TAOBench

Audrey Cheng, Xiao Shi, Aaron Kabcenell, Shilpa Lawande,
Hamza Qadeer, Jason Chan, Harrison Tin, Ryan Zhao,
Peter Bailis, Mahesh Balakrishnan, Nathan Bronson, Natacha Crooks, lon Stoica

4qriselab

UC Berkeley

Audrey Cheng, PhD student in Lrise
Advised by Natacha Crooks and lon Stoica

UC Berkeley

Research on transaction processing for databases
e RAMP-TAO in VLDB ‘21 (Best Industry Paper Award)

Introduction

TAOBench: a new benchmark for social networks based on

00 production workloads (VLDB ‘22)!
Meta

How can TAOBench be useful to LDBC?

Social Networks

Ubiquitous!
- Meta, Twitter, Linkedln, WeChat,
ByteDance (TikTok)

Supported by large-scale, geo-distributed

data stores

- TAO, Manhattan, Voldemort, PaxosStore,
ByteGraph

Social Network Benchmarks?

Lack of publicly available, realistic workloads

- Difficult to understand limits of existing systems
- Challenging evaluate new features and mechanisms

What are the properties should be captured by the workloads of a
social network benchmark?

Desired Properties

Q Derived from production traces

To the best of our knowledge, only 1 exists: LinkBench from Meta

Captures any transactional requirements

Single-shot, multi-key semantics for improved performance and scalability

Expresses colocation constraints

Sharding can reflect user intent, privacy constraints, or requlatory compliance

Models request distributions without prescriptive query types
Represent workloads via distributions for adaptability and flexibility

Exhibits behavior of multiple tenants

Product groups can exhibit coordinated behavior

facebookarchive/
linkbench \

Facebook Graph Benchmark

Benchmark released in 2014

» Derived from partial production trace (excluding requests that hit cache)
- Single MySQL instance

- No graph-level transactions

- No information about colocation preferences and constraints

LDBC Social Network Benchmark

Important workload for graph databases

- More processing-intensive rather than serving

How can we supplement this workload with TAOBench?

1. Characterizing the Social Network
2. Benchmark Details

3. Distributed DB Evaluation

Social Network O

A benchmark is only as
useful as the workloads
from which it is derived

Workload

TAO @ Facebook

Diverse products: Underlies many applications
Huge scale: >10B reads and >10M writes per second
Simple graph API: Do a few things well as scale

Eventually consistent*: High availability and low latency

Primary region for shard Secondary region for shard

MySQL
replication: data,
consistency maint.

MySQL > MysQL T\
master replica
Cache
T Writes, Cache misses T consistency
cache misses, maintenance
invalidates
<4 4—/
r Primary / Secondary
A A A A
Cache Writes, Cache Writes,
consistency cache misses, consistency cache misses,
maintenance invalidates maintenance invalidates
- X T S
Follower Follower Follower Follower

| J] _J])1

Clients | Clients Clients | Clients

TAQO’s Workload Satisfies All 5 Properties

Q Derived from production traces

Support majority of social graph requests for Meta’s 3.6 billion monthly active users

Captures any transactional requirements

Failure-atomic write transactions and read-only transactions (RAMP-TAQO)

Expresses colocation constraints
Applications can choose to explicitly colocate data in the MySQL layer

Models request distributions without prescriptive query types
With 10K+ query types per day, distributions are needed to model the full workload

Exhibits behavior of multiple tenants

Many applications and other infrastructures layered on top of TAO

Collecting Production Data

Analyze traces collected over 3 days

- Distributions do not vary significantly between different periods

Uniformly sample over objects (nodes) and associations (edges)

« Capture all requests that touch these items
- No conflicts on these keys are missed

:> 99.7% reads, 0.2% writes, and 0.01% write transactions

Read and Write Hotspots

Read and write hotspots occur on different keys

» Only 0.1% of the top 400K keys overlap

Like Assoc Access Distribution

e Top 400K write keys

Read frequently,
written to frequently

Writes / Day
2

Read infrequently,

)1 3 5
written to frequently 10 10 10

Reads / Day

Transaction Size

Some transactions involve many items

» Most of these undergo an optimized protocol (described in RAMP-TAQ)

Write Transaction Size Distribution Write Transaction Shard Distribution
109 109
102+ 102

Frequency
S
A
Frequency

Ilwlllll bomm 1 1 bl sl & | |
25 50 75 100 0 25 50 75 100

Number of Operations Number of Shards

Contention

Transactional conflicts varies greatly for different application use cases

» >97.3% of write-write contention due to intentionally racing writes

Application use case:

- Pre-generate edges for live video time slices
- Redundant creates to ensure timely processing

Key Type Distribution

—~~].OO)
A : I,. ® Write-read conflicts
S L ""‘i‘;' L T P ® Write-write conflicts
.9 -l Sy -“"\
- “ + S
& 10-6 e, &
& 10 '- 1.1
Fy .
- T .
Q '
- 1012 - - - . -

10° 103 10° 107 107

Conflicts / Day (respectively)

Parametrizing the Workload

ldentify set of parameters sufficient to reliably reproduce workloads

* 1. Generalizable to other data stores

« 2. Unique to TAO

Parameter

Description

Transaction sizes
Sharding

Op. types
Request sizes
Association types
Preconditions
Read tiers

Discrete distr. for read- & write-only txns
Discrete distr. for objects & associations
Proportions for single- & mutli-key regs.
Discrete distr. of data sizes

Proportions of association types
Proportions of precondition categories
Proportions of regs. served by each tier

02

TAOBench

A new benchmark for
social networks

Benchmark Architecture

Scalable, distributed drivers that are easily extensible to other systems

- Benchmark parameters: duration, target throughput, warm-up

- Workload parameters: configuration file with probability distributions

— ——

or Tm Em mm mm Em Em Em Em Em Em Em o Em Em = e

txn_sizes={2,3,...};
read_percent=0.99;

———————————

M S NN N SN EEE S D S SIS S S S S S S e e

Benchmark Driver

Workload Generator

Social graph generation
Requests

Mg

%Data Sto

V)

re

Client Threads

AN

Benchmark API

Simple APl based on TAO's:

- read(key)
- read_txn(keys)
- write(key, [preconditions])

- write_txn(key, [preconditions])

Easy to map to a range of databases

» Support for MySQL and PostgreSQL
- Adapters for Cloud Spanner, CockroachDB, PlanetScale, TiDB, and YugabyteDB

Benchmark Workloads

Open source 3 workloads based on production data

Workload Description

T — Transaction Current transactional workload

A — Application Speculative transactional workload
O — Overall Comprehensive TAO workload

Validating Benchmark

Compare latency distribution and contention profiles

- Statistically identical latency distributions

« Contention errors also match

Workload T.1 Workload T.2
[Production [Production
1072 1 Benchmark _3 [1 Benchmark
> > 10
= &
: :
210 g
— =
& A~ 10—5
10~ |
0 200 400 600 0 200 400 600

Request Latency (ms) Request Latency (ms)

Comparing 03
Data bases How can TAOBench be

used on other systems?

Distributed Databases

Cloud 6- ¢/f planetscale

Spanner
CockroachDB

Google’s geo-distributed SQL database Commercial, open-source database Sharded MySQL database (Vitess)

« Custom SQL - Compatible with PostgreSQL - MySQL semisync replication
- Paxos for replication - Raft for replication - Read-committed isolation
- TrueTime for strict serializability - MVCC for serializability across shards

TiDB L

yugabyteDB

HTAP, open-source database (PingCAP) Cloud-native, open-source database

- Compatible with MySQL - Compatible with PostgreSQL
- Raft forreplication - Raft for replication
+ Optimistic / pessimistic locking for Sl - MVCC for Sl and serializability

Evaluation

For cluster configurations, core parity if possible, cost parity otherwise:

- Allocate 48 cores for hosted, cloud clusters in a single region

» 6-node cluster for Spanner

Received extensive tuning assistance from all companies except Spanner

Latency (ms)

Latency (ms)

Results

Cloud
Spanner

300

300
200
1001
() R S8
0 20K 40K 60K 80K 100K

Observed Throughput (regs / s)

@'

300

200

100

CockroachDB
—<>— Reads —e— Writes
300
200 .
100

O.

¢/f planetscale

—+— Read transactions

% 10K 20K 30K

QTiDB

300
2001
100
& = =
— fo, £
% 10K

Workload A (write transaction-heavy)

300
200

O 4
Observed Throughput (reqs / s)

300

200

100

0

0 20K 40K 60K
Observed Throughput (regs / s)

300

200

100 W__&a/adﬁ

0 20K 40K 60K 80K
Observed Throughput (reqs / s)

Workload O (read-heavy)

P

yugabyteDB

—&— Write transactions

100

100

50

% 1K 20K 30K

Observed Throughput (reqs / s)

Latency (ms)

Results
Cloud 6- @/ planetscale

@ TiDB L

Spanner
CockroachDB yugabyteDB
—<&— Reads —oe— Writes —+— Read transactions —&— Write transactions
300 300 300 300 100
200 200 200

50

Latency (ms)

100 100 100
g—a—=% £5
| | £ a— SRR %
0 0 % 10K 20K 30K
Workldad A (write transaction-heavy)
300" 300 300 300 100
200 200 200 200
50
1001 100 100 100 MXJ
GE0a-aaeg-gaa-g— 0 R TR 88— ngam S 56 5500k
0.%&6&%4&“‘4 e 24 0 0 = = SESo< | 0” — =="ay S {.‘_’.‘_.’._-_3__'._.-__’:,‘-:“__--"‘
0 20K 40K 60K 80K 100K 0 0 20K 40 60K 0 20K 40K 60K 80K 0 10K 20K 30K

Observed Throughput (reqs /s) Observed Throughput (ré Observed Throughput (reqs /s) Observed Throughput (reqs /s) Observed Throughput (reqs / s)

Workload O (read-heavy)

Higher performance on Workload O due to more reads

Results

Cloud
Spanner
300
g
< 200
Q
5
£ 100
L R (R e
0" R=G——090

0 10K 20K 30K

300

Do
S
O

p—
(e
e

Latency (ms)

FE-Ea-0a99a-naas
TR ==
-

O.M&éﬁt =2

0 20K 40K 60K 80K 100K

Observed Throughput (regs / s)

40K

@'

CockroachDB
—<>— Reads —o— Writes
300
200 5
100

O.

T
Workload A (write transaction-heavy)

Observed Throughput (reqs / s)

Workload O (read-heavy)

Elucidate performance differences on the same system

¢/f planetscale

300

200

100

0 10K 20K

300

200

100

% 20K 40

Observed Throughput (regs / s)

—— Read transactions

300

200

100

QTiDB

P

yugabyteDB

—&— Write transactions

100°

50

D<[
s 1)

o O -0

N
SR X X 5%

?DCJ

0 10K

20K

NS,

0 20K 40K 60K 80K 0
Observed Throughput (reqs / s)

100

50

0 —

,,,,,,,,
—— e — s — e — - — — — - —— — =

10K 20K

30K

Observed Throughput (reqs / s)

Results
Cloud 6- @/ planetscale

Spanner

@ TiDB L

CockroachDB yugabyteDB
—<— Reads —e— Writes —+— Read transactions —&— Write transactions
300 300 300 300 100
“a ,
g
< 200 200 a0 200 200
8 v Vi 50
£ 100 100 ; 100 100
.fl ' & 5 8
a—fn —a—aa—a Q8 H
) 0 10K 00 10K 20K 30K
Workload A (write transaction-heavy)

_300] 300 300 300 100
< 200 200 200 200
= 50.
£ 100/ 100 100 M/J
— , - = i

0."" ' == ' D | s R R aEHaa 66685 | WS- == 8825 | A=e=a———m—:—ﬁ—&—ﬁﬂg .'-‘—:—--—:—:,—'-—--—;‘-.:;-i-’-‘

0 20K 40K 60K 80K 100K 00 "7 10K 20K 30K 40K % 20K 40 60K 00 20K 40K 60K 80K Oo 10K 20K 30K

Observed Throughput (reqs /s) Observed Throughput (reqs /s) Observed Throughput (reqs /s) Observed Throughput (reqs /s) Observed Throughput (reqs / s)

Workload O (read-heavy)

Performance degradation varies across the systems

System Impact

YugabyteDB:

» Performance on TAOBench was unexpectedly slow
- Engineers found bottleneck using our benchmark
- Postgres monitoring extension using exclusive locks
- |dentified optimization for scans
- OOM errors on TAOBench lead to discovery that filters for scans not pushed

down to Postgres

Conclusion

A new benchmark for social networks: TAOBench

Derived from production traces

. Captures any transactional requirements

1.

2

3. Expresses colocation constraints

4. Models request distributions without prescriptive query types
5

. Captures multi-tenant behavior over shared data

How can TAOBench be useful to LDBC?

accheng@berkeley.edu

