The Quest for Schemas in Graph Databases

Angela Bonifati¹, Stefania Dumbrava^{2,3} Emile Martinez⁴, Nicolas Mir²

¹Lyon 1 University & LIRIS CNRS, France ²ENSIIE & ³Institut Polytechnique de Paris, France ⁴ENS de Lyon

Property Graph Schemas: State of Affairs

- Ongoing PG Schema standardisation process (ISO SC32/ WG3) in collaboration with PGSWG^a.
- Early proposal for a concise DDL for Cypher with Neo4j folks along with mechanisms for schema validation and evolution^b
- While waiting for a standard PG schema, we need mechanisms for schema discovery from property graph instances (focus of my talk).

^ahttps://ldbcouncil.org/gql-community/pgswg/ ^bAngela Bonifati et al. "Schema Validation and Evolution for Graph Databases". In: *Conceptual Modeling - 38th International Conference, ER* 2019. Springer, 2019, pp. 448–456.

Interconnected Data:

• *ubiquitous* (Semantic Web, social networks, scientific repositories,...), *heterogeneous* & *semi-structured*.

Graph Databases:

- NoSQL store for efficiently storing & processing graph-shaped data.
- No a priori schema constraints \rightarrow error-prone data integration
- Underlying property graph model (labeled multigraph with key/value lists attached to nodes & edges)

 \rightarrow rich formalism amenable to schema discovery

Schema Discovery for Property Graphs

- Existing schema inference mechanisms are basic:
 - no hierarchies,
 - no complex types.
- Recent work on schema inference using MapReduce (MRSchema)^a:
 - only considers either node labels or node properties \rightarrow trade-off
 - property co-occurrence *information loss* (label-oriented approach) vs. *extraneous type inference* (property-oriented approach).

^aHanâ Lbath, Angela Bonifati, and Russ Harmer. "Schema Inference for Property Graphs". In: *EDBT*. 2021, pp. 499–504.

Static Case: discover the schema of a static graph dataset \mathcal{G} .

- GMM-S: novel *hierarchical clustering algorithm*.
- Based on fitting a Gaussian Mixture Model (GMM).
- Accounts for both node label & property information.

Dynamic Case: update the schema of \mathcal{G} upon modifications.

- I-GMM-D: incremental approach; reuses GMM-S's clustering.
- GMM-D: recomputation approach; memoization-based GMM-S.

Property Graph Model

A property graph^a \mathcal{G} is a tuple $(\mathcal{V}, \mathcal{E}, \rho, \lambda, \sigma)$, where:

- $\mathcal V$ and $\mathcal E\colon$ disjoint finite sets of vertices, and edges,
- $\rho: \mathcal{E} \to (\mathcal{V} \times \mathcal{V})$: associates each edge with a pair of nodes,
- $\lambda: (\mathcal{V} \cup \mathcal{E}) \to \mathcal{P}(\mathcal{L})$: associates a vertex/edge with a set of *labels*,
- σ : (V ∪ E) × K → P(N): associates vertex/edges with properties and, for each property, assigning a set of values from D.

^aRenzo Angles. "The Property Graph Database Model". In: *AMW*. vol. 2100. CEUR Workshop Proceedings. 2018.

Property Graph Schemas

Base Types (\mathcal{BT}): set of *element types* (L, K, O, E_b), where:

- $L \in \mathcal{L}$: set of labels,
- $K \in \mathcal{K}$: set of property names,
- $O \subseteq \mathcal{K}$: subset of optional property names,
- $E_b \subset \mathcal{BT}$: set of element types *b* extends.

Example:

```
{'Post': {
'creationDate': 2015-06-24T12:50:35.556+01:002,
'locationIP': 42, 'browser' : 'Chrome',
'length' : 10, 'language' : 'lat.',
'content' : 'Lorem ipsum'}}
```

LDBC Post node instance

Base type: ({*Post*}, *K*, {*language*, *content*}, \emptyset), where $K = \{creationDate, locationIP, browser, length\}$.

LDBC Ground-Truth Property Graph Schema

Figure 1: LDBC Property Graph

GMMSchema Methodology

Figure 2: System Workflow

Idea:

- Gaussian Mixture Model (GMM)^a to discover hierarchical node types.
- for every node label, run GMM algorithm to fit a mixture of normal distributions & use the resulting model for clustering.
- re-iterate procedure in each sub-cluster.

^aArthur Dempster and et al. "Maximum Likelihood from Incomplete Data via the EM Algorithm". In: *Royal Statistical Society J.* 39 (1977), pp. 1–22.

GMMSchema Base Algorithm (GMM-S)

- Collect node labels $\mathcal{L}_\mathcal{G}$ & their number of occurrences.
- For each label L ∈ L_G (in descending frequency order), iteratively process the set C of all nodes with label L.
- Reference Base Type (b_{ref}): most general type for C
 → built at each step from all of its node labels
 → accounts for the most frequent properties.
- *Feature vector*: constructed from the similarity scores of all nodes in *C* w.r.t *b*_{ref} & used to fit a GMM model.
- *EM algorithm*: parameter estimation for Gaussian mixture
 → discovered node types.
- *Hierarchical clustering* (*C*_{*H*}): update *b*_{ref} with overlapping properties, record *C* sub-clusters & recursive call in each.

Illustrating the discovery of the sub-types for Post-labeled nodes:

- Parent Node Base Type: b = ({Post}, K, Ø, Ø),
 where K = {creationDate, locationIP, browser, length}.
- Run GMM; the new reference nodes are:
 b1 = ({Post}, K, {language, content}, {b}) and
 b2 = ({Post}, K, {imageFile}, {b})
- Repeating the procedure in each sub-cluster does not infer new types, as all nodes in each share the same properties.
 → new discovered sub-types: Post1 and Post2.

Discovered LDBC Property Graph Schema

Figure 3: LDBC Property Graph GMMSchema

Dataset	Nodes	Edges	Node Labels	Edge Labels	Unlabeled
LDBC	1577397	8179418	7	14	0
Mb6	486267	961571	10	3	0
Fib25	802473	1625428	10	3	0
Covid19	36025729	59768373	121	168	474

Figure 4: Dataset characteristics prior to schema discovery.

Dataset	Node Types	Edge Types	Subtype Edges	Hierarchy Depth
LDBC	17	36	9	2
Mb6	19	27	14	4
Fib25	26	106	21	6

Figure 5: Dataset characteristics with GMMSchema discovery.

Experimental Evaluation: Schema Quality (II/II)

- 2-3 discovered types/label & 3 orders of magnitude more edge types.
- MRSchema infers up to 3 times more node types, up to 3 orders of magnitude more edge types, up to 7 orders of magnitude more subtype edges (for mb6) → up to double the hierarchy depth.

Dataset	Rand Index	AMI	Precision	Recall	F1-score
LDBC	0,96	0,91	1,0	1,0	1,0
Mb6	0,79	0,49	1,0	1,0	1,0
Fib25	0,75	0,41	1,0	1,0	1,0
Covid19	0,94	0,71	NaN	NaN	NaN

Figure 6: GMMSchema clustering quality estimates.

- However, most MRSchema inferred nodes are spurious.
- GMMSchema: perfect accuracy by also leveraging node labels.

Experimental Evaluation: GMMSchema Runtime

Figure 7: GMMSchema vs. MRSchema total avg. runtimes.

 \rightarrow GMMSchema speeds-up schema discovery: \times 5 (for Mb6) & \times 8 (for LDBC and Fib25). Inputs:

- Discovered schema for $\mathcal{G},$ as computed by GMM-S.
- Graph updates Δ : set of nodes inserted into \mathcal{G} .

For each node in Δ :

- Compute its similarity score w.r.t every reference base type corresponding to the clustering $\mathcal{C}_{\mathcal{H}}$.
- Assign it to the cluster maximizing this similarity.

Performance only depends $|\Delta| \& |C_{\mathcal{H}}|$:

- \rightarrow multiple efficient iterations
- \rightarrow highly robust in practice (maintains schema quality).

Inputs:

- Discovered schema for $\mathcal{G},$ as computed by GMM-S.
- Graph updates Δ : set of nodes inserted into \mathcal{G} .

Process the *updated graph* using GMM-S, optimized to:

- track the sub-clusters unchanged by the classification step. (no nodes assigned, due to reference base type dissimilarity)
- memoize & avoid recursive calls in these sub-clusters.

W.r.t I-GMM-D:

 \nearrow convergence, \nearrow iteration-wise runtime, \searrow robustness.

Trade-off: performance vs. quality

DiscoPG System¹ – Workflow Diagram

¹Accepted in VLDB 2022 (demo track)

- DiscoPG: first schema discovery approach for property graphs (accounting for *both* node labels & properties).
- addresses previous limitations (incomplete/spurious node inference) while showing superior accuracy & performance.
- promise of employing statistical methods for schema discovery.
- extensibility to future standard PG schema languages

Perspectives

- integrating topological information (graph embeddings),
- extension to streaming graphs,
- discovery of property graph constraints (PG-Keys, ...)

PG-Keys: Keys for Property Graphs. [SIGMOD 2021]^a

Thank you!

^aJoint work with the Property Schema Group.

References

- Angles, Renzo. "The Property Graph Database Model". In: *AMW*. Vol. 2100. CEUR Workshop Proceedings. 2018.
- Bonifati, Angela et al. "Schema Validation and Evolution for Graph Databases". In: *Conceptual Modeling - 38th International Conference, ER 2019.* Springer, 2019, pp. 448–456.
- Dempster, Arthur and et al. "Maximum Likelihood from Incomplete Data via the EM Algorithm". In: *Royal Statistical Society J.* 39 (1977), pp. 1–22.
- Lbath, Hanâ, Angela Bonifati, and Russ Harmer. "Schema Inference for Property Graphs". In: EDBT. 2021, pp. 499–504.