
Integrating SQL/PGQ to DuckDB
Daniël ten Wolde, Tavneet Singh, Gábor Szárnyas, Peter Boncz
CWI Database Architectures group

SQL/PGQ
● Part of the upcoming SQL:2023 standard

● Read-only

● Graph defined in tables

● Queries can contain special syntax

○ Path-finding

○ Pattern matching

● Cheapest path is a language opportunity

Creating a Property Graph
CREATE PROPERTY GRAPH sn
 VERTEX TABLES (
 person PROPERTIES (personId, firstName),
 university PROPERTIES (universityId, name)
)
 EDGE TABLES (
 knows SOURCE person DESTINATION person PROPERTIES (creationDate),
 studyAt SOURCE person DESTINATION university PROPERTIES (studyYear)
)

Selecting from a graph table
SELECT gt.person1Id, gt.person2Id, gt.studyYear
FROM GRAPH_TABLE (aml,
 MATCH
 (p1 IS person) -[IS knows]-> (p2 IS person)
 -[s1 IS studyAt]-> (u1 IS university)
 WHERE p1.firstName = 'Daniel'
 AND u1.name = 'Universiteit van Amsterdam'
 COLUMNS (p2.name
 , s1.studyYear)
) gt

Goals
● Provide an open-source implementation of SQL/PGQ

● Focus on path-finding algorithms

○ Multi-Source Breadth-First Search for shortest path

○ Batched Bellman-Ford for cheapest path

Challenges
● Graph DBMS should provide a superset of features of an RDBMS

● Efficient shortest path & cheapest path algorithms

● Many-source many-destination queries are common in SQL/PGQ

DuckDB
● Open-source in-process SQL OLAP DBMS

● SQL Parser based on PostgreSQL

○ Changes needed to support SQL/PGQ queries

● Vectorized execution engine

● Support for scalar user-defined functions (UDF)

○ Parallelism useful for shortest path & cheapest path

● Allows extension modules

Compressed Sparse Row (CSR) data structure
● On-the-fly creation

● Compact structure with
good locality

● Index in the vertex array
corresponds to the
id of the vertex

● Vertex array contains
offsets for the edge arrays

Shortest Path
● Expensive to execute shortest path queries one-by-one

● Need for batched solution to amortize this cost

● Ability to share memory access

● Batched variant developed by Manuel Then

○ Works like regular BFS, but starts from multiple nodes

● Share the memory access

○ Major bottleneck

○ Can make use of SIMD instructions (AVX-512)

Multi-Source Breadth-First Search (MS-BFS)

VLDB’14

1

4 3

5

2

6

● Batched variant developed by Manuel Then

○ Works like regular BFS, but starts from multiple nodes

● Share the memory access

○ Major bottleneck

○ Can make use of SIMD instructions (AVX-512)

Multi-Source Breadth-First Search (MS-BFS)

VLDB’14

1

4 3

5

2

6

● Batched variant developed by Manuel Then

○ Works like regular BFS, but starts from multiple nodes

● Share the memory access

○ Major bottleneck

○ Can make use of SIMD instructions (AVX-512)

Multi-Source Breadth-First Search (MS-BFS)

VLDB’14

1

4 3

5

2

6

● Batched variant developed by Manuel Then

○ Works like regular BFS, but starts from multiple nodes

● Share the memory access

○ Major bottleneck

○ Can make use of SIMD instructions (AVX-512)

Multi-Source Breadth-First Search (MS-BFS)

VLDB’14

1

4 3

5

2

6

● Batched variant developed by Manuel Then

○ Works like regular BFS, but starts from multiple nodes

● Share the memory access

○ Major bottleneck

○ Can make use of SIMD instructions (AVX-512)

Multi-Source Breadth-First Search (MS-BFS)

VLDB’14

1

4 3

5

2

6

Cheapest Path
● Batched Bellman-Ford by Manuel Then

● Can also make use of SIMD instructions

BTW’17

SNB Interactive Q13

● Large search space (all possible knows edges)

● MS-BFS

Results for SNB Interactive Q13

DuckDB v0.2.2, Intel(R) Xeon(R) CPU E5-4657L v2 @ 2.40GHz, 96 cores, 768GiB RAM, Fedora 34, NVMe SSD

Total runtime of CSR creation + path finding for 400 substitution parameters

Relative execution times for Query 13

SNB BI Q20

● Pre-compute the edge weights

● Prune the number of nodes and edges to reduce search space

Results for SNB BI Q20

DuckDB v0.2.2, Intel(R) Xeon(R) CPU E5-4657L v2 @ 2.40GHz, 96 cores, 1TiB RAM, Fedora 34

Relative execution times for Query 20

To conclude
● DuckDB is an ideal candidate for SQL/PGQ

○ Lightweight implementation using scalar UDFs

● Scalability of batched algorithm is promising
● Path finding can be further optimized using SIMD instructions

