Relational Databases can

Handle Graphs Too!

Altan Birler

Technische Universitat Miinchen



@umera  LDBC®

* UMBRA: Very fast Relational DBMS
* LDBC-BIl: OLAP Graph Workload. 2 Graph, 1 Relational System

* Graph queries 2> SQL



@umera  LDBC®

* UMBRA: Very fast-Refttomat DBMS
* LDBC-BIl: OLAP Graph Workload. 2 Graph, 1 Relational System
* Graph queries > SQL

* Umbra is fast at executing every single query

* Including the shortest path queries!



umbra-db.com/interface

Load Query

Schema: LDBC

X X Scale Factor: 1
Forum. id "forum.id"

Forum.title "forum.title"
Forum.creationDate “forum.creationDate"
Forum.ModeratorPersonId "person.id"

( .MessagelId) messageCount
TagClass
Tag
Tag.TypeTagClassId TagClass.id
Message_hasTag_Tag

Query Plan Query Stats
803
At compilation 11.0ms
M HASH-IOIN
At execution 9.2ms
id9 = moderstorpersonid
Columns 5
1.5k 5.6k
Rows 20
M HASH-JOIN M HASH-JOIN
id = locationcityid id55 = containerforumid
(Bl 10k ﬁ 1 101k
= ary
Tt S 1243 = PERSON 4 INDEXNL-JOIN = FORUM
Selectivity: 14.2% .
Table Size: 10295 messageid36 = messageid Table Size: 100827
partofcountryid = 1
9: Cardinality Estimator
5.6k 25M
b4 HASH-JOIN = MESSAGE

tagid =id22 Table Size: 2860664

] A



* A relational DB is great at executing every single graph query

* What is going on here?

Attribution: Twitter, https://github.com/twitter/twemaoji/



The Graph Perspective

¢ “NaVigate deep hierarChieS” neo4j.com/developer/graph-database/

e Connections



The Graph Perspective

Cousm ia. W1fe ]
l Fish

l Color

H—
—

Altan




The Graph Perspective
Scalable?

Cousin Wife Fish Color Red




Scalable?  Now you are thinking with relations.

5000000 2000000

Cousin
Altan =) Rauf PEOPLE join ~ COUSINSOFPEOPLE



The Relational Perspective

* A scalable model of the world: “SQL is embarrassingly parallel”
* Big (multi-)sets of unordered data

* Highly scalable, deeply researched, simple, standard operators

* Join, Group By

e Breadth is scalable

* Depth is not



Is My Query Scalable?

* Can you express it with set oriented relational algebra?
* Yes: Most likely scalable

* No: You might have some trouble



How To Scale LDBC BI Queries

* Express them in relational algebra (SQL)

* Eliminate depth, increase breadth



Eliminate depth

Forum Forum
T contain T contain
Post Post
T reply N
Comment Comment<«— Comment Comment<+—Comment
T reply
Comment

* Works since there are no link/cut operations

T reply\eply

Comment Comment * Unforeseen (positive) consequences
T * Removing recursions improves cardinality estimates

which improve accuracy of the optimizer

* Query: Average number of messages per forum
* 800ms vs 80ms



How to Beat Umbra

Execution
As fast as (faster than) highly
optimized C++ code you would

specifically write for a query.

Highly scalable algorithms, WCOJ [1]
Death to O(n?)

JIT compilation of queries
Morsel based parallelism
Missing graph specific algorithms

Not likely to improve by large margins

Optimization
_ Unnesting arbitrary queries [2]
. Join ordering with optimal DP [3,4]

Adaptive optimization for huge joins

Rule based optimization is not
always consistent.
Order of application matters.

Equivalent queries:
Some more equal than others

Lots of potential for improvement

(high quality plans for high depth)

I~

Statistics

Statistics on base relations:
Great

Recently saw great improvements [5]
If isKey(attribute):
amazingEstimates();
Else:
startCrying();

Exceptionally hard problem

Just getting started!



LDBC BI SQL Queries

* The queries changed over time

* Over 10x improvement gained by rewriting queries

* 'The optimizer should have been doing what we had to do by hand!
* Remove redundant joins with redundant relations

« Common subquery elimination

* Are you interested in execution?

* Check out the latest query versions

* Are you interested in optimization?

* Go through the git history and check out earlier query versions



SQL Shortest Path (PostgreSQL dialect)

shorts(dir, gsrc, dst, w, dead, iter) as (

(
select false, f, f, 0::double precision, false, @ from srcs
union all
select true, t, t, 0::double precision, false, © from dsts
)
union all
(
with
ss as (select * from shorts),
toExplore as (select * from ss where dead = false order by w limit 1000),
-- assumes graph is undirected
newPoints(dir, gsrc, dst, w, dead) as (
select e.dir, e.gsrc as gsrc, p.dst as dst, e.w + p.w as w, false as dead
from path p join toExplore e on (e.dst = p.src)
union all
select dir, gsrc, dst, w, dead or exists (select * from toExplore e where e.dir = o.dir and e.gsrc = o.gsrc and e.dst = o.dst) from ss o
)J
fullTable as (
select distinct on(dir, gsrc, dst) dir, gsrc, dst, w, dead
from newPoints
order by dir, gsrc, dst, w, dead desc
)J
found as (
select min(l.w + r.w) as w
from fullTable 1, fullTable r
where 1.dir = false and r.dir = true and l.dst = r.dst
)
select dir,
gsrc,
dst,
W,
dead or (coalesce(t.w > (select f.w/2 from found f), false)),
e.iter + 1 as iter
from fullTable t, (select iter from toExplore limit 1) e
)

)s



Dijkstra’s Algorithm

Visit nodes one by one by increasing distance
Invariant: Every path within the circle has been seen



Dijkstra’s Algorlthm Modified

Visit nodes 1000s at a time by mcreaszng distance

We have to make sure no shorter path is available Additional improvement: Bidirectional search



Hacking SQL Recursion

* Can't access results of arbitrary recursion steps

* So just propagate everything you ever compute at every step!

* Absolutely horrible, destroys memory and efficiency

* But we still beat the other graph systems!

* This emphasizes the importance of of depth



SQL Shortest Path

shorts(dir, gsrc, dst, w, dead, iter) as (

(
select false, f, f, 0::double precision, false, © from srcs
union all
select true, t, t, 0::double precision, false, © from dsts
)
union all
(
with
ss as (select * from shorts),
toExplore as (select * from ss where dead = false order by w limit 1000),
-- assumes graph is undirected
newPoints(dir, gsrc, dst, w, dead) as (
select e.dir, e.gsrc as gsrc, p.dst as dst, e.w + p.w as w, false as dead
from path p join toExplore e on (e.dst = p.src)
union all
select dir, gsrc, dst, w, dead or exists (select * from toExplore e where e.dir = o.dir and e.gsrc = o.gsrc and e.dst = o.dst) from ss o
)J
fullTable as (
select distinct on(dir, gsrc, dst) dir, gsrc, dst, w, dead
from newPoints
order by dir, gsrc, dst, w, dead desc
)J
found as (
select min(l.w + r.w) as w
from fullTable 1, fullTable r
where 1.dir = false and r.dir = true and l.dst = r.dst
)
select dir,
gsrc,
dst,
W,
dead or (coalesce(t.w > (select f.w/2 from found f), false)),
e.iter + 1 as iter
from fullTable t, (select iter from toExplore limit 1) e
)

)s



References

[1] Michael J. Freitag et al. “Adopting Worst-Case Optimal Joins in Relational Database Systems”. In: Proc. VLDB Endow. 13.11 (2020), pp. 1891-1904.
[2] Thomas Neumann and Alfons Kemper. “Unnesting Arbitrary Queries” In: BTW. Vol. P-241. LNI. GI, 2015, pp. 383-402.
[3] Thomas Neumann and Bernhard Radke. “Adaptive Optimization of Very Large Join Queries”. In: SIGMOD Conference. ACM, 2018, pp. 677-692.

[4] Bernhard Radke and Thomas Neumann. “LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins” In: BTW. Vol. P-289. LNI. Gesellschaft fur
Informatik, Bonn, 2019, pp. 57-76.

(5] Philipp Fent and Thomas Neumann. “A Practical Approach to Groupjoin and Nested Aggregates”. In: Proc. VLDB Endow. 14.11 (2021), pp. 2383-2396.



