Introducing Relational ${ }^{\text {AI }}$ Probabilistic Graphical Models -andStatistical Relational Learning

Molham Aref -- Relational ${ }^{\mathrm{Al}}$

OVERVIEW

Age: 9 months old $\mathrm{Al} / \mathrm{ML}$ startup

Team:

- 16 people, 10 PhD's, 4 former university professors
- Faculty Network: 9 @ ~20\% + summers, additional ~12+ in extended network

Location: distributed team (SV, Atlanta, Seattle, Toronto, NYC, Utrecht, London) Offices in Berkeley and Utrecht

Financials: Funded through 2019 + revenue from consulting
Industries served: TBD (looking at Financial Services, Business Intelligence)

- If all else fails we're going to pivot to Deep Quantum Crypto Blockchain of Things and hope for the best

HOW WE SEE OURSELVES

Expertise in systems (8 people)

- We built sophisticated compilers \& interpreters (OOPSLA, ECOOP, ICFP)
- We built databases that advanced the state of the art (SIGMOD, VLDB)

Expertise in theory (7 people)

- We prove things (PODS, ICDT, TODS, JACM, POPL)
- We designed first-of-a-kind asymptotically efficient algorithms
- Worst case optimal join algorithms
- Asymptotically superior query plans

Expertise in ML \& AI (7 people)

- We implemented scalable ML \& probabilistic systems (NIPS, ICML, AAAI)
- We developed sophisticated statistical and mathematical models

INDUSTRIAL EXPERIENCE

HNC

- Financial services: Fraud detection -- credit card, insurance (23 of top 25 credit card issuing banks)
- Neural networks on proprietary HW accelerators (also computational intelligence, Database mining)
- IPO 1995, acquired by FICO in 2002

Retek

- Retail: Demand forecasting, supply chain optimization, pricing (majority of Retail Global 250)
- Time series with approximate optimization - first hierarchical forecasting solution to scale to Retail volumes
- IPO 1999, acquired by Oracle in 2005

Optimi

- Telecom: Wireless network optimization (AT\&T, Cingular, Next, America Movil, Telefonica)
- Monte Carlo simulation, heuristic search (simulated annealing)
- Acquired by Ericsson in 2010

Brickstream

- Retail: in-store video analytics (>30\% market share globally)
- Old-school computer vision (pre-deep learning) - first industrial use of stereo cameras
- Acquired by Point-Grey which was acquired by FLIR in 2015

LogicBlox/Predictix

- Retail: Demand forecasting, supply chain optimization, pricing (3 of top 6 US retailers + dozen large global retailers)
- Factorization machines, linear programming, integer programming - first on cloud
- Acquired by Infor in 2016

STATE OF THE PRACTICE

OUR SECRET SAUCE

- We know how to exploit problem structure to make optimization asymptotically faster
- We know how to perform stochastic gradient descent and batch gradient descent directly on normalized relational data
- Most ML Methods can be solved well with SGD, some with BGD
- Asymptotically faster optimization means anything that depends on it can go faster
- Learning/Parameter optimization
- Hyperparameter optimization
- Feature engineering
- Structure learning
- Inference
- ...

STRUCTURE FOR TRADITIONAL/DISCRIMINATIVE ML

5 COMPONENTS OF MACHINE LEARNING

- Method (or model class)
- e.g. FM, decision tree, neural network, ...
- Loss (error) function
- e.g. Absolute error (L1 norm), Square error (L2 norm), ...
- Generalization mechanism
- e.g. Regularization (norm * penalty), cross validation
- Evaluation function
- Takes the model parameters and the input and produces a prediction
- Optimizer
- E.g. Gradient descent, EM algorithm

5 TYPES OF METHODS or MODEL CLASSES

- Regression: predict a number
- Linear regression with VIF
- LASSO regression
- Multi-time series prediction
- Nonparametric regression
- Mixture of experts
- Factorization machines
- Polynomial regression
- Classification: predict a category
- Naïve Bayes classifier
- Non-parametric Bayes classifier
- K-nearest neighbor classifier
- Support vector machine
- Decision tree
- Hidden Markov model
- Density Estimation: find likelihood of objects
- Histograms
- Kernel density estimation
- Clustering: find natural groups
- K-means
- Spectral clustering
- Mean shift clustering
- Dimension Reduction: combine features
- Singular value decomposition
- Maximum variance unfolding
- Non-negative matrix factorization
- Kernel principal component analysis
- (Ensemble) Singular value decomposition
- GROUSE
- Random projections
- Tensor factorization PARFAC/CANDECOMP

DESIGN MATRIX

DESIGN MATRIX IS A VIEW ON STRUCTURED (RELATIONAL) DATA

Features

WE CAN EXPLOIT THE RELATIONAL STRUCTURE

We use algebraic structure (e.g. semi-rings) to "push the aggregations through the joins" to implement lifted stochastic and batch gradient descent for efficient learning of a variety of model classes

- Linear regression
- Polynomial regression
- Factorization machines
- Decision trees
- Neural nets
- ...
(many more on the way)

BENCHMARK (1/3)

	v_{1}	v_{2}	V_{3}	v_{4}
Join Representation Listing	774M	3.614 G	3.614 G	3.614 G
(\#values) Factorized	37M	169M	169M	169 M
Compression Fact/List	20.9×	$21.4 \times$	$21.4 \times$	$21.4 \times$
Join Computation (PSQL) for R, TensorFlow, libFM	50.63	216.56	216.56	216.56
Factorized Computation of 43 Counts over Join	8.02	34.15	34.15	34.15
Linear regression				
Features (continuous+categorical)	$33+55$	$33+55$	$33+1340$	33+2702
	same as above, there are no FDs			$33+2653$
Aggregates (scalar+group-by)	595+2,418	595+2,421	595+111,549	595+157,735
	same as above, there are no FDs			595+144,589
MADLib (ols) Learn	1,898.35	8,855.11	> 79, 200.00	-
R (QR)	308.83	-	-	-
	490.13	-	-	-
$\begin{aligned} & \text { TensorFlow (FTLR) } \\ & \text { (1 epoch, batch size } 1 \mathrm{~K} \text {) } \end{aligned}$	74.72	372.70	372.70	372.70
	2762.50	12710.53	12724.94	12708.11
F	93.31	424.81	OOM	OOM
	0.01 (359)	0.01 (359)		
AC/DC	25.51	116.64	117.94	895.22
	0.02 (343)	0.02 (367)	0.42 (337)	0.66 (365)
AC/DC+FD	same as AC there are no FDs			380.31
				8.82 (366)
Speedup of AC/DC+FD over	$74.36 \times$	$75.91 \times$	> $669.14 \times$	∞
	$33.28 \times$	∞	∞	∞
	$113.12 \times$	$114.01 \times$	$112.49 \times$	$34.17 \times$
	$3.65 \times$	$3.64 \times$	∞	∞
	same as AC/DC, there are no FDs			$2.30 \times$

BENCHMARK (2/3)

	v_{1}	v_{2}	v_{3}	v_{4}
Join Representation Listing	774M	3.614 G	3.614 G	3.614 G
(\#values) Factorized	37M	169M	169 M	169 M
Compression Fact/List	20.9×	$21.4 \times$	$21.4 \times$	$21.4 \times$
Join Computation (PSQL) for R, TensorFlow, libFM	50.63	216.56	216.56	216.56
Factorized Computation of 43 Counts over Join	8.02	34.15	34.15	34.15
Polynomial regression degree 2				
Features without FDs	$562+2,363$	562+2,366	562+110,209	$562+154,033$
(continuous+categorical) with FDs	same	ove, there are	FDs	$562+140,936$
Aggregates without FDs	158k+742k	$158 \mathrm{k}+746 \mathrm{k}$	158k+65,875k	$158 \mathrm{k}+46,113 \mathrm{k}$
(scalar+group-by) with FDs	same	ove, there are	FDs	$158 \mathrm{k}+36,712 \mathrm{k}$
MADlib (ols) Learn	> 79,200.00	$>79,200.00$	> 79,200.00	-
AC/DC Aggregate	132.43	517.40	820.57	7,012.84
Converge (runs)	3.27 (321)	3.62 (365)	349.15 (400)	115.65 (200)
AC/DC+FD Aggregate		ne as AC/DC		1,819.80
Converge (runs)		re are no FDs		219.51(180)
Speedup of AC/DC+FD over MADlib	> 583.64×	> 152.01×	> $67.71 \times$	∞
AC/DC	same as	/DC, there are	o FDs	$3.50 \times$

BENCHMARK (3/3)

		v_{1}	v_{2}	v_{3}	v_{4}
Join Representation	Listing	774 M	3.614 G	3.614 G	3.614 G
(\#values)	Factorized	37 M	169 M	169 M	169 M
Compression	Fact/List	$20.9 \times$	$21.4 \times$	$21.4 \times$	$21.4 \times$
Join Computation (PSQL) for R, TensorFlow, libFM	50.63	216.56	216.56	216.56	
Factorized Computation of 43 Counts over Join	8.02	34.15	34.15	34.15	

Factorization machine degree 2 rank 8					
Features (continuous+categorical)	without FDs with FDs	530+2,363	530+2,366	530+110,209	530+154,033
		same as above, there are no FDs			$562+140,936$
Aggregates (scalar+group-by)	without FDs with FDs	$140 \mathrm{k}+740 \mathrm{k}$	$140 \mathrm{k}+744 \mathrm{k}$	$140 \mathrm{k}+65,832 \mathrm{k}$	$\begin{aligned} & 140 \mathrm{k}+45,995 \mathrm{k} \\ & 140 \mathrm{k}+36,595 \mathrm{k} \end{aligned}$
		same as above, there are no FDs			
libFM (MCMC)	Export/Import	412.84	1462.54	3,096.90	3,368.06
	Learn (runs)	19,692.90 (300)	103,225.50 (300)	79,839.13 (300)	87,873.75 (300)
AC/DC	Aggregate	128.97	498.79	772.42	6,869.47
	Converge (runs)	3.03 (300)	3.05 (300)	262.54 (300)	166.60 (300)
AC/DC+FD	Aggregate	same as AC/DC there are no FDs			1,672.83
	Converge (runs)				14407 (300)
Speedup of AC/DC+FD over	$\begin{aligned} & \text { libFM } \\ & \text { AC/DC } \end{aligned}$	152.70×	$209.03 \times$	$80.34 \times$	$50.33 \times$
		same as	AC/DC, there are	no FDs	$3.87 \times$

STATISTICAL RELATIONAL LEARNING

SRL and StarAI

MOTIVATION

- Graphical models are considered by some to be "one of the most exciting advances in machine learning (Al, signal processing, coding, control, ...) in the last decades"
- Graphical models allow us to gain global insight based on local observations
- There are different types of graphical models
- Directed: eg. Bayesian Networks (aka belief networks)
- Undirected: e.g. Mark Networks (aka Markov Random Fields), Factor Graphs
- Mixed: e.g. Chain Graphs - both directed acyclic graphs and undirected graphs are special cases of chain graphs, which can therefore provide a way of unifying and generalizing Bayesian and Markov networks
- Statistical Relational models generalize PGM's in the same way that first order logic generalizes propositional logic - they allow us to quantify over individuals/entities

STATISTICAL RELATIONAL LEARNING (SRL)

- Knowledge is represented as a distribution over possible worlds
- Finite and infinite sets of possible worlds are supported
- Undirected models: via integrity constraints
" We specify the constraints that determine the legal set of possible worlds \& a function to score each of them.
" We don't have to provide a program to generate each possible world.
- Directed models: via probabilistic programs
" We have to provide a program to generate each possible world. Score by normalizing - frequency of a given world relative to all others.
- Normalize the score of each world by the sum of scores of all the worlds
- Inference
- Unlike "traditional" methods where prediction is the input applied to the parameters of the model class, inference in SRL requires expensive optimization or (approximate) integration over possible worlds
- Learning
- Unlike traditional learning algorithms, just one instance to learn from (the relational DB)
- Structure learning uses inference during each step

SEMANTICS

Ordinary minimal model semantics:

UNDIRECTED MODELS

Use Integrity Constraints to specify a set of possible worlds \& define a scoring function for each

SMOKERS AND FRIENDS

Smoking and Quitting in Groups

Researchers studying a network of 12,067 people found that smokers and nonsmokers tended to cluster in groups of close friends and family members. As more people quit over the decades, remaining groups of smokers were increasingly pushed to the periphery of the social network.
1971 A sample of 1,000 people from

KEY

- Male smoker - Male nonsmoker
- Female smoker - Female nonsmoker marriage or family tie

Sources: New England Joumal of Mecticine
Dr. Nicholas A. Chistakis; dames H. Fower
Circle size is proportional to the number of cigarettes smoked per day.

CERTAIN KNOWLEDGE WITH INTEGRITY CONSTRAINTS

A logical Knowledge Base is a set of Integrity Constraints that define a set of possible worlds:

```
person(x)
smokes(x) -> person(x)
cancer(x) -> person(x)
friends(x, y) -> person(x), person(y)
```

Assuming persons Alice (A) and Bob (B), then there are 4 possible relations for each of: smokes,
cancer:

There are 16 possible relations for friends

So how many possible worlds are there?

- 2 bits for for each of smokes cancer and 4 bits for friends:

And how many if we add a 3rd person Carla (C)?

- 3 bits * 2 unary relations +9 bits for binary relation:
2^{8} or 256 possible worlds
2^{15} or 32 K possible worlds

EACH POSSIBLE TUPLE IS A NODE IN A GRAPHICAL MODEL

PROBABILISTIC KNOWLEDGE WITH WEIGHTED INTEGRITY CONSTRAINTS

Smoking causes cancer
 Friends have similar smoking habits

Represent probabilistic knowledge with soft (weighted) Integrity Constraints person(x)
smokes(x) -> person(x)
cancer(x) -> person(x)
friends(x, y) -> person(x), person(y)
w1 smokes(x) -> cancer(x)
w2 smokes(x), friends(x, y) $->$ smokes (y)
When a world violates a formula, it becomes less probable, not impossible
Weights give indication of certainty in domain knowledge or expertise

- 0 -> no confidence -- might as well not have the IC
- Infinity -> absolute certainty - hard constraint
- -Infinity -> absolute certainty in the converse - hard constraint on negated IC

GRAPHICAL MODEL

ALL WORLDS

ALL WORLDS where B smokes

world score (w * count)

ALL WORLDS where B smokes and B is friends with A

QUANTIFYING OVER POSSIBLE WORLDS

Observations/measurements eliminate some of the possible worlds

Finding the mostly likely world can be computed with optimization

Computing the probability of any world requires us to aggregate/integrate over all possible worlds.

HOW DO WE MAKE SRL EFFICIENT?

There are 2 important dimensions to consider

- Brawn (i.e. the constant factors)
- Latency hiding: memory hierarchy and network latencies (e.g. in memory)
- Specialization: specialize for workload (e.g. JIT compilation), specialize for data
- Parallelization: SIMD, multi-core, accelerators (e.g. GPU, TPU), in memory computing
- Brain (i.e. the asymptotics)
- Lifting and Structure exploitation: algebraic (e.g. semi rings, groups), combinatorial, statistical, geometric
- Approximation (with error bars): e.g. variational methods
both ---> approximate lifted inference

SUMMARY: ADVANTAGES OF (STATISTICAL) RELATIONAL AI

- Performance
- Exploits the relational structure for asymptoticly better performance
- Understandability
- Declarative relational language can be used to codify knowledge/expertise (human to machine) and to return insight (machine to human)|
- Quality
- Fewer assumptions regarding independence, identical distributions, \# of observations per example, etc. can produce more accurate models
- Versatility
- Generalized inference: from observations to unknowns in any direction

WORST-CASE OPTIMAL MULTI-WAY JOIN

- Worst-Case Optimal Join Algorithms: Techniques, Results, and Open Problems. Ngo. (Gems of PODS 2018)
- Worst-Case Optimal Join Algorithms: Techniques, Results, and Open Problems. Ngo, Porat, Re, Rudra. (Journal of the ACM 2018)
- What do Shannon-type inequalities, submodular width, and disjunctive datalog have to do with one another? Abo Khamis, Ngo, Suciu, (PODS 2017 - Invited to Journal of ACM)
- Computing Join Queries with Functional Dependencies. Abo Khamis, Ngo, Suciu. (PODS 2017)
- Joins via Geometric Resolutions: Worst-case and Beyond. Abo Khamis, Ngo, Re, Rudra. (PODS 2015, Invited to TODS 2015)
- Beyond Worst-Case Analysis for Joins with Minesweeper. Abo Khamis, Ngo, Re, Rudra. (PODS 2014)
- Leapfrog Triejoin: A Simple Worst-Case Optimal Join Algorithm Veldhuizen (ICDT 2014 - Best Newcomer)
- Skew Strikes Back: New Developments in the Theory of Join Algorithms. Ngo, Re, Rudra. (Invited to SIGMOD Record 2013)
- Worst Case Optimal Join Algorithms. Ngo, Porat, Re, Rudra. (PODS 2012 - Best Paper)
- What do Shannon-type inequalities, submodular width, and disjunctive datalog have to do with one another? Abo Khamis, Ngo, Suciu, (PODS 2017 - Invited to Journal of ACM)
- FAQ: Questions Asked Frequently, Abu Khamis, Ngo, Rudra, (PODS 2016 - Best Paper, Invited to Journal of ACM).
- Juggling functions inside a database, Abo Khamis, Ngo, Suciu (Invited to SIGMOD Record)

IN-DB LEARNING

- In-Database Learning with Sparse Tensors, Abo Khamis, Ngo, Nguyen, Olteanu, Schleich (PODS 2018)
- AC/DC: In-Database Learning Thunderstruck, Abo Khamis, Ngo, Nguyen, Olteanu, Schleich (DEEM 2018)
- Modelling Machine Learning Algorithms on Relational Data with Datalog. Makrynioti, Vasiloglou, Pasalic, Vassalos. (DEEM 2018)
- In-Database Factorized Learning, Ngo, Nguyen, Olteanu, Schleich (AMW 2017)
- Data Science with Linear Programming. Makrynioti, Vasiloglou, Pasalic, Vassalos. (DeLBP 2017)

In-Database Factorized Learning
Hung Q. Ngo^{1}, XuanLong Nguyen^{2}, Dan Olteanu ${ }^{3}$, and Maximilian Schleich ${ }^{3}$

1 Int,	$\begin{aligned} & \text { ABSTR } \\ & \text { Ind databe } \end{aligned}$	In-Database Learning with Sp Mahmoud Abo Khamis ${ }^{1}$ Hung Q. Ngo 1 Dan Olteanu ${ }^{3} \quad$ Maximilian Sch	rse Tensors uanLong Nguyen ${ }^{2}$ ich ${ }^{3}$	
In this p class of		AC/DC: In-Database Learning Thunderstruck		
and foreq polynom		Mahmoud Abo Khamis RelationalA, Inc		XuanLong Nguyen University of Michigan
fined		Dan OlteanuUniversity of Oxford	Maximilian SchleichUniversity of Oxford	
to large	cally fur			
analytics Pushi	This			
time usu		descent solver for a class of optimization problems over normalized databases. AC/DC decomposes an optimization problem into a set		
	$\substack{\text { polynom } \\ \text { compone }}$	of of giregese over the jin of the ditabase repations. then uses		
challenge	compo	the answers to these aggregates to iteratively improve the solution the problem until it converges.		
techni	${ }_{\text {cher }}^{\substack{\text { query st } \\ \text { rithms, }}}$	The challenges faced by AC/DC are the large database size, the mixture of continuous and categorical features, and the large num-		
compi	matrix			
We furth	$\xrightarrow{\text { The }}$			
	dinead	To train polynomial regression models and factorization machines of up to 141 K features over the join of a real-world dataset ofup to 86 M tuples, $\mathrm{AC} / \mathrm{DC}$ needs up to 30 minutes on one core of a		
wor	$\underset{\substack{\text { with sign } \\ \text { solutions }}}{ }$		tions of features in the input data, as required for computing the gradients of an objective function. They are group-by aggregates in	
$2 \operatorname{Pr}$	INTH			
		than its competitors R, MadLib, libFM, and TensorFlow whenever hey finish and thus do not exceed memory limitation, 24-hou timeout, or internal design limitations		
We us	$\underbrace{}_{\substack{\text { tics oce } \\ \text { of data }}}$			
$\underset{\text { In th }}{\text { normal }}$	ctarytay ticicans an	Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and Maximilian Schleich. 2018. AC/DC: In-Database Learning Thunderstruck. In Proceedings of 2nd Workshop on Data Management for E Machine Learning (DEEM). ACM, New York, NY, USA, 10 pages.	categorical features by a sparse representation using group-by aggre-gates [2]. Several tools, e.g., libFM $[8,20]$ for factorization machines	
inner pro		struck. In Proceedings of 2nd Workshop on Data Management for End-to-End	gates [2].Several tools, e.g., $\operatorname{libFM}[8,20]$ for factorization machinesand LIBSVM [6] for support vector machines, employ sparse datarepresentations that avoid the redundancy introduced by one-hot	
${ }_{\text {a }}^{\text {a databa }}$	tient integ		encoding. These are computed on the result of the feature extraction query once it is exported out of the database.	
y and n	$\underset{\substack{\text { is prow } \\ \text { ing an }}}{ }$		query once it is exported out of the database.Second, AC/DC factorizes the computation of these aggregates	
${ }_{\left.\mathbb{Q}{ }^{(}\right) \text {(D). } \mathrm{Fq}}$	$\cos _{\substack{\text { try } \\ \text { in many } \\ \text { in } \\ \text { man }}}$			
${ }^{1 \mathbb{R}^{m} \text { and }}$ multivari	$\underbrace{\substack{\text { and many } \\ \text { and bringid }}}_{\text {and }}$	1 Introduction In this paper we report our on-going work on the design and im plementation of ACDCD, a gradient descent solver for a class of optimization problems incluning idge inear regession polyno- rameterization under functional dependencies (FDs). Its design is but one fruit of our exploration of the design space for the AI engine		
$\left(h_{j}\right)_{j \in[m]}$	interface			
	cince			
		to post on servers or to redistribute to lists, requires pri	and their aggregates have similar structures. ${ }^{1} \mathrm{AC/DC}$ supports both types of features, i.e, categorical and continuous, and fast	

IN-DB \& LIFTED LP/OP/IP SOLVERS

- SolverBlox: Algebraic Modeling in Datalog. Borraz-Sanchez, Klabjan, Pasalic, Aref.
(Declarative Logic Progamming - Morgan \& Claypool 2018)
- The Symbolic Interior Point Method. Mladenov, Belle, Kersting. (AAAI 2017)
- Lifted Inference for Convex Quadratic Programs. Mladenov, Kleinhans, Kersting. (AAAI 2017)
- RELOOP/ A Python-Embedded Declarative Language for Relational Optimization. Mladenov, Heinrich, Kleinhans, Gonsior, Kersting. (AAAI 2016)
- Relational Linear Programs. Kersting, Mladenov, Tokmanov. (2015)
- Lifted Linear Programming. Mladenov, Ahmadi, Kersting. (AISTATS 2012)

FOR A SMALL GROUP OF REBELS TO BEAT THE EMPIRE, WE HAVE TO...

FIN

