
Graph capabilities in
Microsoft SQL Server and
Azure SQL Database

Arvind Shyamsundar

Principal Product Manager | Azure SQL DB (Microsoft)

Typical customer scenarios

The “MSSQL” family

Azure SQL Database – Hyperscale tier

Paper: “Socrates: The New SQL Server in the Cloud”: https://www.microsoft.com/en-us/research/uploads/prod/2019/05/socrates.pdf

Salient features:

• 100% PaaS offering
• Scale compute up / down

independent of the amount
storage

• Resilient SSD-based caches
• Redundant data and log

backed by durable Azure
Storage

• 0 to 4 secondary HA replicas
• 0-30 named replicas for read

scale
• Backup/Restore via storage

snapshots

https://www.microsoft.com/en-us/research/uploads/prod/2019/05/socrates.pdf

(MS)SQL Graph
“What” and “how”

CREATE TABLE … AS NODE
• A node table in (MS)SQL Graph

looks almost identical to a regular
table:

CREATE TABLE person (
p_personid BIGINT ,
p_firstname NVARCHAR (500) NOT NULL,
p_lastname NVARCHAR (500) NOT NULL,
p_gender VARCHAR (10) NOT NULL,
p_birthday DATE NOT NULL,
p_creationdate DATETIMEOFFSET,
p_locationip VARCHAR (20) NOT NULL,
p_browserused VARCHAR (1000) NOT NULL,
p_placeid BIGINT NOT NULL,
CONSTRAINT PK_person PRIMARY KEY NONCLUSTERED

(p_personid ASC) WITH (DATA_COMPRESSION = PAGE),
CONSTRAINT Graph_Unique_Key_person UNIQUE CLUSTERED

($node_id) WITH (DATA_COMPRESSION = PAGE),

) AS NODE;

• Note: SQL treats the set of node
and edge tables within one
database as one logical graph.

Inserting data into a node table
• Regular INSERTs work; the graph ID column (and hence the user-visible

$node_id pseudo-column) is auto-generated:

INSERT INTO [dbo].[person] ([p_firstname], [p_lastname], [p_gender], [p_birthday], [p_creationdate],
[p_locationip], [p_browserused], [p_placeid])

VALUES (...)

• Here’s how the data (including the $node_id column) looks:

Bulk insert into node table

INSERT person ($NODE_ID, p_personid, p_firstname, p_lastname, p_gender, p_birthday,
p_creationdate, p_locationip, p_browserused, p_placeid)
SELECT NODE_ID_FROM_PARTS(object_id('person'), id),

id,
firstName,
lastName,
gender,
birthday,
creationDate,
locationIP,
browserUsed,
placeId

FROM OPENROWSET (BULK 'unsplit/social_network-csv_merge_foreign-
sf10/dynamic/person_0_0.csv', DATA_SOURCE = 'ldbcstorage', FORMATFILE = 'format-
files/person.xml', FORMATFILE_DATA_SOURCE = 'ldbcstorage', FIRSTROW = 2) AS raw;

Edge tables
• Edge tables in (MS)SQL Graph

can have 0 or more user
defined columns (“properties”).

• Edge tables can be used to
“connect” any node to any
other node in the graph.

CREATE TABLE [dbo].[knows] (

k_creationDate DATETIME NOT NULL,

INDEX [GRAPH_UNIQUE_INDEX_knows] UNIQUE NONCLUSTERED
($edge_id) WITH (DATA_COMPRESSION = PAGE),

INDEX [GRAPH_FromTo_INDEX_knows] CLUSTERED
($from_id, $to_id) WITH (DATA_COMPRESSION = PAGE)

, INDEX [GRAPH_ToFrom_INDEX_knows] NONCLUSTERED
($to_id, $from_id) WITH (DATA_COMPRESSION = PAGE),

CONSTRAINT ec_person_person CONNECTION (person to
person),

) AS EDGE;

Inserting data into an edge table
• INSERTs require specifying the $from_id and $to_id pseudo-columns, along

with any other required properties (columns). For example:
INSERT knows ($from_id, $to_id, k_creationDate)

VALUES ((SELECT $NODE_ID FROM person WHERE p_personId = 94)

, (SELECT $NODE_ID FROM person WHERE p_personId = 60927)

, '2010-01-25 08:36:33.053’);

• Here’s how the (edge table) data looks:

• An efficient way to reuse the natural keys in the data as the graph IDs is
possible, by using the NODE_ID_FROM_PARTS function:

INSERT knows ($from_id, $to_id, k_creationDate)
VALUES (NODE_ID_FROM_PARTS(object_id('person'), 94), NODE_ID_FROM_PARTS(object_id('person'), 60927), '2010-01-25
08:36:33.053');

Bulk insert into edge table
• Using INSERT … SELECT … OPENROWSET … BULK and

NODE_ID_FROM_PARTS, it is possible to efficiently insert bulk data into
edge tables:

INSERT knows ($FROM_ID, $TO_ID, k_creationDate)
SELECT NODE_ID_FROM_PARTS(object_id('person'), from_id) AS from_id,

NODE_ID_FROM_PARTS(object_id('person'), to_id) AS to_id,
creationDate

FROM OPENROWSET (BULK 'unsplit/social_network-csv_merge_foreign-
sf10/dynamic/person_knows_person_0_0.csv', DATA_SOURCE = 'ldbcstorage',
FORMATFILE = 'format-files/person_knows_person.xml', FORMATFILE_DATA_SOURCE =
'ldbcstorage', FIRSTROW = 2) AS raw;

Querying the graph

Pattern matching using MATCH
• The MATCH predicate provides multi-hop navigation and join-free pattern matching using ASCII-art

syntax to facilitate graph traversal. Here’s the full SQL query using MATCH:

SELECT TOP 5 p2.p_personid,

p2.p_firstname,

p2.p_lastname

FROM person AS p1, knows, person AS p2

WHERE MATCH(p1-(knows)->p2)

AND p1.p_personId = 94;

• LDBC SNB query IC2:

SELECT TOP (20) p2.p_personid,

p2.p_firstname,

p2.p_lastname,

m_messageid,

COALESCE (m_ps_imagefile, m_content),

m_creationdate

FROM person AS p1, knows, person AS p2, [message]

WHERE MATCH(p1-(knows)->p2)

AND p2.p_personid = m_creatorid

AND m_creationdate <= '2012-12-31'

AND p1.p_personid = 94

ORDER BY m_creationdate DESC, m_messageid ASC;

LDBC SNB IC1 with “naïve” MATCH
;WITH FriendQuery

AS (SELECT (Person2.p_personid) AS friendId, 1 AS distanceFromPerson,

(Person2.p_firstname) AS friendFirstName, (Person2.p_lastname) AS friendLastName,

(Person2.p_birthday) AS friendBirthday,

(Person2.p_creationdate) AS friendCreationDate, (Person2.p_gender) AS friendGender,

(Person2.p_browserused) AS friendBrowserUsed,

(Person2.p_locationip) AS friendLocationIp, (Person2.p_placeid) AS friendPlaceId

FROM person AS Person1, knows AS k, person AS Person2

WHERE MATCH(Person1-(k)->Person2)

AND Person1.p_personid = 94 AND Person1.p_personid != Person2.p_personid

UNION

SELECT (Person3.p_personid) AS friendId, 2 AS distanceFromPerson,

(Person3.p_firstname) AS friendFirstName, (Person3.p_lastname) AS friendLastName,

(Person3.p_birthday) AS friendBirthday,

(Person3.p_creationdate) AS friendCreationDate, (Person3.p_gender) AS friendGender,

(Person3.p_browserused) AS friendBrowserUsed,

(Person3.p_locationip) AS friendLocationIp, (Person3.p_placeid) AS friendPlaceId

FROM person AS Person1, knows AS k1, person AS Person2, knows AS k2, person AS Person3

WHERE MATCH(Person1-(k1)->Person2 AND Person2-(k2)->Person3)

AND Person1.p_personid = 94 AND Person1.p_personid != Person3.p_personid

UNION

SELECT (Person4.p_personid) AS friendId, 3 AS distanceFromPerson,

(Person4.p_firstname) AS friendFirstName, (Person4.p_lastname) AS friendLastName,

(Person4.p_birthday) AS friendBirthday, (Person4.p_creationdate) AS

friendCreationDate,

(Person4.p_gender) AS friendGender, (Person4.p_browserused) AS friendBrowserUsed,

(Person4.p_locationip) AS friendLocationIp, (Person4.p_placeid) AS friendPlaceId

FROM person AS Person1, knows AS k1, person AS Person2, knows AS k2, person AS Person3,

knows AS k3, person AS Person4

WHERE MATCH(Person1-(k1)->Person2 AND Person2-(k2)->Person3 AND Person3-(k3)->Person4)

AND Person1.p_personid = 94 AND Person1.p_personid != Person4.p_personid)

SELECT TOP (20) friendId, friendFirstName, friendLastName,

distanceFromPerson, friendBirthday, friendCreationDate, friendGender,

friendBrowserUsed, friendLocationIp,

(SELECT string_agg(pe_email, ';')

FROM person_email

WHERE pe_personid = friendId

GROUP BY pe_personid) AS emails,

(SELECT string_agg(plang_language, ';')

FROM person_language

WHERE plang_personid = friendId

GROUP BY plang_personid) AS languages,

(SELECT pl_name

FROM place AS p1

WHERE p1.pl_placeid = friendPlaceId) AS pl_name,

(SELECT string_agg(CONCAT(o2.o_name, '|',

pu_classyear, '|', p2.pl_name), ';')

FROM person_university, organisation AS o2,

place AS p2 WHERE pu_personid = friendId AND pu_organisationid =

o2.o_organisationid AND o2.o_placeid = p2.pl_placeid GROUP BY

pu_personid) AS university,

(SELECT string_agg(CONCAT(o3.o_name, '|',

pc_workfrom, '|', p3.pl_name), ';')

FROM person_company, organisation AS o3, place

AS p3

WHERE pc_personid = friendId AND

pc_organisationid = o3.o_organisationid AND o3.o_placeid =

p3.pl_placeid GROUP BY pc_personid) AS company

FROM FriendQuery AS Q

WHERE Q.friendFirstName = 'Peter'

ORDER BY Q.distanceFromPerson ASC, Q.friendLastName ASC, Q.friendId

ASC;

LDBC SNB query IC1 with SHORTEST_PATH
;WITH FriendQuery

AS (SELECT LAST_VALUE(Person2.p_personid) WITHIN GROUP (GRAPH PATH) AS friendId,

COUNT(Person2.p_personid) WITHIN GROUP (GRAPH PATH) AS distanceFromPerson,

LAST_VALUE(Person2.p_firstname) WITHIN GROUP (GRAPH PATH) AS friendFirstName,

LAST_VALUE(Person2.p_lastname) WITHIN GROUP (GRAPH PATH) AS friendLastName,

LAST_VALUE(Person2.p_birthday) WITHIN GROUP (GRAPH PATH) AS friendBirthday,

LAST_VALUE(Person2.p_creationdate) WITHIN GROUP (GRAPH PATH) AS friendCreationDate,

LAST_VALUE(Person2.p_gender) WITHIN GROUP (GRAPH PATH) AS friendGender,

LAST_VALUE(Person2.p_browserused) WITHIN GROUP (GRAPH PATH) AS friendBrowserUsed,

LAST_VALUE(Person2.p_locationip) WITHIN GROUP (GRAPH PATH) AS friendLocationIp,

LAST_VALUE(Person2.p_placeid) WITHIN GROUP (GRAPH PATH) AS friendPlaceId

FROM person AS Person1, knows FOR PATH AS k, person FOR PATH AS Person2

WHERE MATCH(SHORTEST_PATH(Person1(-(k)->Person2){1, 3}))

AND Person1.p_personid = 94)

SELECT TOP (20) friendId, friendFirstName, friendLastName, distanceFromPerson, friendBirthday, friendCreationDate, friendGender, friendBrowserUsed,

friendLocationIp,

(SELECT string_agg(pe_email, ';’) FROM person_email WHERE pe_personid = friendId GROUP BY pe_personid) AS emails,

(SELECT string_agg(plang_language, ';’) FROM person_language WHERE plang_personid = friendId GROUP BY plang_personid) AS languages,

(SELECT pl_name FROM place AS p1 WHERE p1.pl_placeid = friendPlaceId) AS pl_name,

(SELECT string_agg(CONCAT(o2.o_name, '|', pu_classyear, '|', p2.pl_name), ';’) FROM person_university, organisation AS o2, place AS p2

WHERE pu_personid = friendId AND pu_organisationid = o2.o_organisationid AND o2.o_placeid = p2.pl_placeid GROUP BY pu_personid) AS

university,

(SELECT string_agg(CONCAT(o3.o_name, '|', pc_workfrom, '|', p3.pl_name), ';’) FROM person_company, organisation AS o3, place AS p3

WHERE pc_personid = friendId AND pc_organisationid = o3.o_organisationid AND o3.o_placeid = p3.pl_placeid

GROUP BY pc_personid) AS company

FROM FriendQuery AS Q

WHERE Q.friendFirstName = 'Magnus'

ORDER BY Q.distanceFromPerson ASC, Q.friendLastName ASC, Q.friendId ASC;

Recursive queries made simpler
SHORTEST_PATH can be easier than writing T-SQL recursive CTEs:

-- find path to top-level post

WITH hierarchy

AS (SELECT STRING_AGG(mParent.m_messageid, '->') WITHIN GROUP (GRAPH PATH) AS messageParents,

COUNT(mParent.m_messageid) WITHIN GROUP (GRAPH PATH) AS numLevels

FROM [message] AS mChild, replyOf FOR PATH, [message] FOR PATH AS mParent

WHERE MATCH(SHORTEST_PATH(mChild(-(replyOf)->mParent)+))

AND mChild.m_messageid = 7146845053945)

SELECT TOP 1 CONCAT(7146845053945, '->', messageParents)

FROM hierarchy

ORDER BY numLevels DESC;

-- for a given post, recursively find all descendent messages

WITH hierarchy

AS (SELECT mchild.m_messageId AS messageId,

LAST_VALUE(mParent.m_messageid) WITHIN GROUP (GRAPH PATH) AS lastMessageId,

STRING_AGG(mParent.m_messageid, '->') WITHIN GROUP (GRAPH PATH) AS messageParents,

COUNT(mParent.m_messageid) WITHIN GROUP (GRAPH PATH) AS numLevels

FROM [message] AS mChild, replyOf FOR PATH, [message] FOR PATH AS mParent

WHERE MATCH(SHORTEST_PATH(mChild(-(replyOf)->mParent)+)))

SELECT *

FROM hierarchy

WHERE lastMessageId = 7146845053933

ORDER BY numLevels DESC;

Derived tables and views
• A derived (graph) table which includes the graph pseudo-columns, can used along with MATCH. This is

typically used for filtering out nodes / edges.

• Views on top of graph tables can include the (MS)SQL Graph specific pseudo-columns. Such views, can be
used with MATCH. For example:

CREATE OR ALTER VIEW dbo.[message] AS

SELECT $node_id AS message_node_id, m_messageid, m_ps_imagefile, m_creationdate, m_locationip,

m_browserused, m_ps_language, m_content, m_length, m_creatorid, m_ps_forumid, m_locationid

FROM [dbo].[post]

UNION ALL

SELECT $node_id, m_messageid, NULL AS m_ps_imagefile, m_creationdate, m_locationip, m_browserused,

NULL AS m_ps_language, m_content, m_length, m_creatorid, NULL AS m_ps_forumid, m_locationid

FROM [dbo].[comment];

• The view can then be referenced in a MATCH predicate as shown below:

SELECT TOP 5 p2.p_personid, p2.p_firstname, p2.p_lastname, m.m_messageid

FROM person AS p1, knows, person AS p2, likes, [message] AS m

WHERE MATCH(p1-(knows)->p2

AND p1-(likes)->m)

AND m.m_creatorid = p2.p_personId

AND p1.p_personId = 51934;

Extensibility via.
sp_execute_external_script 1

EXEC sp_execute_external_script @language = N'Python', @script = N'

import pandas as pd

import networkx as nx

from revoscalepy import RxSqlServerData, rx_data_step

query = "select p_personid as node_id, CONCAT(p_firstname, '' '', p_lastname) as

node_attr from person"

nodes = rx_data_step(RxSqlServerData(connection_string="Driver=SQL

Server;Server=.;Database=ldbc-snb-sf10;Trusted_Connection=Yes;",

sql_query=query,))

query = "select GRAPH_ID_FROM_NODE_ID($from_id) as from_id,

GRAPH_ID_FROM_NODE_ID($to_id) as to_id, k_creationDate from knows"

edges = rx_data_step(RxSqlServerData(connection_string="Driver=SQL

Server;Server=.;Database=ldbc-snb-sf10;Trusted_Connection=Yes;",

sql_query=query,))

G = nx.from_pandas_edgelist(edges, "from_id", "to_id", True, nx.Graph())

nx.set_node_attributes(G, nodes.set_index("node_id").to_dict("index"))

centrality

centrality = nx.eigenvector_centrality(G)

print(sorted((v, f"{c:0.2f}") for v, c in centrality.items()))

connected components

data = {"col1": [nx.number_connected_components(G)]}

OutputDataSet = pd.DataFrame(data, columns=["col1"])

'

[1] Only available for SQL Server / Azure SQL Managed Instance

Keen to know more?
• Documentation

• https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview

• https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-architecture

• Samples
• SQL Graph – samples

• https://github.com/microsoft/sql-server-samples/tree/master/samples/features/sql-graph/ShortestPath

• https://github.com/microsoft/sql-server-samples/tree/master/samples/features/sql-graph/DerivedTablesAndViewsInGraphMatch

• https://github.com/Microsoft/sql-server-samples/tree/master/samples/demos/sql-graph/recommendation-system

• https://github.com/shkale-msft/GraphRecursiveQueries

• Million Song Dataset: 1 million nodes, ~ 48 million edges

• Yelp Dataset: ~ 2 million users (nodes), ~ 19 million edges

• Open Academic Graph: 2.6 billion nodes, 8.8 billion edges

• [Work in progress] LDBC SNB Interactive reference implementation with MSSQL - https://github.com/ldbc/ldbc_snb_interactive_impls/pull/264/

• Blogs / case studies
• https://customers.microsoft.com/en-us/story/825080-bkw-energie-energy-azure

• https://devblogs.microsoft.com/azure-sql/solving-the-river-crossing-problem-with-sql-graph/

• https://blogs.msdn.microsoft.com/sqlcat/2017/04/21/build-a-recommendation-system-with-the-support-for-graph-data-in-sql-server-2017-and-azure-sql-db/

• https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/11/07/public-preview-of-derived-tables-and-views-on-graph-tables-in-match-queries/

• https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/09/28/public-preview-of-graph-edge-constraints-on-sql-server-2019/

• https://deep.data.blog/2017/11/03/how-we-did-it-pass-2017-summit-session-similarity-using-sql-graph-and-python/

• https://blogs.technet.microsoft.com/dataplatforminsider/2017/04/20/graph-data-processing-with-sql-server-2017/

• https://techcommunity.microsoft.com/t5/SQL-Server/Public-Preview-of-Shortest-Path-on-SQL-Server-2019/ba-p/721240

• http://www.hansolav.net/sql/graphs.html

• Videos
• Graph Data Models and Query Patterns using #AzureSQL: https://www.youtube.com/watch?v=eYv1z0vfsIQ

• Generate intelligent insights from your data using Graph features in Azure SQL: https://www.youtube.com/watch?v=w_vzYHcf5L0

• Exploding Bill of Materials using Graph Shortest Path: https://www.youtube.com/watch?v=9F3Ls0IjPOA

• A Game of Hierarchies: Graph Processing with SQL Server 2019 - Markus Ehrenmueller-Jensen: https://www.youtube.com/watch?v=EC-4pz2O2Wo

• SQL Server 2017: Building applications using graph data: https://www.youtube.com/watch?v=s986hslpFtQ

https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview
https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-architecture
https://github.com/microsoft/sql-server-samples/tree/master/samples/features/sql-graph
https://github.com/microsoft/sql-server-samples/tree/master/samples/features/sql-graph/ShortestPath?WT.mc_id=dataexposed-c9-niner
https://github.com/microsoft/sql-server-samples/tree/master/samples/features/sql-graph/DerivedTablesAndViewsInGraphMatch?WT.mc_id=dataexposed-c9-niner
https://github.com/Microsoft/sql-server-samples/tree/master/samples/demos/sql-graph/recommendation-system?WT.mc_id=dataexposed-c9-niner
https://github.com/shkale-msft/GraphRecursiveQueries
https://docs.microsoft.com/en-us/samples/azure-samples/millionsongdataset-sql/millionsongdataset-sql/
https://github.com/arvindshmicrosoft/YelpDatasetSQL
https://github.com/arvindshmicrosoft/MicrosoftAcademicGraph
https://github.com/ldbc/ldbc_snb_interactive_impls/pull/264/
https://blogs.msdn.microsoft.com/sqlcat/2017/04/21/build-a-recommendation-system-with-the-support-for-graph-data-in-sql-server-2017-and-azure-sql-db/
https://blogs.msdn.microsoft.com/sqlcat/2017/04/21/build-a-recommendation-system-with-the-support-for-graph-data-in-sql-server-2017-and-azure-sql-db/
https://blogs.msdn.microsoft.com/sqlcat/2017/04/21/build-a-recommendation-system-with-the-support-for-graph-data-in-sql-server-2017-and-azure-sql-db/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/11/07/public-preview-of-derived-tables-and-views-on-graph-tables-in-match-queries/?WT.mc_id=dataexposed-c9-niner
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2018/09/28/public-preview-of-graph-edge-constraints-on-sql-server-2019/?WT.mc_id=dataexposed-c9-niner
https://blogs.technet.microsoft.com/dataplatforminsider/2017/04/20/graph-data-processing-with-sql-server-2017/
https://blogs.technet.microsoft.com/dataplatforminsider/2017/04/20/graph-data-processing-with-sql-server-2017/
https://techcommunity.microsoft.com/t5/SQL-Server/Public-Preview-of-Shortest-Path-on-SQL-Server-2019/ba-p/721240
http://www.hansolav.net/sql/graphs.html
https://www.youtube.com/watch?v=eYv1z0vfsIQ
https://www.youtube.com/watch?v=w_vzYHcf5L0
https://www.youtube.com/watch?v=9F3Ls0IjPOA
https://www.youtube.com/watch?v=EC-4pz2O2Wo
https://www.youtube.com/watch?v=s986hslpFtQ

Thank you!

https://www.linkedin.com/in/arvindsh/

https://twitter.com/arvisam

https://www.linkedin.com/in/arvindsh/
https://twitter.com/arvisam

