
Introducing RelationalAI

Probabilistic Graphical Models –and-
Statistical Relational Learning

Molham Aref -- RelationalAI

OVERVIEW

Age: 9 months old AI/ML startup

Team:
▪ 16 people, 10 PhD’s, 4 former university professors
▪ Faculty Network: 9 @ ~20% + summers, additional ~12+ in extended network

Location: distributed team (SV, Atlanta, Seattle, Toronto, NYC, Utrecht, London)
Offices in Berkeley and Utrecht

Financials: Funded through 2019 + revenue from consulting

Industries served: TBD (looking at Financial Services, Business Intelligence)
▪ If all else fails we’re going to pivot to Deep Quantum Crypto Blockchain of Things

and hope for the best

2

HOW WE SEE OURSELVES

Expertise in systems (8 people)
§ We built sophisticated compilers & interpreters (OOPSLA, ECOOP, ICFP)
§ We built databases that advanced the state of the art (SIGMOD, VLDB)

Expertise in theory (7 people)
§ We prove things (PODS, ICDT, TODS, JACM, POPL)
§ We designed first-of-a-kind asymptotically efficient algorithms

§ Worst case optimal join algorithms
§ Asymptotically superior query plans

Expertise in ML & AI (7 people)
§ We implemented scalable ML & probabilistic systems (NIPS, ICML, AAAI)

§ We developed sophisticated statistical and mathematical models

3

INDUSTRIAL EXPERIENCE

HNC
§ Financial services: Fraud detection -- credit card, insurance (23 of top 25 credit card issuing banks)
§ Neural networks on proprietary HW accelerators (also computational intelligence, Database mining)
§ IPO 1995, acquired by FICO in 2002

Retek
§ Retail: Demand forecasting, supply chain optimization, pricing (majority of Retail Global 250)
§ Time series with approximate optimization – first hierarchical forecasting solution to scale to Retail volumes
§ IPO 1999, acquired by Oracle in 2005

Optimi
§ Telecom: Wireless network optimization (AT&T, Cingular, Next, America Movil, Telefonica)
§ Monte Carlo simulation, heuristic search (simulated annealing)
§ Acquired by Ericsson in 2010

Brickstream
§ Retail: in-store video analytics (>30% market share globally)
§ Old-school computer vision (pre-deep learning) – first industrial use of stereo cameras
§ Acquired by Point-Grey which was acquired by FLIR in 2015

LogicBlox/Predictix
§ Retail: Demand forecasting, supply chain optimization, pricing (3 of top 6 US retailers + dozen large global retailers)
§ Factorization machines, linear programming, integer programming – first on cloud
§ Acquired by Infor in 2016

4

STATE OF THE PRACTICE

EXAMPLES

EX
PE

RT
IS

E

5

∞

∞0

Traditional
Programming
(imperative,
functional,
relational/logical)

Deep
Learning
(images, text,
speech, games)

STATE OF THE PRACTICE

EXAMPLES

EX
PE

RT
IS

E

6

∞

∞0

Traditional
Programming
(imperative,
functional,
relational/logical)

Deep
Learning
(images, text,
speech, games)

Logic
good for
managing
complexity

STATE OF THE PRACTICE

EXAMPLES

EX
PE

RT
IS

E

7

∞

∞0

Traditional
Programming
(imperative,
functional,
relational/logical)

Deep
Learning
(images, text,
speech, games)

Probability
good for
managing
uncertainty

STATE OF THE PRACTICE

EXAMPLES

EX
PE

RT
IS

E

8

∞

∞0

Traditional
Programming
(imperative,
functional,
relational/logical)

Deep
Learning
(images, text,
speech, games)

?

STATE OF THE PRACTICE

EXAMPLES

EX
PE

RT
IS

E

9

∞

∞0

Traditional
Programming
(imperative,
functional,
relational/logical)

Deep
Learning
(images, text,
speech, games)

Probabilistic
Programming
&
SRL

STATE OF THE PRACTICE

EXAMPLES

EX
PE

RT
IS

E

10

∞

∞0

Traditional
Programming
(imperative,
functional,
relational/logical)

Deep
Learning
(images, text,
speech, games)

RelationalAI

OUR SECRET SAUCE

§ We know how to exploit problem structure to make optimization asymptotically
faster
§ We know how to perform stochastic gradient descent and batch gradient descent

directly on normalized relational data
§ Most ML Methods can be solved well with SGD, some with BGD

§ Asymptotically faster optimization means anything that depends on it can go
faster
§ Learning/Parameter optimization
§ Hyperparameter optimization
§ Feature engineering
§ Structure learning
§ Inference
§ ...

11

STRUCTURE FOR TRADITIONAL/DISCRIMINATIVE ML

5 COMPONENTS OF MACHINE LEARNING

§ Method (or model class)
§ e.g. FM, decision tree, neural network, …

§ Loss (error) function
§ e.g. Absolute error (L1 norm), Square error (L2 norm), …

§ Generalization mechanism
§ e.g. Regularization (norm * penalty), cross validation

§ Evaluation function
§ Takes the model parameters and the input and produces a prediction

§ Optimizer
§ E.g. Gradient descent, EM algorithm

13

5 TYPES OF METHODS or MODEL CLASSES

▪ Regression: predict a number
▪ Linear regression with VIF
▪ LASSO regression
▪ Multi-time series prediction
▪ Nonparametric regression
▪ Mixture of experts
▪ Factorization machines
▪ Polynomial regression

▪ Classification: predict a category
▪ Naïve Bayes classifier
▪ Non-parametric Bayes classifier
▪ K-nearest neighbor classifier
▪ Support vector machine
▪ Decision tree
▪ Hidden Markov model

▪ Density Estimation: find likelihood of objects
▪ Histograms
▪ Kernel density estimation

▪ Clustering: find natural groups
▪ K-means
▪ Spectral clustering
▪ Mean shift clustering

▪ Dimension Reduction: combine features
▪ Singular value decomposition
▪ Maximum variance unfolding
▪ Non-negative matrix factorization
▪ Kernel principal component analysis
▪ (Ensemble) Singular value decomposition
▪ GROUSE
▪ Random projections
▪ Tensor factorization PARFAC/CANDECOMP

14

DESIGN MATRIX

ID x1 x2 x3 ... y

i1

i2

…

i1B

Features

En
tit

ie
s

15

DESIGN MATRIX IS A VIEW ON STRUCTURED (RELATIONAL) DATA

ID x1 x2 x3 ... y

Features

En
tit

ie
s

16

WE CAN EXPLOIT THE RELATIONAL STRUCTURE

We use algebraic structure (e.g. semi-rings) to “push the aggregations through the
joins” to implement lifted stochastic and batch gradient descent for efficient
learning of a variety of model classes

§ Linear regression
§ Polynomial regression
§ Factorization machines
§ Decision trees
§ Neural nets
§ …

(many more on the way)

17

BENCHMARK (1/3)

18

BENCHMARK (2/3)

19

BENCHMARK (3/3)

20

STATISTICAL RELATIONAL LEARNING
SRL and StarAI

MOTIVATION

▪ Graphical models are considered by some to be “one of the most exciting advances
in machine learning (AI, signal processing, coding, control, ...) in the last decades”

▪ Graphical models allow us to gain global insight based on local observations

▪ There are different types of graphical models
▪ Directed: eg. Bayesian Networks (aka belief networks)

▪ Undirected: e.g. Mark Networks (aka Markov Random Fields), Factor Graphs

▪ Mixed: e.g. Chain Graphs - both directed acyclic graphs and undirected graphs are special
cases of chain graphs, which can therefore provide a way of unifying and generalizing
Bayesian and Markov networks

▪ Statistical Relational models generalize PGM’s in the same way that first order logic
generalizes propositional logic – they allow us to quantify over individuals/entities

22

STATISTICAL RELATIONAL LEARNING (SRL)

▪ Knowledge is represented as a distribution over possible worlds
▪ Finite and infinite sets of possible worlds are supported

▪ Undirected models: via integrity constraints
▪ We specify the constraints that determine the legal set of possible worlds & a function to score each of them.

▪ We don’t have to provide a program to generate each possible world.

▪ Directed models: via probabilistic programs
▪ We have to provide a program to generate each possible world. Score by normalizing - frequency of a given

world relative to all others.

▪ Normalize the score of each world by the sum of scores of all the worlds

▪ Inference
▪ Unlike “traditional” methods where prediction is the input applied to the parameters of the

model class, inference in SRL requires expensive optimization or (approximate) integration
over possible worlds

▪ Learning
▪ Unlike traditional learning algorithms, just one instance to learn from (the relational DB)

▪ Structure learning uses inference during each step

23

SEMANTICS

Database
(EDBs)

Ordinary minimal model semantics:

Rules

Outcome
(IDBs)

Database
(EDBs)

Distribution semantics

Integrity Constraints
or Probabilistic

Rules

Probability space over possible
outcomes (IDBs)

24Slide thanks to Benny Kimelfeld

UNDIRECTED MODELS
Use Integrity Constraints to specify a set of possible worlds & define a scoring function for each

SMOKERS AND FRIENDS

26

CERTAIN KNOWLEDGE WITH INTEGRITY CONSTRAINTS

A logical Knowledge Base is a set of Integrity Constraints that define a set of possible worlds:
person(x)
smokes(x) -> person(x)
cancer(x) -> person(x)
friends(x, y) -> person(x), person(y)

Assuming persons Alice (A) and Bob (B), then there are 4 possible relations for each of:
smokes, cancer:

There are 16 possible relations for friends

So how many possible worlds are there?
▪ 2 bits for for each of smokes cancer and 4 bits for friends: 28 or 256 possible worlds

And how many if we add a 3rd person Carla (C)?
▪ 3 bits * 2 unary relations + 9 bits for binary relation: 215 or 32K possible worlds

27

A

B

A B

A

B

A A

B A

B B

A A A B B A B B A A

A B

A A

B A

A A

B B

A B

B A

A B

B B

B A

B B

A A

A B

B A

A A

A B

B B

A B

B A

B B

A A

A B

B A

B B

A B A

B

A

B

A B A

B

EACH POSSIBLE TUPLE IS A NODE IN A GRAPHICAL MODEL

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

28Slide thanks to Pedro Domingos

PROBABILISTIC KNOWLEDGE WITH WEIGHTED INTEGRITY CONSTRAINTS

Represent probabilistic knowledge with soft (weighted) Integrity Constraints
person(x)
smokes(x) -> person(x)
cancer(x) -> person(x)
friends(x, y) -> person(x), person(y)
w1 smokes(x) -> cancer(x)
w2 smokes(x), friends(x, y) -> smokes(y)

When a world violates a formula, it becomes less probable, not impossible

Weights give indication of certainty in domain knowledge or expertise
▪ 0 -> no confidence -- might as well not have the IC

▪ Infinity -> absolute certainty – hard constraint

▪ -Infinity -> absolute certainty in the converse – hard constraint on negated IC
29

Smoking causes cancer
Friends have similar smoking habits

GRAPHICAL MODEL

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

30Slide thanks to Pedro Domingos

ALL WORLDS

0

0.5

1

1.5

2

2.5

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

19
9

20
5

21
1

21
7

22
3

22
9

23
5

24
1

24
7

25
3

world score (w * count)

31

ALL WORLDS where B smokes

0

0.5

1

1.5

2

2.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

world score (w * count)

32

ALL WORLDS where B smokes and B is friends with A

0

0.5

1

1.5

2

2.5

1 3 5 7 9 111315171921232527293133353739414345474951535557596163

world score (w * count)

33

QUANTIFYING OVER POSSIBLE WORLDS

Observations/measurements eliminate some of the possible worlds

Finding the mostly likely world can be computed with optimization

Computing the probability of any world requires us to aggregate/integrate over all
possible worlds.

.

34

HOW DO WE MAKE SRL EFFICIENT?

There are 2 important dimensions to consider

§ Brawn (i.e. the constant factors)
§ Latency hiding: memory hierarchy and network latencies (e.g. in memory)
§ Specialization: specialize for workload (e.g. JIT compilation), specialize for data
§ Parallelization: SIMD, multi-core, accelerators (e.g. GPU, TPU), in memory computing

§ Brain (i.e. the asymptotics)
§ Lifting and Structure exploitation: algebraic (e.g. semi rings, groups), combinatorial,

statistical, geometric
§ Approximation (with error bars): e.g. variational methods

both ---> approximate lifted inference

35

SUMMARY: ADVANTAGES OF (STATISTICAL) RELATIONAL AI

§ Performance
§ Exploits the relational structure for asymptoticly better performance

§ Understandability
§ Declarative relational language can be used to codify knowledge/expertise

(human to machine) and to return insight (machine to human)I

§ Quality
§ Fewer assumptions regarding independence, identical distributions, # of

observations per example, etc. can produce more accurate models

§ Versatility
§ Generalized inference: from observations to unknowns in any direction

36

WORST-CASE OPTIMAL MULTI-WAY JOIN

▪ Worst-Case Optimal Join Algorithms: Techniques, Results, and
Open Problems. Ngo. (Gems of PODS 2018)

▪ Worst-Case Optimal Join Algorithms: Techniques, Results, and
Open Problems. Ngo, Porat, Re, Rudra. (Journal of the ACM
2018)

▪ What do Shannon-type inequalities, submodular width, and
disjunctive datalog have to do with one another? Abo Khamis,
Ngo, Suciu, (PODS 2017 - Invited to Journal of ACM)

▪ Computing Join Queries with Functional Dependencies. Abo
Khamis, Ngo, Suciu. (PODS 2017)

▪ Joins via Geometric Resolutions: Worst-case and Beyond. Abo
Khamis, Ngo, Re, Rudra. (PODS 2015, Invited to TODS 2015)

▪ Beyond Worst-Case Analysis for Joins with Minesweeper. Abo
Khamis, Ngo, Re, Rudra. (PODS 2014)

▪ Leapfrog Triejoin: A Simple Worst-Case Optimal Join Algorithm.
Veldhuizen (ICDT 2014 - Best Newcomer)

▪ Skew Strikes Back: New Developments in the Theory of Join
Algorithms. Ngo, Re, Rudra. (Invited to SIGMOD Record 2013)

▪ Worst Case Optimal Join Algorithms. Ngo, Porat, Re, Rudra.
(PODS 2012 – Best Paper)

Leapfrog Triejoin: A Simple, Worst-Case Optimal

Join Algorithm

Todd L. Veldhuizen
LogicBlox Inc.

Two Midtown Plaza
1349 West Peachtree Street NW

Suite 1880, Atlanta GA 30309
tveldhui@{logicblox.com,acm.org}

ABSTRACT

Recent years have seen exciting developments in join
algorithms. In 2008, Atserias, Grohe and Marx (hence-
forth AGM) proved a tight bound on the maximum re-
sult size of a full conjunctive query, given constraints
on the input relation sizes. In 2012, Ngo, Porat, Ré
and Rudra (henceforth NPRR) devised a groundbreak-
ing join algorithm with worst-case running time propor-
tional to the AGM bound [9]. Our commercial Data-
log system LogicBlox employs a novel join algorithm,
leapfrog triejoin, which compared conspicuously well to
the NPRR algorithm in preliminary benchmarks. This
spurred us to investigate its complexity. In this pa-
per we establish that leapfrog triejoin is also worst-case
optimal, up to a log factor, in the sense of NPRR. More-
over, leapfrog triejoin achieves worst-case optimality for
finer-grained classes, for example, those defined by con-
straints on the size of projections of the input relations.
We show that leapfrog triejoin is asymptotically faster
than NPRR for some such classes. On a practical note,
leapfrog triejoin can be implemented using conventional
data structures such as B-trees, and extends naturally
to 91 queries. We believe our algorithm o↵ers a useful
addition to the existing toolbox of join algorithms, be-
ing easy to absorb, simple to implement, and having a
concise optimality proof.

General Terms

Algorithms,Theory

1. INTRODUCTION

Join processing is a fundamental and extremely well-
studied problem in database systems. Many useful queries
can be formulated as one or more full conjunctive queries.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

A full conjunctive query is a conjunctive query [4] with
no projections, i.e., every variable in the body appears
in the head [1]. As a running example we use the query
defined by the Datalog rule:

Q(a, b, c) R(a, b), S(b, c), T (a, c). (1)

(For intuition: if R = S = T , then Q finds triangles.)
Given constraints on the sizes of the input relations

such as |R| n, |S| n, |T | n, what is the maximum
possible size of the query |Q|? This question has prac-
tical import, since a tight bound |Q| Q⇤ implies an
⌦(Q⇤) worst-case running time for algorithms answer-
ing such queries.
Atserias, Grohe and Marx (henceforth AGM [3]) es-

tablished a tight bound on the size of Q: the fractional

edge cover bound (Section 2.2). For the case where
|R| = |S| = |T | = n, the fractional cover bound yields
|Q| n3/2. In earlier work, Grohe and Marx [7] gave
an algorithm with running time O(|Q⇤|2f(n)), where
f(n) is a polynomial determined by the fractional cover
bound. In 2012, Ngo, Porat, Ré and Rudra (henceforth
NPRR [9]) devised a ground-breaking algorithm with
worst-case running time O(Q⇤), matching the AGM
bound. The algorithm is non-trivial, and its implemen-
tation and analysis depend on some fairly deep machin-
ery also developed in the paper.
The NPRR algorithm was brought to our attention

by Dung Nguyen, a summer intern at LogicBlox, who
implemented it experimentally in our commercial Data-
log system. His preliminary benchmarks suggested that
our own join algorithm performed dramatically better
than NPRR for at least some test problems [10]. Log-
icBlox uses a novel and hitherto proprietary join algo-
rithm we call leapfrog triejoin. These benchmark results
motivated us to analyze our algorithm, in light of the
breakthroughs of NPRR.
Conventional join implementations employ a stable of

join operators (see e.g. [6]) which are composed in a tree
to produce the query result; this tree is prescribed by a
query plan produced by the optimizer. The query plan
often relies on materialization of intermediate results.
In contrast, leapfrog triejoin joins all input relations
simultaneously without materializing any intermediate

ar
X

iv
:1

21
0.

04
81

v3
 [

cs
.D

B]
 2

2
M

ar
 2

01
3 What do Shannon-type Inequalities, Submodular Width,

and Disjunctive Datalog have to do with one another?

Mahmoud Abo Khamis
LogicBlox Inc.

Hung Q. Ngo
LogicBlox Inc.

Dan Suciu
LogicBlox Inc. and

University of Washington

ABSTRACT
Recent works on bounding the output size of a conjunctive
query with functional dependencies and degree bounds have
shown a deep connection between fundamental questions in
information theory and database theory. We prove analo-
gous output bounds for disjunctive datalog rules, and answer
several open questions regarding the tightness and looseness
of these bounds along the way. The bounds are intimately
related to Shannon-type information inequalities. We de-
vise the notion of a “proof sequence” of a specific class of
Shannon-type information inequalities called “Shannon flow
inequalities”. We then show how a proof sequence can be
used as symbolic instructions to guide an algorithm called
PANDA, which answers disjunctive datalog rules within the
size bound predicted. We show that PANDA can be used
as a black-box to devise algorithms matching precisely the
fractional hypertree width and the submodular width run-
times for aggregate and conjunctive queries with functional
dependencies and degree bounds.

Our results improve upon known results in three ways.
First, our bounds and algorithms are for the much more gen-
eral class of disjunctive datalog rules, of which conjunctive
queries are a special case. Second, the runtime of PANDA
matches precisely the submodular width bound, while the
previous algorithm by Marx has a runtime that is polyno-
mial in this bound. Third, our bounds and algorithms work
for queries with input cardinality bounds, functional depen-
dencies, and degree bounds.

Overall, our results showed a deep connection between
three seemingly unrelated lines of research; and, our results
on proof sequences for Shannon flow inequalities might be
of independent interest.

Keywords
Submodular width; Disjunctive datalog; Shannon-type in-
equalities; Entropy; Functional dependencies; Restricted ac-
cess patterns; Degree bounds; Join algorithms

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODS’17, May 14 - 19, 2017, Chicago, IL, USA

c� 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4198-1/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3034786.3056105

1. INTRODUCTION
In this paper we answer four major questions that resulted

from four di↵erent research threads, and establish new con-
nections between those threads.

1.1 Size Bound for Full Conjunctive Queries
Grohe and Marx [30], Atserias, Grohe, and Marx [13],

and Gottlob, Lee, Valiant and Valiant [27] developed a deep
connection between the output size bound of a conjunc-
tive query with (or without) functional dependencies (FD)
and information theory. Our first problem is to extend
this bound to degree constraints, and to study whether the
bound is tight.
We associate a full conjunctive query Q to a hypergraph

H = ([n], E), E ✓ 2[n]. The query’s variables are Ai, i 2 [n].
Its atoms are RF , F 2 E . The query is:

Q(A[n]) :-
^

F2E

RF (AF), (1)

where AJ denotes the set {Aj | j 2 J}, for J ✓ [n]. Our
goal is to compute an upper bound on the output size, when
the input database satisfies a set of degree constraints. De-

fine degF (AY |AX)
def
= maxt |⇧AY (�AX=t(RF))|; then, a de-

gree constraint is an assertion of the form degF (AY |AX)
NY |X , for X ⇢ Y ✓ F , A cardinality constraint is an asser-
tion of the form |RF | NF , for some F 2 E ; it is exactly

the degree constraint degF (AF |;) NF |;
def
= NF . A func-

tional dependency AX ! AY is a degree constraint with
NX[Y |X = 1. Thus, degree constraints strictly generalize
both cardinality constraints and FDs.
The first output size upper bound was pioneered in [13,30],

who established a tight bound, for cardinality constraints
only, known today as the AGM bound. Extensions to FDs
and degree constraints were discussed in [27] and [3], re-
spectively, who left open the question whether these bounds
are tight. Handling queries with degree constraints has a
strong practical motivation. Armbrust et al. [10–12], de-
scribed a new approach to query evaluation, called scale-

independent query processing, which guarantees a fixed run-
time even when the size of the database increases without
bound; this guarantee is provided by asking developers to
write explicit degree constraints, then using heuristics to
derive upper bounds on the query output. Thus, improved
upper bounds on the size of the query answer have immedi-
ate applications to scale-independent query processing. Sev-
eral complexity results on the associated decision problem
(“is the output size of the query bounded?”) were considered
in [15–17].

429

37

OPTIMAL QUERY PLANS FOR MULTI-WAY JOINS

▪ What do Shannon-type inequalities, submodular

width, and disjunctive datalog have to do with

one another? Abo Khamis, Ngo, Suciu, (PODS

2017 - Invited to Journal of ACM)

▪ FAQ: Questions Asked Frequently, Abu Khamis,

Ngo, Rudra, (PODS 2016 – Best Paper, Invited
to Journal of ACM).

▪ Juggling functions inside a database, Abo

Khamis, Ngo, Suciu (Invited to SIGMOD
Record)

Juggling Functions Inside a Database

Mahmoud Abo Khamis
LogicBlox Inc.

mahmoud.abokhamis@logicblox.com

Hung Q. Ngo
LogicBlox Inc.

hung.ngo@logicblox.com

Atri Rudra
University at Buffalo, SUNY

atri@bu↵alo.edu

ABSTRACT
We define and study the FunctionalAggregateQuery (FAQ)
problem, which captures common computational tasks across
a very wide range of domains including relational databases,
logic, matrix and tensor computation, probabilistic graph-
ical models, constraint satisfaction, and signal processing.
Simply put, an FAQ is a declarative way of defining a new
function from a database of input functions.

We present InsideOut, a dynamic programming algorithm,
to evaluate an FAQ. The algorithm rewrites the input query
into a set of easier-to-compute FAQ sub-queries. Each sub-
query is then evaluated using a worst-case optimal relational
join algorithm. The topic of designing algorithms to opti-
mally evaluate the classic multiway join problem has seen
exciting developments in the past few years. Our frame-
work tightly connects these new ideas in database theory
with a vast number of application areas in a coherent man-
ner, showing potentially that – with the right abstraction,
blurring the distinction between data and computation – a
good database engine can be a general purpose constraint
solver, relational data store, graphical model inference en-
gine, and matrix/tensor computation processor all at once.

The InsideOut algorithm is very simple, as shall be de-
scribed in this paper. Yet, in spite of solving an extremely
general problem, its runtime either is as good as or improves
upon the best known algorithm for the applications that FAQ
specializes to. These corollaries include computational tasks
in graphical model inference, matrix/tensor operations, re-
lational joins, and logic. Better yet, InsideOut can be used
within any database engine, because it is basically a princi-
pled way of rewriting queries. Indeed, it is already part of
the LogicBlox database engine, helping e�ciently answer tra-

This work was partly supported by NSF grant CCF-
1319402 and by DARPA under agreement #FA8750-15-2-
0009. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstand-
ing any copyright thereon.

c� ACM 2017. This is a minor revision of the paper entitled “FAQ:
Questions Asked Frequently”, published in PODS’16, ISBN 978-1-4503-
4191-2/16/06, June 26-July 01, 2016, San Francisco, CA, USA.

DOI: http://dx.doi.org/10.1145/2902251.2902280. Permission
to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ditional database queries, graphical model inference queries,
and train a large class of machine learning models inside the
database itself.

1. INTRODUCTION
The following fundamental problems from diverse domains

share a common algebraic structure involving (generalized)
sums of products.

Example 1. (Matrix Chain Multiplication (MCM)) Given a
series of matrices A1, . . . ,An over some field F, where the
dimension of Ai is pi⇥pi+1, i 2 [n], we wish to compute the
product A = A1 · · ·An. The problem can be reformulated
as follows. There are n + 1 variables X1, . . . , Xn+1 with
domains Dom(Xi) = [pi], for i 2 [n+ 1]. For i 2 [n], matrix
Ai can be viewed as a function of two variables

 i,i+1 : Dom(Xi)⇥ Dom(Xi+1) ! F,

where i,i+1(x, y) = (Ai)xy. The MCM problem is to com-
pute the output function

'(x1, xn+1) =
X

x22Dom(X2)

· · ·
X

xn2Dom(Xn)

nY

i=1

 i,i+1(xi, xi+1).

Example 2. (Maximum A Posteriori (MAP) queries in prob-
abilistic graphical models (PGMs)) Consider a discrete graph-
ical model represented by a hypergraph H = (V, E). There
are n discrete random variables V = {X1, . . . , Xn} on finite
domains Dom(Xi), i 2 [n], and m = |E| factors

 S :
Y

i2S

Dom(Xi) ! R+, S 2 E .

A typical inference task is to compute the marginal MAP
estimates, written in the form

'(x1, . . . , xf) = max
xf+12Dom(Xf+1)

· · · max
xn2Dom(Xn)

Y

S2E

 S(xS).

Example 3. (Conjunctive query in RDBMS) Consider a
schema with the following input relations: R(a, b), S(b, c),
T (c, a), where for simplicity let us say all attributes are in-
tegers. Consider the following query:

SELECT R.a
FROM R, S, T
WHERE R.b = S.b AND S.c = T.c AND T.a = R.a;

The above query can be reformulated as follows. Relation
R(a, b) is modeled by a function R(a, b) ! {true, false},

6 SIGMOD Record, March 2017 (Vol. 46, No. 1)

38

What do Shannon-type Inequalities, Submodular Width,
and Disjunctive Datalog have to do with one another?

Mahmoud Abo Khamis
LogicBlox Inc.

Hung Q. Ngo
LogicBlox Inc.

Dan Suciu
LogicBlox Inc. and

University of Washington

ABSTRACT
Recent works on bounding the output size of a conjunctive
query with functional dependencies and degree bounds have
shown a deep connection between fundamental questions in
information theory and database theory. We prove analo-
gous output bounds for disjunctive datalog rules, and answer
several open questions regarding the tightness and looseness
of these bounds along the way. The bounds are intimately
related to Shannon-type information inequalities. We de-
vise the notion of a “proof sequence” of a specific class of
Shannon-type information inequalities called “Shannon flow
inequalities”. We then show how a proof sequence can be
used as symbolic instructions to guide an algorithm called
PANDA, which answers disjunctive datalog rules within the
size bound predicted. We show that PANDA can be used
as a black-box to devise algorithms matching precisely the
fractional hypertree width and the submodular width run-
times for aggregate and conjunctive queries with functional
dependencies and degree bounds.

Our results improve upon known results in three ways.
First, our bounds and algorithms are for the much more gen-
eral class of disjunctive datalog rules, of which conjunctive
queries are a special case. Second, the runtime of PANDA
matches precisely the submodular width bound, while the
previous algorithm by Marx has a runtime that is polyno-
mial in this bound. Third, our bounds and algorithms work
for queries with input cardinality bounds, functional depen-
dencies, and degree bounds.

Overall, our results showed a deep connection between
three seemingly unrelated lines of research; and, our results
on proof sequences for Shannon flow inequalities might be
of independent interest.

Keywords
Submodular width; Disjunctive datalog; Shannon-type in-
equalities; Entropy; Functional dependencies; Restricted ac-
cess patterns; Degree bounds; Join algorithms

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODS’17, May 14 - 19, 2017, Chicago, IL, USA

c� 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4198-1/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3034786.3056105

1. INTRODUCTION
In this paper we answer four major questions that resulted

from four di↵erent research threads, and establish new con-
nections between those threads.

1.1 Size Bound for Full Conjunctive Queries
Grohe and Marx [30], Atserias, Grohe, and Marx [13],

and Gottlob, Lee, Valiant and Valiant [27] developed a deep
connection between the output size bound of a conjunc-
tive query with (or without) functional dependencies (FD)
and information theory. Our first problem is to extend
this bound to degree constraints, and to study whether the
bound is tight.
We associate a full conjunctive query Q to a hypergraph

H = ([n], E), E ✓ 2[n]. The query’s variables are Ai, i 2 [n].
Its atoms are RF , F 2 E . The query is:

Q(A[n]) :-
^

F2E

RF (AF), (1)

where AJ denotes the set {Aj | j 2 J}, for J ✓ [n]. Our
goal is to compute an upper bound on the output size, when
the input database satisfies a set of degree constraints. De-

fine degF (AY |AX)
def
= maxt |⇧AY (�AX=t(RF))|; then, a de-

gree constraint is an assertion of the form degF (AY |AX)
NY |X , for X ⇢ Y ✓ F , A cardinality constraint is an asser-
tion of the form |RF | NF , for some F 2 E ; it is exactly

the degree constraint degF (AF |;) NF |;
def
= NF . A func-

tional dependency AX ! AY is a degree constraint with
NX[Y |X = 1. Thus, degree constraints strictly generalize
both cardinality constraints and FDs.
The first output size upper bound was pioneered in [13,30],

who established a tight bound, for cardinality constraints
only, known today as the AGM bound. Extensions to FDs
and degree constraints were discussed in [27] and [3], re-
spectively, who left open the question whether these bounds
are tight. Handling queries with degree constraints has a
strong practical motivation. Armbrust et al. [10–12], de-
scribed a new approach to query evaluation, called scale-

independent query processing, which guarantees a fixed run-
time even when the size of the database increases without
bound; this guarantee is provided by asking developers to
write explicit degree constraints, then using heuristics to
derive upper bounds on the query output. Thus, improved
upper bounds on the size of the query answer have immedi-
ate applications to scale-independent query processing. Sev-
eral complexity results on the associated decision problem
(“is the output size of the query bounded?”) were considered
in [15–17].

429

In-Database Factorized Learning

Hung Q. Ngo1, XuanLong Nguyen2, Dan Olteanu3, and Maximilian Schleich3

1LogicBlox, Inc. hung.ngo@logicblox.com
2University of Michigan xuanlong@umich.edu

3University of Oxford {dan.olteanu,max.schleich}@cs.ox.ac.uk

1 Introduction

In this paper, we overview recent contributions on in-database analytics for a
class of optimization problems that are important for LogicBlox retail-planning
and forecasting applications [4, 5, 7]. The class includes ridge linear regression,
polynomial regression, factorization machines, principal component analysis and
classification models. Such problems are typically computed over input data de-
fined by a feature extraction join query on data sources residing inside a database.
The query result can have a large number of attributes and records, which leads
to large compute times or failure to process the entire dataset for conventional
analytics engines.

Pushing analytical computation inside the database engine saves non-trivial
time usually spent on data import/export at the interface between database
systems and statistical packages. In addition, a large part of the computational
challenge for optimization problems can be addressed with conventional database
techniques. To show this, we decouple the data-dependent computation from the
computation of the optimal solution. The data-dependent step can be phrased as
factorized computation of many inter-related aggregates over database joins [3,7].
We further exploit functional dependencies to reduce the dimensionality of the
optimization problem [4]. Motivated by the industrial applications, this line of
work attracted increasing interest in academia recently [1].

2 Problem formulation

We use a unified framework to express and solve optimization problems [4].
In the following, bold face letters (e.g., x, xi, ✓) denote vectors or matrices,

normal face letters (e.g., xi, ✓j) denote scalars, and h·, ·i denotes the Frobenius
inner product of two matrices. Let Q be a feature extraction join query and D

a database that defines the training dataset Q(D) for an optimization problem.
Suppose the problem has p parameters ✓ = (✓1, . . . , ✓p) 2 Rp, as well as response
y and n numeric features x = (x1, . . . , xn), provided by the data points (x, y) 2
Q(D). For a positive integer m, there exist two vector-valued functions g : Rp !
Rm and h : Rn ! Rm. Each component function gj of g = (gj)j2[m] is a
multivariate polynomial of model parameters. Each component function hj of h =
(hj)j2[m] is a multivariate monomial of input features. Using the least-squares

IN-DB LEARNING

▪ In-Database Learning with Sparse Tensors,
Abo Khamis, Ngo, Nguyen, Olteanu, Schleich
(PODS 2018)

▪ AC/DC: In-Database Learning Thunderstruck,
Abo Khamis, Ngo, Nguyen, Olteanu, Schleich
(DEEM 2018)

▪ Modelling Machine Learning Algorithms on
Relational Data with Datalog. Makrynioti,
Vasiloglou, Pasalic, Vassalos. (DEEM 2018)

▪ In-Database Factorized Learning, Ngo,
Nguyen, Olteanu, Schleich (AMW 2017)

▪ Data Science with Linear Programming.
Makrynioti, Vasiloglou, Pasalic, Vassalos.
(DeLBP 2017)

In-Database Learning with Sparse Tensors

Mahmoud Abo Khamis1 Hung Q. Ngo1 XuanLong Nguyen2

Dan Olteanu3 Maximilian Schleich3

1LogicBlox, Inc. 2University of Michigan 3University of Oxford
{mahmoud.abokhamis,hung.ngo}@logicblox.com, xuanlong@umich.edu,

{dan.olteanu,max.schleich}@cs.ox.ac.uk

ABSTRACT
In-database analytics is of great practical importance as it
avoids the costly repeated loop data scientists have to deal
with on a daily basis: select features, export the data, con-
vert data format, train models using an external tool, reim-
port the parameters. It is also a fertile ground of theoreti-
cally fundamental and challenging problems at the intersec-
tion of relational and statistical data models.

This paper introduces a unified framework for training and
evaluating a class of statistical learning models inside a rela-
tional database. This class includes ridge linear regression,
polynomial regression, factorization machines, and principal
component analysis. We show that, by synergizing key tools
from relational database theory such as schema information,
query structure, recent advances in query evaluation algo-
rithms, and from linear algebra such as various tensor and
matrix operations, one can formulate in-database learning
problems and design e�cient algorithms to solve them.

The algorithms and models proposed in the paper have
already been implemented inside the LogicBlox database en-
gine and used in retail-planning and forecasting applications,
with significant performance benefits over out-of-database
solutions that require the costly data-export loop.

1. INTRODUCTION
Although both disciplines of databases and statis-

tics occupy foundational roles for the emerging field
of data science, they are largely seen as complemen-
tary. Most fundamental contributions made by statis-
ticians and machine learning researchers are abstracted
away from the underlying infrastructure for data man-
agement. However, there is undoubtedly clear value in
tight integration of statistics and database models and
techniques. A prime example of such a tight integration
is provided by in-database analytics, which is receiv-
ing an increasing interest in both academia and indus-
try [2,32,43]. This is motivated by the realization that
in many practical cases data resides inside databases
and bringing the analytics closer to the data saves non-
trivial time usually spent on data import/export at the
interface between database systems and statistical pack-
ages [28]. A complementary realization is that large
chunks of statistical machine learning code can be ex-
pressed as relational queries and computed inside the
database [17,19,33,47]. In-database analytics problems
naturally lend themselves to a systematic investigation

using the toolbox of concepts and techniques developed
by the database theorist, and by synergizing ideas from
both relational and statistical data modeling. To solve
optimization problems over relational data, one can ex-
ploit database schema information, functional depen-
dencies, state-of-the-art query evaluation algorithms,
and well-understood complexity analysis.
Our conceptual contribution in this paper is the in-

troduction of a unified in-database framework for train-
ing and evaluating a class of statistical learning models.
This class, commonly used in LogicBlox retail-planning
and forecasting applications [9], includes ridge linear re-
gression, polynomial regression, factorization machines,
classification, and principal component analysis.
In such applications, the training dataset is the result

of a feature extraction query over the database. Typical
databases include weekly sales data, promotions, and
product descriptions. A retailer would like to compute
a parameterized model, which can predict, for instance,
the additional demand generated for a given product
due to promotion. As is prevalent in practical machine
learning, the models are trained using a first-order op-
timization algorithm such as batch or stochastic gra-
dient descent, in part because their convergence rates
are dimension-free (for well-behaved objectives). This
is a crucial property given the high-dimensionality of
our problem as elaborated next.
The main computational challenge posed by in-data-

base analytics is the large number of records and of fea-
tures in the training dataset. There are two types of fea-
tures: continuous (quantitative) such as price and rev-
enue; and categorical (qualitative) such as colors, cities,
and countries.1 While continuous features allow for ag-
gregation over their domains, categorical features can-
not be aggregated together. To accommodate the latter,
the state-of-the-art approach is to one-hot encode their
active domain: each value in the active domain of an at-
tribute is encoded by an indicator vector whose dimen-
sion is the size of the domain. For instance, the colors
in the domain {red, green, blue} can be represented by
indicator vectors [1, 0, 0] for red, [0, 1, 0] for green, and
[0, 0, 1] for blue. The one-hot encoding amounts to a re-
lational representation of the training dataset with one
new attribute per distinct category of each categorical
feature and with wide tuples whose values are mostly 0.
1Most of the features in our clients’ datasets are categorical.

AC/DC: In-Database Learning Thunderstruck
Mahmoud Abo Khamis

RelationalAI, Inc
Hung Q. Ngo
RelationalAI, Inc

XuanLong Nguyen
University of Michigan

Dan Olteanu
University of Oxford

Maximilian Schleich
University of Oxford

ABSTRACT
We report on the design and implementation of the AC/DC gradient
descent solver for a class of optimization problems over normalized
databases. AC/DC decomposes an optimization problem into a set
of aggregates over the join of the database relations. It then uses
the answers to these aggregates to iteratively improve the solution
to the problem until it converges.

The challenges faced by AC/DC are the large database size, the
mixture of continuous and categorical features, and the large num-
ber of aggregates to compute. AC/DC addresses these challenges
by employing a sparse data representation, factorized computation,
problem reparameterization under functional dependencies, and a
data structure that supports shared computation of aggregates.

To train polynomial regression models and factorization ma-
chines of up to 141K features over the join of a real-world dataset of
up to 86M tuples, AC/DC needs up to 30 minutes on one core of a
commodity machine. This is up to three orders of magnitude faster
than its competitors R, MadLib, libFM, and TensorFlow whenever
they �nish and thus do not exceed memory limitation, 24-hour
timeout, or internal design limitations.
ACM Reference Format:
Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu,
and Maximilian Schleich. 2018. AC/DC: In-Database Learning Thunder-
struck. In Proceedings of 2nd Workshop on Data Management for End-to-End
Machine Learning (DEEM). ACM, New York, NY, USA, 10 pages.

Rode down the highway
Broke the limit, we hit the town
Went through to Texas, yeah Texas, and we had some fun.

– Thunderstruck (AC/DC)

1 INTRODUCTION
In this paper we report our on-going work on the design and im-
plementation of AC/DC, a gradient descent solver for a class of
optimization problems including ridge linear regression, polyno-
mial regression, and factorization machines. It extends our prior
system F for factorized learning of linear regression models [21]
to capture non-linear models, categorical features, and model repa-
rameterization under functional dependencies (FDs). Its design is
but one fruit of our exploration of the design space for the AI engine

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
DEEM, June 2018, Houston, Texas
© 2018 Association for Computing Machinery.

currently under development at RelationalAI, Inc. It subscribes to a
recent e�ort to bring analytics inside the database [7, 9, 12, 13, 21]
and thereby avoid the non-trivial time spent on data import/export
at the interface between database systems and statistical packages.

AC/DC1 solves optimization problems over design matrices de-
�ned by feature extraction queries over databases of possibly many
relations. It is a uni�ed approach for computing both the optimiza-
tions and the underlying database queries; the two tasks not only
live in the same process space, they are intertwined in one execution
plan with asymptotically lower complexity than that of any one of
them in isolation. This is possible due to several key contributions.

First, AC/DC decomposes a given optimization problem into a
set of aggregates whose answers are fed into a gradient descent
solver that iteratively approximates the solution to the problem
until it reaches convergence. The aggregates capture the combina-
tions of features in the input data, as required for computing the
gradients of an objective function. They are group-by aggregates in
case of combinations with at least one categorical feature and plain
scalars for combinations of continuous features only. The former
aggregates are grouped by the query variables with a categorical
domain. Prior work on in-database machine learning mostly consid-
ered continuous features and one-hot encoded categorical features,
e.g., [7, 9, 13, 21]. We avoid the expensive one-hot encoding of
categorical features by a sparse representation using group-by aggre-
gates [2]. Several tools, e.g., libFM [8, 20] for factorization machines
and LIBSVM [6] for support vector machines, employ sparse data
representations that avoid the redundancy introduced by one-hot
encoding. These are computed on the result of the feature extraction
query once it is exported out of the database.

Second, AC/DC factorizes the computation of these aggregates
over the feature extraction query to achieve the lowest known com-
plexity. We recently pinpointed the complexity of AC/DC [2]. The
factorized computation of the queries obtained by decomposing
optimization problems can be asymptotically faster than the com-
putation of the underlying join query alone. This means that all
machine learning approaches that work on a design matrix de�ned
by the result of the database join are asymptotically suboptimal.
The only other in-database learning system [13] that may outper-
form the underlying database join only works for generalized linear
models over key-foreign key joins, does not decompose the task to
AC/DC’s granularity, and cannot recover the good complexity of
AC/DC since it does not employ factorized computation.

Third, AC/DCmassively shares computation across the aggregate-
join queries. These di�erent queries use the same underlying join
and their aggregates have similar structures.

1AC/DC supports both types of features, i.e., categorical and continuous, and fast
processing. Its name allures at another duality, that of alternating and discrete currents,
and at the fast-paced sound of a homonymous rock band.

39

Relational Linear Programs

Kristian Kersting*

TU Dortmund University
Martin Mladenov*

TU Dortmund University
Pavel Tokmakov

University of Bonn, Germany

Abstract
We propose relational linear programming, a simple framework for combing linear programs (LPs)

and logic programs. A relational linear program (RLP) is a declarative LP template defining the objec-
tive and the constraints through the logical concepts of objects, relations, and quantified variables. This
allows one to express the LP objective and constraints relationally for a varying number of individuals
and relations among them without enumerating them. Together with a logical knowledge base, effec-
tively a logical program consisting of logical facts and rules, it induces a ground LP. This ground LP is
solved using lifted linear programming. That is, symmetries within the ground LP are employed to re-
duce its dimensionality, if possible, and the reduced program is solved using any off-the-shelf LP solver.
In contrast to mainstream LP template languages like AMPL, which features a mixture of declarative
and imperative programming styles, RLP’s relational nature allows a more intuitive representation of
optimization problems over relational domains. We illustrate this empirically by experiments on approx-
imate inference in Markov logic networks using LP relaxations, on solving Markov decision processes,
and on collective inference using LP support vector machines.

1 Introduction

Modern social and technological trends result in an enormous increase in the amount of accessible data, with
a significant portion of the resources being interrelated in a complex way and having inherent uncertainty.
Such data, to which we may refer to as relational data, arise for instance in social network and media min-
ing, natural language processing, open information extraction, the web, bioinformatics, and robotics, among
others, and typically features substantial social and/or business value if become amenable to computing ma-
chinery. Therefore it is not surprising that probabilistic logical languages, see e.g. [GT07, De 08, DFKM08,
RK10] and references in there for overviews, are currently provoking a lot of new AI research with tremen-
dous theoretical and practical implications. By combining aspects of logic and probabilities — a dream of
AI dating back to at least the late 1980s when Nils Nilsson introduced the term probabilistic logics [Nil86]
— they help to effectively manage both complex interactions and uncertainty in the data. Moreover, since
performing inference using traditional approaches within these languages is in principle rather costly, as
tractability of traditional inference approaches comes at the price of either coarse approximations (often
without any guarantees) or restrictions in the language, they have motivated novel forms of inference. In
essence, probabilistic logical models can be viewed as collections of building blocks respectively templates
such as weighted clauses that are instantiated several times to construct a ground probabilistic model. If few
templates are instantiated often, the resulting ground model is likely to exhibit symmetries. In his seminal
paper [Poo03], David Poole suggested to exploited these symmetries to speed up inference within proba-
bilistic logic models. This has motivated an active field of research known as lifted probabilistic inference,
see e.g. [Ker12] and references in there.

*Martin Mladenov and Kristian Kersting were supported by the German Research Foundation DFG, KE 1686/2-1, within the
SPP 1527, and the German-Israeli Foundation for Scientific Research and Development, 1180-218.6/2011.

1
ar

X
iv

:1
41

0.
31

25
v1

 [
cs

.A
I]

 1
2

O
ct

 2
01

4

IN-DB & LIFTED LP/QP/IP SOLVERS

▪ SolverBlox: Algebraic Modeling in Datalog.
Borraz-Sanchez, Klabjan, Pasalic, Aref.
(Declarative Logic Progamming – Morgan &
Claypool 2018)

▪ The Symbolic Interior Point Method. Mladenov,
Belle, Kersting. (AAAI 2017)

▪ Lifted Inference for Convex Quadratic Programs.
Mladenov, Kleinhans, Kersting. (AAAI 2017)

▪ RELOOP/ A Python-Embedded Declarative
Language for Relational Optimization. Mladenov,
Heinrich, Kleinhans, Gonsior, Kersting. (AAAI
2016)

▪ Relational Linear Programs. Kersting, Mladenov,
Tokmanov. (2015)

▪ Lifted Linear Programming. Mladenov, Ahmadi,
Kersting. (AISTATS 2012)

Lifted Inference for Convex Quadratic Programs

Martin Mladenov
TU Dortmund University, Germany

martin.mladenov@cs.tu-dortmund.de

Leonard Kleinhans
TU Dortmund University, Germany

leonard.kleinhans@cs.tu-dortmund.de

Kristian Kersting
TU Dortmund University, Germany
kristian.kersting@cs.tu-dortmund.de

Abstract

Symmetry is the essential element of lifted inference that has
recently demonstrated the possibility to perform very efficient
inference in highly-connected, but symmetric probabilistic
models. This raises the question, whether this holds for opti-
mization problems in general. Here we show that for a large
class of optimization methods this is actually the case. Specif-
ically, we introduce the concept of fractional symmetries of
convex quadratic programs (QPs), which lie at the heart of
many AI and machine learning approaches, and exploit it to
lift, i.e., to compress QPs. These lifted QPs can then be tackled
with the usual optimization toolbox (off-the-shelf solvers, cut-
ting plane algorithms, stochastic gradients etc.). If the original
QP exhibits symmetry, then the lifted one will generally be
more compact, and hence more efficient to solve.

Introduction
Convex optimization is arguably one of the main motors
behind Artificial Intelligence (AI) as it enables inference
and learning in a wide variety of AI models, such as SVMs,
LASSO and efficient approximations (e.g. variational ap-
proaches, convex NMF) to hard inference tasks. The lan-
guage in which convex optimization problems are specified
includes inequalities, matrix and tensor algebra, and software
packages for convex optimization such as CVXPY (Diamond,
Chu, and Boyd 2014) recreate this language as an interface
between the user and the solver. Unfortunately, a pure alge-
braic language has one shortcoming: it is difficult—if not
impossible—for the non-expert to directly make use of the
discrete, combinatorial structure often underlying convex pro-
grams; pixels depend only on neighboring pixels; the reward
of placing a cup on a table does not depend on whether the
window in the next room is open. Having a richer represen-
tation such as first-order logic to express the combinatorial
structure and an automatic way to utilize it in the solver, how-
ever, is likely extend the reach and efficiency of AI. This has
been demonstrated by statistical relational learning (SRL)
that has argued in favor of first-order languages when deal-
ing with complex graphical models, see e.g. (De Raedt et
al. 2016) for a recent overview. Due to the high-level na-
ture of the relational probabilistic languages, the low-level

Copyright c⃝ 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(ground) model they produce might often contain redundan-
cies in terms of symmetries. Lifted probabilistic inference
approaches (Poole 2003) exploit these symmetries to perform
very efficient inference in highly-connected (and hence oth-
erwise often intractable for traditional inference approach)
but symmetric models. Intuitively, one infers which variables
are indistinguishable in the ground model (if possible with-
out actually grounding) and solves the model treating the
indistinguishable variables as groups instead of individuals to
reduce the dimensionality of the model. Unfortunately, SRL
does not support convex quadratic programs.

Here, we demonstrate that the core idea of SRL can be
transferred to convex quadratic programming. As our main
contribution, we formalize the notion of symmetries of con-
vex quadratic programs (QPs). Specifically, we first show
that unlike for graphical models, where the notion of indistin-
guishability of variables is that of exact symmetry (automor-
phisms of the factor graph), QPs admit a weaker (partitions
of indistinguishable variables which are at least as coarse) no-
tion of indistinguishability called a fractional automorphism
(FA) resp. equitable partition (EP) computable in quasi-linear
time. This implies that more general lifted inference rules for
QPs can be designed. This is surprising, as it was believed
that FAs apply only to linear equations. Second, we inves-
tigate geometrically how FAs of quadratic forms arise. The
existing theory of symmetry in convex quadratic forms states
that an automorphism of xTQx corresponds to a rotational
symmetry of the semidefinite factors of Q. We generalize this
in that FA of xTQx can be related not only to rotations, but
also to certain scalings. This then results in the first approxi-
mate FA approach based on standard clustering techniques
and whitening. Finally, we tackle the question to which ex-
tend kernels might preserve fractional symmetry. All this is
embedded in the first relational QP language as illustrated in
Fig. 1(left), which is not discussed due to space limitations.

In doing so, the present work is the first that introduces
relational convex QPs and studies their symmetries. Indeed,
there are symmetry-breaking branch-and-bound approaches
for (mixed–)integer programming (Margot 2010) that are also
featured by commercial solvers. QPs, however, do not feature
branch-and-bound solvers. For the special fragment of LPs,
(Kersting, Mladenov, and Tokmakov 2015) have introduced a
relational language and shown how to exploit fractional sym-
metries. (Relaxed) graph automorphisms and variants have

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

2350

The Symbolic Interior Point Method

Martin Mladenov
TU Dortmund University, Germany

martin.mladenov@cs.tu-dortmund.de

Vaishak Belle
University of Edinburgh, UK

vaishak@ed.ac.uk

Kristian Kersting
TU Dortmund University, Germany
kristian.kersting@cs.tu-dortmund.de

Abstract

Numerical optimization is arguably the most prominent com-
putational framework in machine learning and AI. It can be
seen as an assembly language for hard combinatorial problems
ranging from classification and regression in learning, to com-
puting optimal policies and equilibria in decision theory, to
entropy minimization in information sciences. Unfortunately,
specifying such problems in complex domains involving rela-
tions, objects and other logical dependencies is cumbersome
at best, requiring considerable expert knowledge, and solvers
require models to be painstakingly reduced to standard forms.
To overcome this, we introduce a rich modeling framework
for optimization problems that allows convenient codifica-
tion of symbolic structure. Rather than reducing this symbolic
structure to a sparse or dense matrix, we represent and ex-
ploit it directly using algebraic decision diagrams (ADDs).
Combining efficient ADD-based matrix-vector algebra with a
matrix-free interior-point method, we develop an engine that
can fully leverage the structure of symbolic representations to
solve convex linear and quadratic optimization problems. We
demonstrate the flexibility of the resulting symbolic-numeric
optimizer on decision making and compressed sensing tasks
with millions of non-zero entries.

Introduction
A convex quadratic program (QP) is an optimization problem
in which a convex quadratic function is minimized over the
solution set of a system of linear inequalities. In this paper,
we assume that a QP takes on the following standard form

minimize cT x + 1/2xT Qx
subject to Ax = b, x ≥ 0,

where, Q is a symmetric positive semi-definite matrix. When-
ever Q = 0, we speak of linear programs (LPs). Convex QPs
are commonly solved by numerical solvers (Mattingley and
Boyd 2012; Grant and Boyd 2008).

In the broad discussion of quadratic programs, normal
forms as the one above are the representation of choice,
as they abstract away problem specifics. They are widely
used to provide insight into the geometric properties of these
problems and design solution techniques. Most solvers are
designed to take normal forms as input.

Copyright c⃝ 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Concrete problems arising in applications, however, are
easier to express in terms of an algebraic modeling language
of parametrized sums, multiplications and set operations,
which we refer to as symbolic. For example, to specify that
the flow in a directed graph G must be conserved, we use the
constraint:

∀v ∈ Vertex(G) :
∑

u∈Nb+(v)
xuv −

∑
w∈Nb− (v)

xvw = 0.

This can be read as follows: for every vertex v, if we add the
flow xuv from each incoming neighbor u ∈ Nb+(v) of v and
subtract the flow xvw to each outgoing neighbor w ∈ Nb− (v)
of v, we get the number 0. On the one hand, such symbolic
forms provide a compact representation of structured prob-
lems; of course, any problem can also be expressed as a
standard form in matrix-vector algebra. However, describing
a problem in terms of, say, the coefficients of its constraint
matrix is unintuitive and a tedious exercise. On the other hand,
symbolic forms are the starting point for designing special-
ized algorithms. Through ingenuity, the AI, machine learning
and operations researchers can make inferences about the
structure of a given constraint and leverage them to design a
more efficient algorithm (e.g., optimizers for flow problems
(Chardaire and Lisser 2002)).

This notational convenience of symbolic forms has been
widely recognized within the literature. For example, (Fourer,
Gay, and Kernighan 1993; Wallace and Ziemba 2005) are
interested in intuitive modeling languages for optimization,
and allow sets of objects to index LP variables. Disciplined
programming (Grant and Boyd 2008) provides an object-
oriented environment in a high-level programming language
to enable a structured interface between the model and the
solver. However, these and other works address the notational
convenience of symbolic forms only: the language is used
to simplify the problem specification, but it is eventually
converted to a matrix-vector normal form for solving. This is
unlike the situation in statistical relational learning (Getoor
and Taskar 2007; De Raedt et al. 2016) where symbolic
structure is being used extensively.

In this paper, triggered by relational mathematical program-
ming (Kersting, Mladenov, and Tokmakov 2015; Cussens
2015), we take the view that symbolic forms can and should
inform the solver without any expert intervention. The main
goal of this paper is to demonstrate that structure in linear and
quadratic programs can be efficiently detected and exploited

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1199

1 SolverBlox: Algebraic Mod-

eling in Datalog

C. Borraz-Sánchez, Data&Analytics Center, KPMG LLP, Knoxville, TN
cborrazsanchez@kpmg.com

D. Klabjan, Department of Industrial Engineering and Management Sciences, Northwestern
University, Evanston, IL
d-klabjan\}@northwestern.edu

E. Pasalic, LogicBlox Inc., Atlanta, GA.
emir.pasalic,molham.aref\}@logicblox.com

M. Aref, LogicBlox Inc., Atlanta, GA.
{emir.pasalic,molham.aref\}@logicblox.com

Datalog is a deductive query language for relational databases. We introduce LogiQL, a
language based on Datalog and show how it can be used to specify mixed-integer linear
optimization models and solve them. Unlike pure algebraic modeling languages, LogiQL
allows the user to both specify models, and manipulate and transform the inputs and outputs
of the models. This is an advantage over conventional optimization modeling languages that
rely on reading data via plug-in tools or importing data from external sources via files. In this
chapter, we give a brief overview of LogiQL and describe two mixed integer programming
case studies: a production-transportation model, and a formulation of the traveling salesman
problem.

1.1 Introduction

Solutions to many real world problems can be formulated as mathematical programs [Stephen
P. Bradley and Magnanti 1977]. Such problems are usually tackled by first building a model,
and then converting the model and the corresponding data into a low level problem instance.
The instance can then be solved by a solver that returns a solution for further analysis and use.

One of the biggest challenges throughout the entire modeling and solution process is
dealing with large amounts and diverse representations of data. One might even argue that
mathematical modeling is mainly about data [Hultberg 2007] and should therefore be driven
by data. A mathematical programming modeling language could be made more useful if it

1

40

FOR A SMALL GROUP OF REBELS TO BEAT THE EMPIRE, WE HAVE TO...

41

FIN

