TAOBench

Audrey Cheng, Xiao Shi, Aaron Kabcenell, Shilpa Lawande, Hamza Qadeer, Jason Chan, Harrison Tin, Ryan Zhao, Peter Bailis, Mahesh Balakrishnan, Nathan Bronson, Natacha Crooks, Ion Stoica

Introduction

Audrey Cheng, PhD student in **Fise**

Research on transaction processing for databases
RAMP-TAO in VLDB '21 (Best Industry Paper Award)

TAOBench: a new benchmark for social networks based on production workloads (VLDB '22)!

How can TAOBench be **useful** to LDBC?

Social Networks

Ubiquitous!

 Meta, Twitter, LinkedIn, WeChat, ByteDance (TikTok)

Supported by large-scale, geo-distributed data stores

 TAO, Manhattan, Voldemort, PaxosStore, ByteGraph

Social Network Benchmarks?

Lack of **publicly available, realistic** workloads

- Difficult to understand limits of existing systems
- Challenging evaluate new features and mechanisms

What are the **properties** should be captured by the workloads of a social network benchmark?

Desired Properties

Derived from production traces

To the best of our knowledge, only 1 exists: LinkBench from Meta

Captures any transactional requirements Single-shot, multi-key semantics for improved performance and scalability

Expresses colocation constraints

Sharding can reflect user intent, privacy constraints, or regulatory compliance

Models request distributions without prescriptive query types Represent workloads via distributions for adaptability and flexibility

Exhibits behavior of multiple tenants Product groups can exhibit coordinated behavior

facebookarchive/ linkbench

Facebook Graph Benchmark

Benchmark released in 2014

- Derived from partial production trace (excluding requests that hit cache)
 - Single MySQL instance
- No graph-level transactions
- No information about colocation preferences and constraints

LDBC Social Network Benchmark

Important workload for graph databases

More processing-intensive rather than serving

How can we **supplement** this workload with TAOBench?

Agenda

2. Benchmark Details 3. Distributed DB Evaluation

1. Characterizing the Social Network

Social Network Workload

O1 A benchmark is only as useful as the workloads from which it is derived

TAO @ Facebook

Diverse products: Underlies many applications **Huge scale:** >10B reads and >10M writes per second **Simple graph API:** Do a few things well as scale **Eventually consistent*:** High availability and low latency

TAO's Workload Satisfies All 5 Properties

Derived from production traces

Support majority of social graph requests for Meta's 3.6 billion monthly active users

Captures any transactional requirements Failure-atomic write transactions and read-only transactions (RAMP-TAO)

Expresses colocation constraints

Applications can choose to explicitly colocate data in the MySQL layer

Models request distributions without prescriptive query types With 10K+ query types per day, distributions are needed to model the full workload

Exhibits behavior of multiple tenants Many applications and other infrastructures layered on top of TAO

Collecting Production Data

Analyze traces collected over **3 days**

Distributions do not vary significantly between different periods

Uniformly sample over objects (nodes) and associations (edges)

- Capture all requests that touch these items
- No conflicts on these keys are missed

99.7% reads, 0.2% writes, and 0.01% write transactions

Read and Write Hotspots

Read and write hotspots occur on **different keys**

Only 0.1% of the top 400K keys overlap

Transaction Size

Some transactions involve many items

Most of these undergo an optimized protocol (described in RAMP-TAO)

Contention

Transactional conflicts varies greatly for different application use cases

>97.3% of write-write contention due to intentionally racing writes

Application use case:

- Pre-generate edges for live video time slices
- Redundant creates to ensure timely processing

Key Type Distribution

Parametrizing the Workload

Identify set of parameters sufficient to reliably reproduce workloads

- 1. Generalizable to other data stores
- 2. Unique to TAO

Parameter	Description
Transaction sizes	Discrete distr. for read-
Sharding	Discrete distr. for objec
Op. types	Proportions for single-
Request sizes	Discrete distr. of data si
Association types	Proportions of associat
Preconditions	Proportions of precond
Read tiers	Proportions of reqs. ser

& write-only txns

ts & associations

& mutli-key reqs.

izes

ion types

lition categories

rved by each tier

TAOBench

02

A new benchmark for social networks

Benchmark Architecture

Scalable, distributed drivers that are easily extensible to other systems

- Benchmark parameters: duration, target throughput, warm-up
- Workload parameters: configuration file with probability distributions

er systems m-up

Benchmark API

Simple API based on TAO's:

- read(key)
- read_txn(keys)
- write(key, [preconditions])
- write_txn(key,[preconditions])

Easy to map to a range of databases

- Support for MySQL and PostgreSQL
- Adapters for Cloud Spanner, CockroachDB, PlanetScale, TiDB, and YugabyteDB

Benchmark Workloads

Open source **3 workloads** based on production data

Workload	Description
T – Transaction	Current transactional worklo
A - Application	Speculative transactional wo
O - Overall	Comprehensive TAO worklos

oad orkload oad

Validating Benchmark

Compare latency distribution and contention profiles

- Statistically identical latency distributions •
- Contention errors also match •

Comparing Databases

03

How can TAOBench be used on other systems?

Distributed Databases

Google's geo-distributed SQL database

- Custom SQL
- Paxos for replication
- TrueTime for strict serializability

Commercial, open-source database

- Compatible with PostgreSQL
- Raft for replication
- MVCC for serializability

HTAP, open-source database (PingCAP)

- Compatible with MySQL
- Raft for replication
- Optimistic / pessimistic locking for SI

- Compatible with PostgreSQL
- Raft for replication
- MVCC for SI and serializability

planetscale

Sharded MySQL database (Vitess)

- MySQL semisync replication
 - Read-committed isolation across shards

yugabyteDB

Cloud-native, open-source database

Evaluation

For cluster configurations, core parity if possible, cost parity otherwise:

- Allocate 48 cores for hosted, cloud clusters in a single region
- 6-node cluster for Spanner

Received **extensive tuning assistance** from all companies except Spanner

Higher performance on Workload O due to more reads

Elucidate performance differences on the same system

Performance degradation varies across the systems

System Impact

YugabyteDB:

- Performance on TAOBench was unexpectedly slow
- Engineers found bottleneck using our benchmark
 - Postgres monitoring extension using exclusive locks
- Identified optimization for scans
 - OOM errors on TAOBench lead to discovery that filters for scans not pushed down to Postgres

Conclusion

A new benchmark for social networks: **TAOBench**

- 1. Derived from production traces
- 2. Captures any transactional requirements
- 3. Expresses colocation constraints
- 4. Models request distributions without prescriptive query types
- 5. Captures multi-tenant behavior over shared data

How can TAOBench be useful to LDBC?

accheng@berkeley.edu