
Towards GQL
Composable Graph Queries and

Multiple Named Graphs
in Cypher for Apache Spark

1Stefan Plantikow, Neo4j



Welcome

2

Stefan Plantikow

Product Manager / Cypher Specification Editor
Former Lead Cypher for Apache Spark

Neo4j

CAPS Team @ Neo4j

Mats Rydberg
Martin Junghanns
Max Kiessling
Philip Stutz

LANGSTAR Team @ Neo4j

Alastair Green
Tobias Lindaaker
Petra Selmer



Cypher overview

Multiple graphs in Cypher (CIP2017-06-18 and related)

Cypher products with support for multiple graphs

● Cypher for Apache Spark
● Demo

The future: GQL

Agenda

3

https://github.com/opencypher/openCypher/pull/241


The Cypher query language

4



Cypher
● Original declarative query language for the property graph model

● Invented at Neo4j by A. Taylor in 2011

● Edge-isomorphism by default

● Continuous evolution: DML, Labels, DDL, MG, Path patterns

● Inspiration: PGQL, G-CORE, SQL PG Ad-Hoc => GQL

● Cypher today: Formal semantics (SIGMOD), Multiple graphs (This talk)

● Next stage: GQL
5

https://event.cwi.nl/grades/2016/07-VanRest.pdf
https://arxiv.org/pdf/1712.01550
https://gql.today/
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwi9rpKas8PbAhW1PH0KHbj8CzsQFggtMAE&url=https%3A%2F%2Fhomepages.inf.ed.ac.uk%2Flibkin%2Fpapers%2Fsigmod18.pdf&usg=AOvVaw1iyAaiJ--QwxvDc6-TdHhU


Node (vertex)

● Represents an entity within the graph
● Has zero or more labels
● Has zero or more properties 

Property graph

6

Properties

● Key-value map associated with nodes and relationships
● Represents the data: e.g. name, age, weight etc
● String key; typed value (string, number, bool, list)

Relationship (edge)

● Adds structure to the graph 
● Has one type
● Has zero or more properties 
● Relates nodes by type and direction

Must have a start and an end node



graph patterns as a fundamental language construct for

● graph matching
● graph updates
● graph construction 
● constraint and index declaration

SQL-inspired (clauses, subclauses, expressions, ternary logic, NULL)

linear (top-down) composition of clauses (lateral join / flat map)

built-in structured data types: lists, maps

Cypher principles

7



Searching for (matching) graph patterns

8

● Recursive queries
● Variable-length relationship chains

● Full RPQs (proposal)
● Path-binding queries



// Pattern description (ASCII art)
MATCH p=(me:Person)-[:FRIEND*]->(friend),
        (me)-[:FROM]->(:City)<-[:FROM]-(friend)

// Filtering with predicates
WHERE me.name = ‘Frank Black’AND friend.age > me.age

// Projection of expressions
RETURN toUpper(friend.name) AS name, friend.title AS title, p

// Order results
ORDER BY name, title DESC

9

Output: a table

DQL: reading data Linear 
Top-Down 

Flow

Implicit Input: a property graph



// Data creation and manipulation
CREATE (you:Person)
SET you.name = ‘Jill Brown’
CREATE (you)-[:FRIEND]->(me)

// Either match existing entities or create new entities. 
// Bind in either case
MERGE (p:Person {name: ‘Bob Smith’})
RETURN p.created, p.updated

DML: Creating and updating data

10



Use cases in industry

11



Query Composition
requires

Multiple Graphs

12



Combining and transforming graphs 
from multiple sources

Versioning, snapshotting, computing difference graphs

Graph views e.g. for access control

Shaping and integrating heterogeneous graph data

The output of one query is used as the input to another
- Organize a query into multiple parts
- Extract parts of a query to a view for re-use
- Replace parts of a query without affecting other parts
- Build complex workflows programmatically

Motivating multiple graphs & 
query composition

13



Global graph catalog

Clauses operate within the context of a single working graph

Graph construction projects updatable views using DML syntax

Successful queries return either a graph, or a table

Key design choices

14



Cypher: multiple graphs model

15

Query Processor
(e.g. a GDBMS)

Multiple Graphs 
CatalogClient 1

Client 2

Client 3



// Set the working graph to the graph foo in the catalog for reading

FROM foo

...

// Set the working graph to the graph foo in the catalog for updating

UPDATE foo

...

// Construct new working graph

CONSTRUCT 

...

// Return current working graph as a result

RETURN GRAPH

Working graph interaction

16



Example: Reading from multiple graphs
Which friends to invite to my next dinner party? 

[1] FROM social_graph
[2] MATCH (a:Person {ssn: $ssn})-[:FRIEND]-(friend)
[3] FROM salary_graph
[4] MATCH (f:Employee {ssn: friend.ssn})<-[:INCOME]-(event) 
[5] WHERE $startDate < event.date < $endDate
[6] RETURN friend.name, sum(event.amount) as incomes

17



Graph construction
Graph construction dynamically constructs a new working graph 

● for querying, storing in the catalog, later updating
● using entities from other graphs (this is called replication)

Simple example

MATCH (a)-[:KNOWS {from: "Berlin"}]->(b)
CONSTRUCT 
MERGE (a), (b) // replication, aka "shared entities"
CREATE (a)-[:MET_IN_BERLIN]->(b)
RETURN GRAPH



Replicating entities
Take an original entity and create a representative replica in the constructed graph

MATCH (a)

CONSTRUCT 

MERGE (a)

Replicating the same original entity multiple times still only creates a single replica.

         MATCH (root)-[:PARENT_OF*]->(child)
    CONSTRUCT

    MERGE (root), (child)

    CREATE (root)-[:ANCESTOR_OF]->(child)

Variations: Replicating relationships replicates start and end nodes, MERGE GRAPH, MERGE PATH

Replication is useful for updatable views and graph union. It relies on provenance tracking.



Provenance tracking aka entity sharing
● Data model: Entities belong to one and only one graph

Node #1 in Graph #1

● Provenance graph: Tracks entities across graph construction
Node #2 in Graph #2 is a replica of Node #1 in Graph #1

● Entity values: References to a replica group with the same root
n references Node #1 in Graph #1 and all of its replicas
(e.g. Node #2 in Graph #2)

● graph(n) - Graph of root, e.g. Graph #1
id(n)     - id of root, e.g. #1 
a=b - graph(a) = graph(b) && id(a) = id (b)



Updatable views
CONSTRUCT
// build the view (track provenance information)
...
UPDATE GRAPH
// update entities in the view (use provenance information)
...



Graph operations
Entities are always replicated

CONSTRUCT
...
RETURN GRAPH
UNION | INTERSECT | EXCEPT | UNION ALL | ...
CONSTRUCT
...
RETURN GRAPH



CREATE GRAPH foo  // Create new graph 'foo'
DELETE GRAPH foo  // Delete graph 'foo'

COPY foo TO bar   // Copy graph 'foo' with schema
RENAME foo TO bar // Rename graph 'foo' to 'bar'
TRUNCATE foo      // Remove data but keep schema in 'foo' 

// Extensions
ALIAS foo TO bar      // Aliasing
... GRAPH foo TO bar  // Error if 'foo' is not a graph
... GRAPH TO bar      // Use working graph

Catalog side-effects

23



Design summary
● select-construct-return

○ essence of composition: what's operated on is what's produced

● working graph serves as operational context
○ preserve existing mental model of Cypher: implicit graph + driving table
○ fits nested subqueries (outer working graph => initial working graph)

● graph construction uses DML
○ leverage knowledge of existing DML semantics for users
○ allows negative graph construction (MERGE GRAPH + DELETE)
○ future work: graph aggregation

● graphs track provenance 
○ essential for graph operations: entities from returned graphs can be related to base data 24



Cypher for Apache Spark

25



Cypher implementations

Industry
SAP HANA Graph

Redis Graph

Agens Graph

Neo4j

Memgraph

Cypher for Apache Spark (This talk)

Cypher for Gremlin (Not this talk but please ask)

Research
Gradoop (Distributed Graph Analytics on Apache Flink): U. of Leipzig

ingraph (Incremental evaluation of Cypher queries): U. of Budapest

Graphflow (Supporting continuous queries and triggers): U. of Waterloo

26



Cypher for Apache Spark

● Full Cypher implementation for Apache Spark
○ Neo4j Cypher Frontend 

○ Custom IR and query planner

○ Target: DataFrame API

● Programmatic API (similar to SparkSQL)

● Multiple data sources

● Commercial product: Neo4j Morpheus (Big data integration)

27



Demo

28



https://www.opencypher.org

29

https://docs.google.com/file/d/1Uo_eRIKdbN0F3d0nAyY5Vzl1n8rSprpY/preview


GQL

30



The GQL manifesto: 

Avoid market confusion and divergence - fuse Cypher, PGQL, G-Core into GQL

Please join the cause and sign the GQL manifesto

Next step proposal: Jointly work on feature comparison

(similar to short comparison document on gql.today site but with more detail)

Take it from there

Let's discuss more

 

gql.today

31

http://gql.today

https://docs.google.com/spreadsheets/d/1zpLDPWQYwACgphPz8MxcKvtbOjF3Ye-z5d2jSnNa1GI/edit#gid=0


Summary
Cypher is the defacto standard property graph query language 
with >=10 implementations

Multiple graphs are necessary for query composition 
(More information in CIP2017-06-18 and oCIM 4 slides)

Multiple graphs Cypher is available in CAPS now

Cypher is evolving to be the next generation query language for graphs: GQL

32

https://github.com/opencypher/openCypher/pull/241
http://www.opencypher.org/event/2018/05/22/ocim4/


Thank you!

33

If you have a questions, a research topic, or would like another 
demo, please come and speak to us!


