The Quest for Schemas in Graph Databases

Angela Bonifati1, Stefania Dumbrava2,3, Emile Martinez4, Nicolas Mir2

1Lyon 1 University & LIRIS CNRS, France
2ENSIIE & 3Institut Polytechnique de Paris, France
4ENS de Lyon
Property Graph Schemas: State of Affairs

- Ongoing PG Schema standardisation process (ISO SC32/WG3) in collaboration with PGSWG\(^a\).
- Early proposal for a concise DDL for Cypher with Neo4j folks along with mechanisms for schema validation and evolution\(^b\).
- While waiting for a standard PG schema, we need mechanisms for schema discovery from property graph instances (focus of my talk).

\(^a\)https://ldbcouncil.org/gql-community/pgswg/
Schema Discovery

Interconnected Data:

- ubiquitous (Semantic Web, social networks, scientific repositories,...), heterogeneous & semi-structured.

Graph Databases:

- NoSQL store for efficiently storing & processing graph-shaped data.
- No a priori schema constraints \rightarrow error-prone data integration
- Underlying property graph model
 (labeled multigraph with key/value lists attached to nodes & edges)
 \rightarrow rich formalism amenable to schema discovery
• Existing schema inference mechanisms are basic:
 • no hierarchies,
 • no complex types.

• Recent work on schema inference using MapReduce (MRSchema): a
 • only considers either node labels or node properties → trade-off
 • property co-occurrence information loss (label-oriented approach)
 vs. extraneous type inference (property-oriented approach).

Overview of DiscoPG’s Algorithms

Static Case: discover the schema of a static graph dataset G.

- **GMM–S**: novel *hierarchical clustering algorithm*.
 - Based on fitting a Gaussian Mixture Model (GMM).
 - Accounts for both node label & property information.

Dynamic Case: update the schema of G upon modifications.

- **I–GMM–D**: incremental approach; reuses GMM–S’s clustering.
- **GMM–D**: recomputation approach; memoization-based GMM–S.
A property graph \mathcal{G} is a tuple $(\mathcal{V}, \mathcal{E}, \rho, \lambda, \sigma)$, where:

- \mathcal{V} and \mathcal{E}: disjoint finite sets of vertices, and edges,
- $\rho : \mathcal{E} \to (\mathcal{V} \times \mathcal{V})$: associates each edge with a pair of nodes,
- $\lambda : (\mathcal{V} \cup \mathcal{E}) \to \mathcal{P}(\mathcal{L})$: associates a vertex/edge with a set of labels,
- $\sigma : (\mathcal{V} \cup \mathcal{E}) \times \mathcal{K} \to \mathcal{P}(\mathcal{N})$: associates vertex/edges with properties and, for each property, assigning a set of values from \mathcal{D}.

Property Graph Schemas

Base Types (\(BT\)): set of element types \((L, K, O, E_b)\), where:

- \(L \in \mathcal{L}\): set of labels,
- \(K \in \mathcal{K}\): set of property names,
- \(O \subseteq K\): subset of optional property names,
- \(E_b \subset BT\): set of element types \(b\) extends.

Example:

```json
{'Post': {
    'creationDate': '2015-06-24T12:50:35.556+01:002',
    'locationIP': 42, 'browser': 'Chrome',
    'length': 10, 'language': 'latin',
    'content': 'Lorem ipsum'}}
```

LDBC Post node instance

Base type: \((\{Post\}, K, \{language, content\}, \emptyset)\),

where \(K = \{creationDate, locationIP, browser, length\}\).
Figure 1: LDBC Property Graph
GMMSchema Methodology

Figure 2: System Workflow

Idea:

- Gaussian Mixture Model (GMM)\(^a\) to discover hierarchical node types.
- for every node label, run GMM algorithm to fit a mixture of normal distributions & use the resulting model for clustering.
- re-iterate procedure in each sub-cluster.

GMMSchema Base Algorithm (GMM-S)

- Collect node labels \mathcal{L}_G & their number of occurrences.
- For each label $L \in \mathcal{L}_G$ (in descending frequency order), iteratively process the set C of all nodes with label L.
- Reference Base Type (b_{ref}): most general type for C built at each step from all of its node labels accounts for the most frequent properties.
- Feature vector: constructed from the similarity scores of all nodes in C w.r.t b_{ref} & used to fit a GMM model.
- EM algorithm: parameter estimation for Gaussian mixture discovered node types.
- Hierarchical clustering ($C_{\mathcal{H}}$): update b_{ref} with overlapping properties, record C sub-clusters & recursive call in each.
Illustrating the discovery of the sub-types for Post-labeled nodes:

- **Parent Node Base Type**: \[b = (\{Post\}, K, \emptyset, \emptyset) \], where \(K = \{creationDate, locationIP, browser, length\} \).
- Run GMM; the new reference nodes are:
 \[b_1 = (\{Post\}, K, \{language, content\}, \{b\}) \] and
 \[b_2 = (\{Post\}, K, \{imageFile\}, \{b\}) \]
- Repeating the procedure in each sub-cluster does not infer new types, as all nodes in each share the same properties. → **new discovered sub-types**: Post1 and Post2.
Figure 3: LDBC Property Graph GMMSchema
Experimental Evaluation: Schema Quality (I/II)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Nodes</th>
<th>Edges</th>
<th>Node Labels</th>
<th>Edge Labels</th>
<th>Unlabeled</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDBC</td>
<td>1577397</td>
<td>8179418</td>
<td>7</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Mb6</td>
<td>486267</td>
<td>961571</td>
<td>10</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Fib25</td>
<td>802473</td>
<td>1625428</td>
<td>10</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Covid19</td>
<td>36025729</td>
<td>59768373</td>
<td>121</td>
<td>168</td>
<td>474</td>
</tr>
</tbody>
</table>

Figure 4: Dataset characteristics prior to schema discovery.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Node Types</th>
<th>Edge Types</th>
<th>Subtype Edges</th>
<th>Hierarchy Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDBC</td>
<td>17</td>
<td>36</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Mb6</td>
<td>19</td>
<td>27</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>Fib25</td>
<td>26</td>
<td>106</td>
<td>21</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 5: Dataset characteristics with GMMSchema discovery.
Experimental Evaluation: Schema Quality (II/II)

- 2-3 discovered types/label & 3 orders of magnitude more edge types.
- MRSchema infers up to 3 times more node types, up to 3 orders of magnitude more edge types, up to 7 orders of magnitude more subtype edges (for mb6) → up to double the hierarchy depth.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Rand Index</th>
<th>AMI</th>
<th>Precision</th>
<th>Recall</th>
<th>F1-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDBC</td>
<td>0.96</td>
<td>0.91</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Mb6</td>
<td>0.79</td>
<td>0.49</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Fib25</td>
<td>0.75</td>
<td>0.41</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Covid19</td>
<td>0.94</td>
<td>0.71</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>

Figure 6: GMMSchema clustering quality estimates.

- However, most MRSchema inferred nodes are spurious.
- GMMSchema: perfect accuracy by also leveraging node labels.
Experimental Evaluation: GMMSchema Runtime

Figure 7: GMMSchema vs. MRSchema total avg. runtimes.

(a) LDBC, Fib25, Mb6

(b) Covid19

→ GMMSchema speeds-up schema discovery:
 \(\times 5 \) (for Mb6) & \(\times 8 \) (for LDBC and Fib25).
Inputs:

- Discovered schema for G, as computed by GMM-S.
- Graph updates Δ: set of nodes inserted into G.

For each node in Δ:

- Compute its similarity score w.r.t every reference base type corresponding to the clustering C_H.
- Assign it to the cluster maximizing this similarity.

Performance only depends $|\Delta|$ & $|C_H|$:

\rightarrow multiple efficient iterations

\rightarrow highly robust in practice (maintains schema quality).
GMM-D

Inputs:

- Discovered schema for \(G \), as computed by GMM-S.
- Graph updates \(\Delta \): set of nodes inserted into \(G \).

Process the *updated graph* using GMM-S, optimized to:

- track the sub-clusters unchanged by the classification step.
 (no nodes assigned, due to reference base type dissimilarity)
- memoize & avoid recursive calls in these sub-clusters.

W.r.t I-GMM-D:

\[\uparrow \text{convergence}, \uparrow \text{iteration-wise runtime}, \downarrow \text{robustness}.\]

Trade-off: performance vs. quality
DiscoPG System\(^1\) – Workflow Diagram

\(^1\)Accepted in VLDB 2022 (demo track)
Conclusions

- DiscoPG: first schema discovery approach for property graphs (accounting for both node labels & properties).
- addresses previous limitations (incomplete/spurious node inference) while showing superior accuracy & performance.
- promise of employing statistical methods for schema discovery.
- extensibility to future standard PG schema languages
Perspectives

- integrating topological information (graph embeddings),
- extension to streaming graphs,
- discovery of property graph constraints (PG-Keys, ...)

PG-Keys: Keys for Property Graphs. [SIGMOD 2021]a

Thank you!

aJoint work with the Property Schema Group.
References

