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Property Graph Schemas: State of Affairs

• Ongoing PG Schema standardisation process (ISO SC32/ WG3) in

collaboration with PGSWG a.

• Early proposal for a concise DDL for Cypher with Neo4j folks along

with mechanisms for schema validation and evolutionb

• While waiting for a standard PG schema, we need mechanisms for

schema discovery from property graph instances (focus of my talk).

ahttps://ldbcouncil.org/gql-community/pgswg/
bAngela Bonifati et al. “Schema Validation and Evolution for Graph

Databases”. In: Conceptual Modeling - 38th International Conference, ER

2019. Springer, 2019, pp. 448–456.
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Schema Discovery

Interconnected Data:

• ubiquitous (Semantic Web, social networks, scientific repositories,...),

heterogeneous & semi-structured.

Graph Databases:

• NoSQL store for efficiently storing & processing graph-shaped data.

• No a priori schema constraints → error-prone data integration

• Underlying property graph model

(labeled multigraph with key/value lists attached to nodes & edges)

→ rich formalism amenable to schema discovery

3



Schema Discovery for Property Graphs

• Existing schema inference mechanisms are basic:

• no hierarchies,

• no complex types.

• Recent work on schema inference using MapReduce (MRSchema)a:

• only considers either node labels or node properties → trade-off

• property co-occurrence information loss (label-oriented approach)

vs. extraneous type inference (property-oriented approach).

aHanâ Lbath, Angela Bonifati, and Russ Harmer. “Schema Inference for

Property Graphs”. In: EDBT. 2021, pp. 499–504.
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Overview of DiscoPG’s Algorithms

Static Case: discover the schema of a static graph dataset G.

• GMM-S: novel hierarchical clustering algorithm.

• Based on fitting a Gaussian Mixture Model (GMM).

• Accounts for both node label & property information.

Dynamic Case: update the schema of G upon modifications.

• I-GMM-D: incremental approach; reuses GMM-S’s clustering.

• GMM-D: recomputation approach; memoization-based GMM-S.
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Property Graph Model

A property grapha G is a tuple (V, E , ρ, λ, σ), where:
• V and E : disjoint finite sets of vertices, and edges,

• ρ : E → (V × V): associates each edge with a pair of nodes,

• λ : (V ∪ E) → P(L): associates a vertex/edge with a set of labels,

• σ : (V ∪ E)×K → P(N ): associates vertex/edges with properties

and, for each property, assigning a set of values from D.

aRenzo Angles. “The Property Graph Database Model”. In: AMW. vol. 2100.

CEUR Workshop Proceedings. 2018.
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Property Graph Schemas

Base Types (BT ): set of element types (L,K ,O,Eb), where:

• L ∈ L: set of labels,
• K ∈ K: set of property names,

• O ⊆ K: subset of optional property names,

• Eb ⊂ BT : set of element types b extends.

Example:

LDBC Post node instance

Base type: ({Post},K , {language, content}, ∅),
where K = {creationDate, locationIP, browser , length}.
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LDBC Ground-Truth Property Graph Schema

Figure 1: LDBC Property Graph 8



GMMSchema Methodology

Figure 2: System Workflow

Idea:

• Gaussian Mixture Model (GMM)a to discover hierarchical node types.

• for every node label, run GMM algorithm to fit a mixture of normal

distributions & use the resulting model for clustering.

• re-iterate procedure in each sub-cluster.

aArthur Dempster and et al. “Maximum Likelihood from Incomplete Data via

the EM Algorithm”. In: Royal Statistical Society J. 39 (1977), pp. 1–22.

9



GMMSchema Base Algorithm (GMM-S)

• Collect node labels LG & their number of occurrences.

• For each label L ∈ LG (in descending frequency order),

iteratively process the set C of all nodes with label L.

• Reference Base Type (bref): most general type for C

→ built at each step from all of its node labels

→ accounts for the most frequent properties.

• Feature vector : constructed from the similarity scores of all

nodes in C w.r.t bref & used to fit a GMM model.

• EM algorithm: parameter estimation for Gaussian mixture

→ discovered node types.

• Hierarchical clustering (CH): update bref with overlapping

properties, record C sub-clusters & recursive call in each.

10



GMMSchema Example

Illustrating the discovery of the sub-types for Post-labeled nodes:

• Parent Node Base Type: b = ({Post},K , ∅, ∅),
where K = {creationDate, locationIP, browser , length}.

• Run GMM; the new reference nodes are:

b1 = ({Post},K , {language, content}, {b}) and
b2 = ({Post},K , {imageFile}, {b})

• Repeating the procedure in each sub-cluster does not infer

new types, as all nodes in each share the same properties.

→ new discovered sub-types: Post1 and Post2.
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Discovered LDBC Property Graph Schema

Figure 3: LDBC Property Graph GMMSchema
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Experimental Evaluation: Schema Quality (I/II)

Dataset Nodes Edges Node Labels Edge Labels Unlabeled

LDBC 1577397 8179418 7 14 0

Mb6 486267 961571 10 3 0

Fib25 802473 1625428 10 3 0

Covid19 36025729 59768373 121 168 474

Figure 4: Dataset characteristics prior to schema discovery.

Dataset Node Types Edge Types Subtype Edges Hierarchy Depth

LDBC 17 36 9 2

Mb6 19 27 14 4

Fib25 26 106 21 6

Figure 5: Dataset characteristics with GMMSchema discovery.
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Experimental Evaluation: Schema Quality (II/II)

• 2-3 discovered types/label & 3 orders of magnitude more edge types.

• MRSchema infers up to 3 times more node types, up to 3 orders of

magnitude more edge types, up to 7 orders of magnitude more

subtype edges (for mb6) → up to double the hierarchy depth.

Dataset Rand Index AMI Precision Recall F1-score

LDBC 0,96 0,91 1,0 1,0 1,0

Mb6 0,79 0,49 1,0 1,0 1,0

Fib25 0,75 0,41 1,0 1,0 1,0

Covid19 0,94 0,71 NaN NaN NaN

Figure 6: GMMSchema clustering quality estimates.

• However, most MRSchema inferred nodes are spurious.

• GMMSchema: perfect accuracy by also leveraging node labels.
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Experimental Evaluation: GMMSchema Runtime

(a) LDBC, Fib25, Mb6 (b) Covid19

Figure 7: GMMSchema vs. MRSchema total avg. runtimes.

→ GMMSchema speeds-up schema discovery:

× 5 (for Mb6) & × 8 (for LDBC and Fib25).
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I-GMM-D

Inputs:

• Discovered schema for G, as computed by GMM-S.

• Graph updates ∆: set of nodes inserted into G.

For each node in ∆:

• Compute its similarity score w.r.t every reference base type

corresponding to the clustering CH.
• Assign it to the cluster maximizing this similarity.

Performance only depends |∆| & |CH|:
→ multiple efficient iterations

→ highly robust in practice (maintains schema quality).
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GMM-D

Inputs:

• Discovered schema for G, as computed by GMM-S.

• Graph updates ∆: set of nodes inserted into G.

Process the updated graph using GMM-S, optimized to:

• track the sub-clusters unchanged by the classification step.

(no nodes assigned, due to reference base type dissimilarity)

• memoize & avoid recursive calls in these sub-clusters.

W.r.t I-GMM-D:

↗ convergence, ↗ iteration-wise runtime, ↘ robustness.

Trade-off: performance vs. quality
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DiscoPG System1 – Workflow Diagram

1Accepted in VLDB 2022 (demo track)
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Conclusions

• DiscoPG: first schema discovery approach for property graphs

(accounting for both node labels & properties).

• addresses previous limitations (incomplete/spurious node inference)

while showing superior accuracy & performance.

• promise of employing statistical methods for schema discovery.

• extensibility to future standard PG schema languages
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Perspectives

• integrating topological information (graph embeddings),

• extension to streaming graphs,

• discovery of property graph constraints (PG-Keys, ...)

PG-Keys: Keys for Property Graphs. [SIGMOD 2021]a

Thank you!

aJoint work with the Property Schema Group. 20
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