What is MillenniumDB?

= Open source graph database

= Based on recent research on wco algorithms and path queries

11 : Person

name =Clint Eastwood
gender =male

role=Bill
ref = IMDb

€o directs:

- no : Movie ——
title=Unforgiven
_—E—-—’/r

role=Delilah |

ref = IMDb

ns . Person

name = Anna Levine

gender =female

©

https://github.com/MillenniumDB/MillenniumDB

MILLENNIUMDB — YES, IT IS RELATIONAL

= How is the data stored?

Connections(from,type,to,edgeld)
Properties(object,property,value)
Labels(object,label)

MILLENNIUMDB — YES, IT IS RELATIONAL

= How is the data stored?

| | .

: role=Bill | , —:_e 3 : acts_inh
— [

. ref=IMDb | | role=Delilah ,

11 . Person - - ns . Person
- _ - — - no : Movie |
= 1 ref = IMDb '
name =Clint Eastwood)) | ! name = Anna Levine
gender =male > title=Unforgiven J L gender =female

les : directs!
L

'..;

Connections(nl,acts_in,n2,el)
Properties(el,role,"Bill")
Labels(nl,Person)

MILLENNIUMDB — SOME DETAILS

= Characteristics:
= Relational storage

= B+tree indices

= Pipelined execution

= Graceful timeouts/query interrupts
= WCO/Sellinger/Greedy for joins

= Automata guided search for paths

Is 1t any good?

BENCHMARKING

= Wikidata Truthy
= 1.25B edges

= 92M nodes
= 46M edge types

= Wikidata query log
= Let's make it interesting: code 500 queries
= Around 800 join queries
= Around 1700 property path queries
= Timeout set to 5min; single core machine, 128GB RAM

BENCHMARKING

= Wikidata Truthy
= 1.25B edges

= 92M nodes
= 46M edge types

. I will just talk
= Wikidata query log about this

= Let's make it interesting: code 500 queries

= Around 800 join queries
= Around 1700 property path queries
= Timeout set to 5min; single core machine, 128GB RAM

RESULTS

Ot

Time (secs)

1_

B BFs
[] Jena

oL L I

B DFs
Virtuoso

[] Blazegraph
[] Neo4)

RESULTS

Engine Supported Error Timeouts Average Median
BEFS 1683 0 0 1.1 0.095
DES 1683 0 0 1.1 0.072
Blazegraph 1683 2 44 27.6 0.396
Jena 1683 14 46 22.8 0.207
Virtuoso 1683 55 4 5.8 0.325
Neo4] 1622 0 42 23.3 0.328

RESULTS

Engine Supported Error Timeouts Average Median
BEFS 1683 0 0 1.1 0.095
DES 1683 0 0 1.1 0.072
Blazegraph 1683 2 44 27.6 0.396
Jena 1683 14 46 22.8 0.207
Virtuoso 1683 55 4 5.8 0.325
Neo4] 1622 0 42 23.3 0.328

What is going on?

HOW T0 EVALUATE PATH QUERIES?

= Theoretician's answer ("This is trivial"): [MW95, CMWS8T7]
= Graph is an automaton
= Regular expression is an automaton
= Do the cross product (on-the-fly to be "efficient")
= Do reachability check from start states to end states

= Which algorithms can do this?
= BFS
= DFS
« A%
= IDDFS

HOW DOES THIS ACTUALLY WORK?

HOW DOES THIS ACTUALLY WORK?

MATCH (KevinBacon)=[?p (~:actor/actor)*]=>(?actor)
RETURN ?actor, ?p

HOW DOES THIS ACTUALLY WORK - BES

qact

HOW DOES THIS ACTUALLY WORK - BES

qact

HOW DOES THIS ACTUALLY WORK - BES

HOW DOES THIS ACTUALLY WORK - BES

qact

1
O“ '
I\‘:a’o\ \0’01'
qmov qmov

Footlose Crazy,Stupid,Love

-actor

This is just B+tree search; Connection (KevinBacon,actor,source,eld)

Requires single page pinned in the buffer (for BFS)!

C)

-actor

HOW DOES THIS ACTUALLY WORK - BES

Qact
1
o '
quV qu’V

Footlose Crazy,Stupid,Love

-actor

HOW DOES THIS ACTUALLY WORK - BES

Qact
A
ot '
quV quV

Footlose Crazy,Stupid,Love

WHAT WILL WE RETURN TO THE USER?

MATCH (KevinBacon)=[?p (~:actor/actor)*]=>(?actor)

RETURN ?actor, ?p

Option 1: Just the enpoint pairs (%,y)
Option 2: Enpoint pairs plus a single path/witness

Option 3: For each endpoint pair all shortest paths connecting them

©

WHAT WILL WE RETURN TO THE USER?

MATCH (KevinBacon)=[?p (~:actor/actor)*]=>(?actor)

RETURN ?actor, ?p

Option 1: Just the enpoint pairs (%,y)
Option 2: Enpoint pairs plus a single path/witness

Option 3: For each endpoint pair all shortest paths connecting them

What type of a path (walk, trail, simple)?

@

WHAT WILL WE RETURN TO THE USER?

MATCH (KevinBacon)=[?p (~:actor/actor)*]=>(?actor)

RETURN ?actor, ?p

Option 1: Just the enpoint pairs (%,y)
Option 2: Enpoint pairs plus a single path/witness

Option 3: For each endpoint pair all shortest paths connecting them

I will look at walks (any path)!

(=)

BES — ALS0 A PATH (ONE PER PAIR)

1: function SEArRCH(G. q)

2 A — Automaton(regex)

3 Open.init() > Empty queue
4 Visited.init() > Empty set
5: start « (n,qp, L)

6 Open.push(start)

7 Visited.push(start)

8 while !Open.isEmpty() do

9 current=Open.pop() > current = (n, q, prev)
10: if ¢ == qf then > A solution is found
11: solutions.add(n)

12: ReconstructPath(current)

13: for neighbour = (n’.q") € Neighbours(current) do

14: if 'neighbour € Visited then

15: next = (n’,q’.n)

16: Open.push(next)

17: Visited.push(next)

BES — ALL SHORTEST PATHS

1: function SEARCH(G, q)

2 A «— Automaton(regex)

3 Open.init()

4 Visited.init()

5: start «— (v, gp,0, L)

6 Open.push(start)

7 Visited.push(start)

8 while !Open.isEmpty() do

9: current=Open.pop()

10: if ¢ == g then

11: solutions.add(n)

12: reconstructPaths(current)

13: for next=(n’, q’) € Neighbours(current) do
14: if !(next) € Visited then

15: new = (n’,q’,depth + 1, prevList.begin = prevList.end = current)
16: Open.push(new)

17: Visited.push(new)

18: if next=(n’,q’) € Visited then

19: new = Visited.get(n’,q’)
20: if depth’ == depth+1 then
2L prevList’.end— >next = current
22: prevList’.end = current

> go initial, gF final
> Empty queue(BEFS).
> Empty set of visited nodes.

> current = (n, q, depth, prevList)

> We reached a solution

> All shortest paths already reached n
» Count the number of shortest paths

> prevList or depth are not compared for equality

> new = (n’,q’,depth’,prevList’)
> Another shortest path to (n',q’)

> Assume that this updated the values in Visited

C)

A FEW COMMENTS ON PATHS

How do we return paths?
= Basicaly a list of node/edge pairs
= Internally this is the structure Wim spoke about

What else could be done?
= Parallel execution

= Start in the middle approach
= Trails, simple paths
= Data comparisons (already done really)

MORE DETAILS

MillenniumDB source code:

= https://github.com/MillenniumDB/MillenniumDB

Explanation of the algorithms:
= https://arxiv.org/abs/2204.11137

Benchmarks:
= https://github.com/MillenniumDB/benchmark
= https://github.com/MillenniumDB/WDBench

https://github.com/MillenniumDB/MillenniumDB
https://arxiv.org/abs/2204.11137
https://github.com/MillenniumDB/benchmark
https://github.com/MillenniumDB/WDBench

IS THIS HOW PATHS ARE IMPLEMENTED?

= SPARQL
= Endpoints/set semantics
= No counting paths(standard)

< c @ O 8 nhttpsy//query.wikidata.org/#SELECT * %0AWHERE {960A%20 wd%3AQ3454165 (*wdt%3AP161%2Fwdt%3AP161)* %3Factor %0A} %0ALIMIT 1
|II||I|I|| Wikidata Query Service £ Examples @Help ~ £ More tools | ~

SELECT *
WHERE {
wd:03454165 ("wdt:Plel/wdt:Plel)* ?actor

}
7 LIMIT 1

Query timeout limit reached

SPARQL'S ODDITIES

|II||I|I|| Wikidata Query Service = Examples @Hep -~ £ More tools ~

SELECT *

, WHERE {

° wd:Q3454165 ~wdt:P161/wdt:P161/*wdt:P161/wdt:P161 ?actor

-

w M

®. 9 837237 results in 5046 ms (@)

THE MESSAGE

Good baselines are really really
really really important!!!

Thank you!

