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OVERVIEW

Age: 9 months old Al/ML startup

Team:
" 16 people, 10 PhD’s, 4 former university professors
= Faculty Network: 9 @ ~20% + summers, additional ~12+ in extended network

Location: distributed team (SV, Atlanta, Seattle, Toronto, NYC, Utrecht, London)
Offices in Berkeley and Utrecht

Financials: Funded through 2019 + revenue from consulting

Industries served: TBD (looking at Financial Services, Business Intelligence)

= |f all else fails we're going to pivot to Deep Quantum Crypto Blockchain of Things
and hope for the best



HOW WE SEE OURSELVES

Expertise in systems (8 people)
"  We built sophisticated compilers & interpreters (OOPSLA, ECOOP, ICFP)
" We built databases that advanced the state of the art (SIGMOD, VLDB)

Expertise in theory (7 people)
"  We prove things (PODS, ICDT, TODS, JACM, POPL)

" We designed first-of-a-kind asymptotically efficient algorithms
"  Worst case optimal join algorithms
"  Asymptotically superior query plans

Expertise in ML & Al (7 people)
"  We implemented scalable ML & probabilistic systems (NIPS, ICML, AAAI)

" We developed sophisticated statistical and mathematical models



INDUSTRIAL EXPERIENCE

HNC

= Financial services: Fraud detection -- credit card, insurance (23 of top 25 credit card issuing banks)
*  Neural networks on proprietary HW accelerators (also computational intelligence, Database mining)
= IPO 1995, acquired by FICO in 2002

Retek

*  Retail: Demand forecasting, supply chain optimization, pricing (majority of Retail Global 250)
*  Time series with approximate optimization - first hierarchical forecasting solution to scale to Retail volumes
= |PO 1999, acquired by Oracle in 2005
Optimi
= Telecom: Wireless network optimization (AT&T, Cingular, Next, America Movil, Telefonica)

*  Monte Carlo simulation, heuristic search (simulated annealing)
*  Acquired by Ericsson in 2010

Brickstream

*  Retail: in-store video analytics (>30% market share globally)
*=  Old-school computer vision (pre-deep learning) — first industrial use of stereo cameras
*  Acquired by Point-Grey which was acquired by FLIR in 2015

LogicBlox/Predictix

*  Retail: Demand forecasting, supply chain optimization, pricing (3 of top 6 US retailers + dozen large global retailers)
*  Factorization machines, linear programming, integer programming — first on cloud
=  Acquired by Inforin 2016
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OUR SECRET SAUCE

"  We know how to exploit problem structure to make optimization asymptotically

faster
= We know how to perform stochastic gradient descent and batch gradient descent

directly on normalized relational data
=  Most ML Methods can be solved well with SGD, some with BGD

" Asymptotically faster optimization means anything that depends on it can go

faster
» Learning/Parameter optimization
= Hyperparameter optimization
= Feature engineering
= Structure learning
= Inference

11



STRUCTURE FOR TRADITIONAL/DISCRIMINATIVE ML



5 COMPONENTS OF MACHINE LEARNING

Method (or model class)
» e.g. FM, decision tree, neural network, ...
= |oss (error) function
= e.g. Absolute error (L1 norm), Square error (L2 norm), ...
= Generalization mechanism
= e.g. Regularization (norm * penalty), cross validation
= Evaluation function
" Takes the model parameters and the input and produces a prediction
= Optimizer
» E.g. Gradient descent, EM algorithm

13



5 TYPES OF METHODS or MODEL CLASSES

= Regression: predict a number = Density Estimation: find likelihood of objects
= Linear regression with VIF * Histograms
= LASSO regression = Kernel density estimation
= Multi-time series prediction = Clustering: find natural groups
= Nonparametric regression = K-means
= Mixture of experts = Spectral clustering
= Factorization machines = Mean shift clustering
" Polynomial regression = Dimension Reduction: combine features
= Classification: predict a category = Singular value decomposition
= Naive Bayes classifier = Maximum variance unfolding
*  Non-parametric Bayes classifier = Non-negative matrix factorization
= K-nearest neighbor classifier = Kernel principal component analysis
= Support vector machine = (Ensemble) Singular value decomposition
* Decision tree = GROUSE
= Hidden Markov model = Random projections

= Tensor factorization PARFAC/CANDECOMP
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DESIGN MATRIX IS A VIEW ON STRUCTURED (RELATIONAL) DATA

Features

ID | x1 [ x2 | x3|.. |y

Entities

.. | Sage CRM SalesLogix (v7.0)
hema

D: Scl
Entity Relationship Diagram




WE CAN EXPLOIT THE RELATIONAL STRUCTURE

We use algebraic structure (e.g. semi-rings) to “push the aggregations through the
joins” to implement lifted stochastic and batch gradient descent for efficient
learning of a variety of model classes

" Linear regression

" Polynomial regression
®  Factorization machines
" Decision trees

" Neural nets

(many more on the way)
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BENCHMARK (1/3)

| | vi | va | vs | V4

Join Representation Listing 774M 3.614G 3.614G 3.614G

(#values) Factorized 37M 169M 169M 169M

Compression Fact/List 20.9% 21.4% 21.4% 21.4%

Join Computation (PSQL) for R, TensorFlow, libFM 50.63 216.56 216.56 216.56

Factorized Computation of 43 Counts over Join 8.02 34.15 34.15 34.15

Linear regression

Features without FDs 33 + 55 | 33+55 | 33+1340 33+2702

(continuous+categorical) with FDs same as above, there are no FDs 33+2653

Aggregates without FDs 595+2,418 | 595+2,421 |  595+111,549 [  595+157,735

(scalar+group-by) with FDs same as above, there are no FDs 595+144,589

MADLIb (ols) Learn 1,898.35 8,855.11 > 79,200.00 -

R (QR) Export/Import 308.83 - = =

Learn 490.13 - - -

TensorFlow (FTLR) Export/Import 74.72 372.70 372.70 372.70

(1 epoch, batch size 1K) Learn 2762.50 12710.53 12724.94 12708.11

F Aggregate 93.31 424.81 OOM OOM
Converge (runs) 0.01 (359) 0.01 (359)

AC/DC Aggregate 25.51 116.64 117.94 895.22

Converge (runs) 0.02 (343) 0.02 (367) 0.42 (337) 0.66 (365)

AC/DC+FD Aggregate same as AC 380.31

Converge (runs) there are no FDs 8.82 (366)

Speedup of AC/DC+FD over MADIib 74.36% 75.91x > 669.14% )

R 33.28% 00 ) )

TensorFlow 113.12x 114.01x 112.49% 34.17%

F 3.65% 3.64x 0 0

AC/DC same as AC/DC, there are no FDs 2.30x%
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BENCHMARK (2/3)

| I vi | v | vs | v |
Join Representation Listing 774M 3.614G 3.614G 3.614G
(#values) Factorized 37M 169M 169M 169M
Compression Fact/List n 20.9% 21.4% 21.4x 21.4x |}
Join Computation (PSQL) for R, TensorFlow, libFM 50.63 216.56 216.56 216.56
Factorized Computation of 43 Counts over Join 8.02 34.15 34.15 34.15
Polynomial regression degree 2
Features without FDs 562+2,363 | 562+2,366 |  562+110,209 |  562+154,033
(continuous+categorical) with FDs same as above, there are no FDs 562+140,936
Aggregates without FDs 158k+742k | 158k+746k | 158k+65,875k | 158k+46,113k
(scalar+group-by) with FDs same as above, there are no FDs 158k+36,712k
MADIib (ols) Learn > 79,200.00 > 79,200.00 > 79,200.00 -
AC/DC Aggregate 132.43 517.40 820.57 7,012.84
Converge (runs) 3.27 (321) 3.62 (365) 349.15 (400) 115.65 (200)
AC/DC+FD Aggregate same as AC/DC 1,819.80
Converge (runs) here are ng FD 9 80

Speedup of AC/DC+FD over MADIib
AC/DC

[ > 583.64x > 152.01X > 67.71% oo
same as AC/DC, there are no FDs 3.50%




BENCHMARK (3/3)

[ vi | va | vs | va |
Join Representation Listing 774M 3.614G 3.614G 3.614G
(#values) Factorized 37M 169M 169M 169M
Compression Fact/List 20.9% 21.4% 21.4x 21.4x
Join Computation (PSQL) for R, TensorFlow, libFM 50.63 216.56 216.56 216.56
Factorized Computation of 43 Counts over Join 8.02 34.15 34.15 34.15
Factorization machine degree 2 rank 8

Features without FDs 530+2,363 | 530+2,366 | 530+110,209 |  530+154,033
(continuous+categorical) with FDs same as above, there are no FDs 562+140,936
Aggregates without FDs 140k+740k | 140k+744k | 140k+65,832k | 140k+45,995k
(scalar+group-by) with FDs same as above, there are no FDs 140k+36,595k
libFM (MCMC) Export/Import 412.84 1462.54 3,096.90 3,368.06

Learn (runs) 19,692.90 (300) | 103,225.50 (300) | 79.839.13 (300) | 87,873.75 (300)
AC/DC Aggregate 128.97 498.79 772.42 6,869.47

Converge (runs) 3.03 (300) 3.05 (300) 262.54 (300) 166.60 (300)
AC/DC+FD Aggregate same as AC/DC 1,672.83

Converge (runs) here are ng FDD 4 .07.(300
Speedup of AC/DC+FD over libFM 152.70x 209.03x 80.34x

AC/DC same as AC/DC, there are no FDs

20



STATISTICAL RELATIONAL LEARNING

SRL and StarAl



MOTIVATION

" Graphical models are considered by some to be “one of the most exciting advances
in machine learning (Al, signal processing, coding, control, ...) in the last decades”

" Graphical models allow us to gain global insight based on local observations
" There are different types of graphical models

= Directed: eg. Bayesian Networks (aka belief networks)

= Undirected: e.g. Mark Networks (aka Markov Random Fields), Factor Graphs

= Mixed: e.g. Chain Graphs - both directed acyclic graphs and undirected graphs are special
cases of chain graphs, which can therefore provide a way of unifying and generalizing
Bayesian and Markov networks

= Statistical Relational models generalize PGM's in the same way that first order logic
generalizes propositional logic — they allow us to quantify over individuals/entities

22



STATISTICAL RELATIONAL LEARNING (SRL)

" Knowledge is represented as a distribution over possible worlds
=  Finite and infinite sets of possible worlds are supported

=  Undirected models: via integrity constraints
" We specify the constraints that determine the legal set of possible worlds & a function to score each of them.

" We don't have to provide a program to generate each possible world.

= Directed models: via probabilistic programs

" We have to provide a program to generate each possible world. Score by normalizing - frequency of a given
world relative to all others.

=  Normalize the score of each world by the sum of scores of all the worlds

= |nference

= Unlike "traditional” methods where prediction is the input applied to the parameters of the
model class, inference in SRL requires expensive optimization or (approximate) integration
over possible worlds

" Learning

=  Unlike traditional learning algorithms, just one instance to learn from (the relational DB)

= Structure learning uses inference during each step

23



SEMANTICS

({6

Database
(EDBs)

({0

Database
(EDBs)

Slide thanks to Benny Kimelfeld

Ordinary minimal model semantics:

=

Distribution semantics

Integrity Constraints
or Probabilistic
Rules

=

~—_ - ~—
Probability space over possi
outcomes (IDBs)

ble
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UNDIRECTED MODELS

Use Integrity Constraints to specify a set of possible worlds & define a scoring function for each



SMOKERS AND FRIENDS

Smoking and Quitting in Groups

Researchers studying a network of 12,067 people found that smokers and nonsmokers tended to cluster in groups of close friends and family
members. As more pecple quit over the decades, remaining groups of smokers were increasingly pushed to the periphery of the social network.

1971 A sample of 1,000 people from 'h 2000 Nearly three decades later, groups PR
oe,

the study includes many large of smokers tended to be smaller and

groups of smokers. ‘?. ? more isolated. '.s; .:'. 7
B £ Jf

%ﬂ Jr-AS

KEY
@® Male smoker « Male nonsmoker — Friendship,

marriage or family tie
B Moy Brasd o e ek 0. Fem.ale Wer . ¢ Female nonsmoker. ag ¥
Dr. Nicholas A. Chrislakis: James H. Fowler Circle size is proportional to the number of cigarettes smoked per day. THE NEW YORK TIMES
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CERTAIN KNOWLEDGE WITH INTEGRITY CONSTRAINTS

A logical Knowledge Base is a set of Integrity Constraints that define a set of possible worlds:
person(x)
smokes (x) -> person(x)
cancer(x) -> person(x)
friends(x, y) -> person(x), person(y)

Assuming persons Alice (A) and Bob (B), then there are 4 possible relations for each of:
smokes, cancer:

D 3 L[ felf e

There are 16 possible relations for friends

|:|AAAB Bl Al Bl Bl | Al Al| A] Al | Al Al | a] 8| | Al B|| B| A|| A| A | A[ Al] A] A|| Al B
Al Bl 8] Al| 8] ]| B| Al| B8] || B| B|| Al B|| A| B| | B| Al| B| A
E Bl Al| 8] 8| | 8| B|| B[ B

So how many possible worlds are there?

= 2 bits for for each of smokes cancer and 4 bits for friends: 28 or 256 possible worlds
And how many if we add a 3rd person Carla (C)?

= 3 bits * 2 unary relations + 9 bits for binary relation: 215 or 32K possible worlds

W|W|>]|>
W|>|w|>
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EACH POSSIBLE TUPLE IS A NODE IN A GRAPHICAL MODEL

Slide thanks to Pedro Domingos
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PROBABILISTIC KNOWLEDGE WITH WEIGHTED INTEGRITY CONSTRAINTS

[ Smoking causes cancer ]
Friends have similar smoking habits

Represent probabilistic knowledge with soft (weighted) Integrity Constraints
person(x)
smokes (x) -> person(x)
cancer(x) =-> person(x)
friends(x, y) -> person(x), person(y)
wl smokes(x) -> cancer(Xx)
w2 smokes(x), friends(x, y) -> smokes(Vy)

When a world violates a formula, it becomes less probable, not impossible
Weights give indication of certainty in domain knowledge or expertise

" 0 ->no confidence -- might as well not have the IC

" Infinity -> absolute certainty — hard constraint

" -Infinity -> absolute certainty in the converse — hard constraint on negated IC
29



GRAPHICAL MODEL

Slide thanks to Pedro Domingos
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ALL WORLDS

world score (w * count)

2.5

1IRIRI

Wil

U
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ALL WORLDS where B smokes

world score (w * count)

2.5

HHHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHH
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ALL WORLDS where B smokes and B is friends with A

2.5

15

0.5

world score (w * count)

1357 9111315171921232527293133353739414345474951535557596163
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QUANTIFYING OVER POSSIBLE WORLDS

Observations/measurements eliminate some of the possible worlds
Finding the mostly likely world can be computed with optimization

Computing the probability of any world requires us to aggregate/integrate over all
possible worlds.
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HOW DO WE MAKE SRL EFFICIENT?

There are 2 important dimensions to consider

®  Brawn (i.e. the constant factors)
= Latency hiding: memory hierarchy and network latencies (e.g. in memory)
= Specialization: specialize for workload (e.g. JIT compilation), specialize for data
= Parallelization: SIMD, multi-core, accelerators (e.g. GPU, TPU), in memory computing

" Brain (i.e. the asymptotics)
= Lifting and Structure exploitation: algebraic (e.g. semi rings, groups), combinatorial,
statistical, geometric
= Approximation (with error bars): e.g. variational methods

both ---> approximate lifted inference
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SUMMARY: ADVANTAGES OF (STATISTICAL) RELATIONAL Al

" Performance
= Exploits the relational structure for asymptoticly better performance

= Understandability

= Declarative relational language can be used to codify knowledge/expertise
(human to machine) and to return insight (machine to human)|

= Quality

= Fewer assumptions regarding independence, identical distributions, # of
observations per example, etc. can produce more accurate models

= Versatility

= Generalized inference: from observations to unknowns in any direction
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WORST-CASE OPTIMAL MULTI-WAY JOIN

Worst-case Optimal Join Algorithms

Leapfrog Triejoin: A Simple, Worst-Case Optimal
Join Algorithm

Worst-Case Optimal Join Algorithms: Techniques, Results, and

Open Problems. Ngo. (Gems of PODS 2018) Worst-case Optimal Algorithms for Conjunctive Queries
®  Worst-Case Optimal Join Algorithms: Techniques, Results, and Ass| ————with Functional Dopendencies

Efficaed
Open Problems. Ngo, Porat, Re, Rudra. (Journal of the ACM s — What do Shannon-type Inequalities, Submodular Width.
a o andDisiunctive Dataloa have to do with one another
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OPTIMAL QUERY PLANS FOR MULTI-WAY JOINS

"  What do Shannon-type inequalities, submodular
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2017 - Invited to Journal of ACM)

" FAQ: Questions Asked Frequently, Abu Khamis,
Ngo, Rudra, (PODS 2016 — Best Paper, Invited
to Journal of ACM).

" Juggling functions inside a database, Abo
Khamis, Ngo, Suciu (Invited to SIGMOD
Record)
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What do Shannon-type Inequalities, Submodular Width,
and Disjunctive Datalog have to do with one another?

Mahmoud Abo Khamis Hung Q. Ngo Dan Suciu
LogicBlox Inc. LogicBlox Inc. LogicBlox Inc. and
University of Washington

ABSTRACT

Recent works on bounding the output size of a conjunctive
query with functional dependencies and degree bounds have
shown a deep connection between fundamental questions in
information theory and database theory. We prove analo-
gous output bounds for disjunctive datalog rules, and answer
several open questions regarding the tightness and looseness
of these bounds along the way. The bounds are intimately
related to Shannon-type information inequalities. We de-
vise the notion of a “proof sequence” of a specific class of
Shannon-type information inequalities called “Shannon flow
inequalities”. We then show how a proof sequence can be
used as symbolic instructions to guide an algorithm called
PANDA, which answers disjunctive datalog rules within the
size bound predicted. We show that PANDA can be used
as a black-box to devise algorithms matching precisely the
fractional hypertree width and the submodular width run-
times for aggregate and conjunctive queries with functional
dependencics and degree boun

Our results improve upon known results in three ways,
First, our bounds and algorithms are for the much more gen-
eral class of disjunctive datalng rules, of which conjunctive
queries are a special c: ond, the runtime of PANDA
matches precicly tho submodular width bound, while the
previous algorithm by Marx has a runtime that is polyno-
mial in this bound. Third, our bounds and algorithms work
for queries with input cardinality bounds, functional depen-
dencies, and degree bounds.

Overall, our results showed a deep connection between
three seemingly unrelated lines of research; and, our results
on proof sequences for Shannon flow inequalities might be
of independent interest,

Keywords

Submodular width; Disjunctive datalog; Shannon-type in-
equalities; Entropy; Functional dependencies; Restricted ac-
cess patterns; Degree bounds; Join algorithms
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1. INTRODUCTION

In this paper we answer four major questions that resulted
from four different research threads, and establish new con-
nections between those threads.

1.1 Size Bound for Full Conjunctive Queries

Grohe and Marx [30], Atserias, Grohe, and Marx [13],
and Gottlob, Lee, Valiant and Valiant [27] developed a deep
connection between the output size bound of a conjunc-
tive query with (or without) functional dependencies (FD)
and information theory. Our first problem is to extend
this bound to degree constraints, and to study whether the
bound is tight

We associate a full conjunctive query @ to a hypergraph
H = ([n],€), € C 2", The query’s variables are A;, i € [n]
Its atoms are Rp, F € . The query is

QAp) = N\ Re(Ar), m
ier

where Ay denotes the set {A; | j € J}, for J C [n]. Our
goal is to compute an upper bound on the output size, when
the input database satisfies a set of degree constraints. De-
fine deg-(Ay|Ax) “ maxe [, (04 —e(Rr))|; then, a de-
gree constraint is an assertion of the form degp(Ay|Ax) <
Ny, for X C Y C F, A cardinality constraint is an asser-
tion of the form |Rg| < N, for some F € &; it is exactly
the degree constraint degp(Ar|0) < Npjg = Np. A func-
tional dependency Ax — Ay is a degree constraint with
Nxuyix = 1. Thus, degree constraints strictly generalize
both cardinality constraints and FDs.

The first output size upper bound was pioneered in [13,30],
who established a tight bound, for cardinality constraints
only, known today as the AGM bound. Extensions to FDs
and degree constraints were discussed in [27] and [3], re-
spectively, who left open the question whether these bounds
are tight. Handling queries with degree constraints has a
strong practical motivation. Armbrust et al. [10-12], de-
scribed a new approach to query evaluation, called scale-
independent query processing, which guarantees a fixed run-
time even when the size of the database inc ses without
bound; this guarantee is provided by asking developers to
write explicit degree constraints, then using heuristics to
derive upper bounds on the query output. Thus, improved
upper bounds on the size of the query answer have immedi-
ate applications to scale-independent query processing. Sev-
eral complexity results on the associated decision problem
(“is the output size of the query bounded?”) were considered
in [15-17].
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AC/DC: In-Database Learning Thunderstruck

Mahmoud Abo Khamis Hung Q. Ngo XuanLong Nguyen
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ABSTRACT

We report on the design and implementation of the AC/DC gradient
descent solver for a class of optimization problems over normalized
databases. AC/DC decomposes an optimization problem into a set
of aggregates over the join of the database relations. It then uses
the answers to these aggregates to iteratively improve the solution
to the problem until it converges.

‘The challenges faced by AC/DC are the large database size, the
mixture of continuous and categorical features, and the large num-
ber of aggregates to compute. AC/DC addresses these challenges
by employing a sparse data representation, factorized computation,
problem under functional anda
data structure that supports shared computation of aggregates.

To train polynomial regression models and factorization ma-
chines of up to 141K features over the join of a real-world dataset of
up to 86M tuples, AC/DC needs up to 30 minutes on one core of a
commodity machine. This is up to three orders of magnitude faster
than its competitors R, MadLib, libFM, and TensorFlow whenever
they finish and thus do not exceed memory limitation, 24-hour
timeout, or internal design limitations.

ACM Reference Format:
Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu,
and Maximilian Schleich. 2018, AC/DC: In-Database Learning Thunder-
struck. In Proceedings of Znd Workshop on Data Management for End-to-End
Machine Learning (DEEM). ACM, New York, NY, USA. 10 pages.

Rode down the highway
Broke the limit, we hit the town
Went through to Teas, yeah Texas, and we had some fun

~ Thunderstruck (AC/DC)

-

INTRODUCTION
In this paper we report our on-going work on the design and im-
plementation of AC/DC, a gradient descent solver for a class of
optimization problems including ridge linear regression, polyno-
mial regression, and factorization machines. It extends our prior
system F for factorized learning of linear regression models [21]
to capture non-lincar models, categorical features, and model repa-
ization under functional (FDs). Its design is
but one fruit of our exploration of the design space for the Al engine
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currently under development at Relational Al Inc. It subscribes to a
recent effort to bring analytics inside the database (7, 9, 12, 13, 21]
and thereby avoid the non-trivial time spent on data import/export
at the interface between database systems and statistical packages.

AC/DC! solves optimization problems over design matrices de-
fined by feature extraction queries over databases of possibly many
relations. It is a unified approach for computing both the optimiza-
tions and the underlying database queries; the two tasks not only
live in the same ace, they are vined i i
plan with asymptotically lower complexity than that of any one of
them in isolation. This is possible due to several key contributions.

First, AC/DC decomposes a given optimization problem into a
set of aggregates whose answers are fed into a gradient descent
solver that iteratively approximates the solution to the problem
until it reaches convergence. The aggregates capture the combina-
tions of features in the input data, as required for computing the
gradients of an objective function. They are group-by aggregates in
case of combinations with at least one categorical feature and plain
scalars for combinations of continuous features only. The former
aggregates are grouped by the query variables with a categorical
domain. Prior work on in-database machine learning mostly consid-
ered continuous features and one-hot encoded categorical features,
eg. [7, 9, 13, 21]. We avoid the expensive one-hot encoding of
categorical features by a sparse representation using group-by aggre-
gates [2). Several tools, e.g., libFM [8, 20] for factorization machines
and LIBSVM [6] for support vector machines, employ sparse data
representations that avoid the redundancy introduced by one-hot
encoding. Th P the result of the i
query once it is exported out of the database.

Second, AC/DC factorizes the computation of these aggregates
over the feature extraction query to achieve the lowest known com-
plexity. We recently pinpointed the complexity of AC/DC [2]. The
factorized computation of the queries obtained by decomposing
optimization problems can be asymptotically faster than the com-
putation of the underlying join query alone. This means that all
machine learning approaches that work on a design matrix defined
by the result of the database join are asymptotically suboptimal.
‘The only other in-database learning system [13] that may outper-
form the underlying database join only works for generalized linear
models over key-foreign key joins, does not decompose the task to
AC/DC’s granularity, and cannot recover the good complexity of
AC/DC since it does not employ factorized computation.

‘Third, AC/DC massively shares computation across the aggregate-
join queries. These different queries use the same underlying join
and their aggregates have similar structures.

TAC/DC supports both types of features, i.c, categorical and continuous, and fast

and at the fast-paced sound of a homonymous rock band.
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