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SQL/PGQ

e Part of the upcoming SQL:2023 standard
e Read-only
e Graph defined in tables

e Queries can contain special syntax
o Path-finding
o Pattern matching

e Cheapest pathis alanguage opportunity



Creating a Property Graph

CREATE PROPERTY GRAPH sn

VERTEX TABLES (
person PROPERTIES ( personId, firstName ),
university PROPERTIES ( universityId, name )

)

EDGE TABLES (
knows SOURCE person DESTINATION person PROPERTIES ( creationDate ),
studyAt SOURCE person DESTINATION university PROPERTIES ( studyYear )

)



Selecting from a graph table

SELECT gt.personiId, gt.person2ld, gt.studyYear
FROM GRAPH_TABLE ( aml,
MATCH
( p1 IS person ) -[ IS knows ]-> ( p2 IS person )
-[ s1 IS studyAt ]-> ( ul IS university )
WHERE p1.firstName = 'Daniel’
AND ul.name = 'Universiteit van Amsterdam’
COLUMNS ( p2.name
, sT1.studyYear )

) gt



Goals

e Provide an open-source implementation of SQL/PGQ

e Focus on path-finding algorithms
o  Multi-Source Breadth-First Search for shortest path

o Batched Bellman-Ford for cheapest path



Challenges

e Graph DBMS should provide a superset of features of an RDBMS
e Efficient shortest path & cheapest path algorithms

e Many-source many-destination queries are common in SQL/PGQ



DuckDB

e Open-source in-process SQL OLAP DBMS

e SQL Parser based on PostgreSQL

o Changes needed to support SQL/PGQ queries W

e Vectorized execution engine

e Support for scalar user-defined functions (UDF)

o Parallelism useful for shortest path & cheapest path

e Allows extension modules



Compressed Sparse Row (CSR) data structure

e On-the-fly creation

vertex vertex edge edge

id array array index
e Compact structure with T > 2] 1
good locality S .
3 5 > 3
e Indexin the vertex array B E— 4
corresponds to the Z : ; Z
id of the vertex 7 [0 ;
8
9

Y VY

Ol brlwwlwOjW]I_2lOINO| M

e \Vertex array contains
offsets for the edge arrays




Shortest Path

e Expensive to execute shortest path queries one-by-one
e Need for batched solution to amortize this cost

e Ability to share memory access



Multi-Source Breadth-First Search (MS-BFS)

e Batched variant developed by Manuel Then

o  Works like regular BFS, but starts from multiple nodes

e Share the memory access
o  Major bottleneck

o Can make use of SIMD instructions (AVX-512)
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ABSTRACT have influence on others and, as a consequence, are of great

importance to spread information, ¢.g., for marketing pur-
poses [20]

In a wide range of graph analytics algorithms, including
shortest path computation [13], graph centrality calcula-
tion [9, 27], and k-hop neighborhood detection [12], breadth-
first search (BFS)-based graph traversal is an elementary
building block used to systematically traverse a graph, i.e.,
to visit all reachable vertices and edges of the graph from a

Graph analytics on social networks, Web data, and com-
munication networks has been widely used in a plethora of
applications. Many graph analytics algorithms are based on
breadth-first search (BFS) graph traversal, which is not only

time-consuming for large datasets but also involves much
redundant computation when executed multiple times from
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Multi-Source Breadth-First Search (MS-BFS)

e Batched variant developed by Manuel Then

o  Works like regular BFS, but starts from multiple nodes

e Share the memory access

BFS 1st level
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Multi-Source Breadth-First Search (MS-BFS)

e Batched variant developed by Manuel Then

o  Works like regular BFS, but starts from multiple nodes

e Share the memory access

BFS 2nd level
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Cheapest Path

Batched Bellman-Ford by Manuel Then

Can also make use of SIMD instructions

BTW’17

Efficient Batched Distance and Centrality Computation in
Unweighted and Weighted Graphs

Manuel Then! Stephan Giinnemann? Alfons Kemper? Thomas Neumann*

Abstract: Distance and centrality computations are important building blocks for modern graph
datat as well as for dedi d graph analytics systems. Two commonly used centrality metrics
are the compute-intense closeness and betweenness centralities, which require numerous expensive
shortest distance calculations. We propose batched algorithm execution to run multiple distance
and centrality computations at the same time and let them share common graph and data accesses.
Batched execution amortizes the high cost of random memory accesses and presents new vectorization
potential on modern CPUs and compute accelerators. We show how batched algorithm execution
can be leveraged to significantly improve the performance of distance, closeness, and bet:
centrality calculations on unweighted and weighted graphs. Our evaluation demonstrates that batched
execution can improve the runtime of these common metrics by over an order of magnitude.




SNB Interactive Q13

Person

F Person

id = $personlid

l—knows*O..—{ id = $person2id

e Large search space (all possible knows edges)

e MS-BFS



Results for SNB Interactive Q13
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Relative execution times for Query 13
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SNB Bl Q20

company: Company ( knows.weight: min(abs(saA.classYear — saB.classYear)) + 1
name = $company
personA: Person el QIR personB: Person
workAt compute weighted saA: saB:
shortest path studyAt studyAt
on knows.weight .
personl: Person person2: Person 3 University ¢
# person2 id = $person2id

e Pre-compute the edge weights

e Prunethe number of nodes and edges to reduce search space



Results for SNB Bl Q20
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Relative execution times for Query 20
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To conclude

e DuckDBis an ideal candidate for SQL/PGQ

o Lightweight implementation using scalar UDFs
e Scalability of batched algorithm is promising
e Path finding can be further optimized using SIMD instructions



