
G-CORE:
A Core for Future Graph Query Languages

LDBC GraphQL task force, including Peter Boncz (CWI)

GCORE	is	the	culmination	of	2.5	years	of	intensive	
discussion	between	LDBC	and	industry,	including:	
Capsenta,	HP,	Huawei,	IBM,	Neo4j,	Oracle,	SAP	and	Sparsity

Where does G-CORE come from?
• This work is the culmination of 2.5 years of intensive discussion between

LDBC and industry, including:
– Capsenta, HP, Huawei, IBM, Neo4j

Oracle, SAP and Sparsity.

• The Graph Query Language Task Force designed this language.
– members combine strong expertise in theory, systems and products
– led by Marcelo Arenas.

2

LDBC Graph Query Language Task Force
• Recommend a query language core that will strengthen future versions of

industrial graph query languages.
• Perform deep academic analysis of the expressiveness and complexity of

evaluation of the query language
• Ensure a powerful yet practical query language

Academia Industry

Renzo	Angles,	Universidad	de	Talca Alastair	Green,	Neo4j

Marcelo	Arenas,	PUC	Chile	(leader) Tobias	Lindaaker,	Neo4j

Pablo	Barceló,	Universidad	de	Chile Marcus	Paradies,	SAP	(àDLR)

Peter	Boncz,	CWI Stefan	Plantikow,	Neo4j

George	Fletcher,	Eindhoven	University	of	Technology Arnau Prat,	Sparsity

Claudio	Gutierrez,	Universidad	de	Chile Juan	Sequeda,	Capsenta

Hannes	Voigt,	TU	Dresden Oskar	van	Rest,	Oracle

Graph Data Model
• directed graph
• nodes & edges are entities
• entities can have labels

Example from SNB:
LDBC Social Network Benchmark
(see SIGMOD 2015 paper)

Property Graph Data Model
• directed graph
• nodes & edges are entities
• entities can have labels
• ..and (property,value) pairs

CHALLENGE 1: COMPOSABILITY
• Current graph query languages

are not composable
– In: Graphs
– Out: Tables, (list of) Nodes, Edges
• Not: Graph

• Why is it important?
– No Views and Sub-queries
– Diminishes expressive power of

the language

6

GQL

SQL

Existing

CHALLENGE 2: PATHS
• Current graph query languages treat paths as second class

citizens
– Paths that are returned have to be post-processed in the client (a

list of nodes or edges)

• Why is it important?
– Paths are fundamental to Graphs
– Increase the expressivity of the language; do more within the

language

7

Property Graph Data Model
• directed graph
• nodes & edges are entities
• entities can have labels
• ..and (property,value) pairs

Path Property Graph Data Model
• directed graph
• paths, nodes & edges are entities
• entities can have labels
• ..and (property,value) pairs

a path is a sequence of consecutive
edges in the graph

CHALLENGE 3: TRACTABILITY
• Graph query languages in handling paths can easily define

functionality that is provably intractable. For instance,
– enumerating paths,
– returning paths without cycles (simple paths),
– supporting arbitrary conditions on paths,
– optional pattern matching, etc..

• G-CORE connects the practical work done in industrial proposals
with the foundational research on graph databases
– G-CORE is tractable in data complexity (=can be implemented efficiently)

10

Always returning a graph

• CONSTRUCT clause: Every query returns a graph
• New graph with only nodes: those persons who work at Google
• All the labels and properties that these person nodes had in
social_graph are preserved in the returned result graph.

11

CONSTRUCT (n)
MATCH (n:Person) ON social_graph
WHERE n.employer = ’Google'

Syntax	inspired	by	Neo4j’s	Cypher	and	Oracle’s	PGQL

Multi-Graph Queries and Joins
• Simple data integration query

• Load company nodes into company_graph
• Create a unified graph (UNION) where

employees and companies are connected
with an edge labeled worksAt.

12

CONSTRUCT (c)<-[:worksAt]-(n)
MATCH (c:Company) ON company_graph,

(n:Person) ON social_graph
WHERE c.name = n.employer
UNION social_graph

c n

0	#Google 105	#John

1	#HPI 104	#Frank

2	#SAP 102	#Celine

3	#HP 102	#Celine

c

0	#HPI

1	#SAP

2	#Google

3	#HP

n

105	#John

104	#Frank

103	#Peter

102	#Celine

|
σc.name=n.employer
|
⨉

Multi-Graph Queries and Joins
CONSTRUCT (c)<-[:worksAt]-(n)
MATCH (c:Company) ON company_graph,

(n:Person) ON social_graph
WHERE c.name = n.employer
UNION social_graph

c n

0	#Google 105	#John

1	#HPI 104	#Frank

2	#SAP 102	#Celine

3	#HP 102	#Celine

Multi-Graph Queries and Joins
CONSTRUCT (c)<-[:worksAt]-(n)
MATCH (c:Company) ON company_graph,

(n:Person) ON social_graph
WHERE c.name = n.employer
UNION social_graph

c n

0	#Google 105	#John

1	#HPI 104	#Frank

2	#SAP 102	#Celine

3	#HP 102	#Celine

14

Multi-Graph Queries and Joins
CONSTRUCT (c)<-[:worksAt]-(n)
MATCH (c:Company) ON company_graph,

(n:Person) ON social_graph
WHERE c.name = n.employer
UNION social_graph

c n

0	#Google 105	#John

1	#HPI 104	#Frank

2	#SAP 102	#Celine

3	#HP 102	#Celine

15

10 11

12
13

Graph Construction
• Normalize Data, turn property values into nodes

• The unbound destination node x would create a company
node for each match result (tuple in binding table).
• This is not what we want: we want only one company per

unique name ... So ...

16

CONSTRUCT social_graph,
(n)-[y:worksAt]->(x:Company {name:=n.employer})
MATCH (n:Person) ON social_graph

Graph Construction = Graph Aggregation

• Graph aggregation: GROUP clause in each graph pattern
element
• Result: One company node for each unique value of e in the

binding set is created

17

CONSTRUCT social_graph,
(n)-[y:worksAt]->(x GROUP e :Company {name=e})
MATCH (n:Person {employer=e}) ON social_graph

Creating Graphs from Values

18

CONSTRUCT social_graph,
(n)-[y:worksAt]->(x GROUP e :Company {name=e})
MATCH (n:Person {employer=e}) ON social_graph

Creating Graphs from Values

1919

10 11

12
13

CONSTRUCT social_graph,
(n)-[y:worksAt]->(x GROUP e :Company {name=e})
MATCH (n:Person {employer=e}) ON social_graph

Reachability over Paths
• Paths are demarcated with slashes -/ /-
• Regular path expression are demarcated with < >

• If we return just the node (m), the <:knows*> path
expression semantics is a reachability test

20

CONSTRUCT (m)
MATCH (n:Person)-/<:knows*>/->(m:Person)
WHERE n.firstName = 'John' AND n.lastName = 'Doe'
AND (n)-[:isLocatedIn]->()<-[:isLocatedIn]-(m)

Existential Subqueries

21

CONSTRUCT (m)
MATCH (n:Person)-/<:knows*>/->(m:Person)
WHERE n.firstName = 'John' AND n.lastName = 'Doe'
AND (n)-[:isLocatedIn]->()<-[:isLocatedIn]-(m)

WHERE …
EXISTS (
CONSTRUCT ()
MATCH (n)-[:isLocatedIn]->()<-[:isLocatedIn]-(m)

)

Syntactical shorthand for existential subquery:

Storing Paths with @p
• Save the three shortest paths from John Doe towards other

person who lives at his location, reachable over knows edges

• @ prefix indicates a stored path: query delivers a graph with paths
• paths have label :localPeople and cost as property ‘distance’
• Default cost of a path is its hop-count (length)

22

CONSTRUCT (n)-/@p:localPeople{distance:=c}/->(m)
MATCH (n)-/3 SHORTEST p <:knows*> COST c/->(m)
WHERE n.firstName = 'John' AND n.lastName = 'Doe'
AND (n)-[:isLocatedIn]->()<-[:isLocatedIn]-(m)

More G-CORE..

23

GRAPH VIEW social_graph1 AS (
CONSTRUCT social_graph, (n)-[e]->(m)

SET e.nr_messages := COUNT(*)
MATCH (n)-[e:knows]->(m)
WHERE (n:Person) AND (m:Person)
OPTIONAL (n)<-[c1]-(msg1:Post),

(msg1)-[:reply_of]-(msg2),
(msg2:Post)-[c2]->(m)
WHERE (c1:has_creator) AND (c2:has_creator)

)
PATH wKnows = (x)-[e:knows]->(y)

WHERE NOT ’Google' IN y.employer
COST 1 / (1 + e.nr_messages)

CONSTRUCT social_graph1, (n)-/@p:toWagner/->(m)
MATCH (n:Person)-/p <~wKnows*>/->(m:Person) ON social_graph1

More features: most advanced GQL so far. Read the paper!

More G-CORE..

24

GRAPH VIEW

• views

More G-CORE..

25

CONSTRUCT social_graph, (n)-[e]->(m)
SET e.nr_messages := COUNT(*)

• set-clause in construct

More G-CORE..

26

OPTIONAL (n)<-[c1]-(msg1:Post),
(msg1)-[:reply_of]-(msg2),
(msg2:Post)-[c2]->(m)
WHERE (c1:has_creator) AND (c2:has_creator)

• optional match

More G-CORE..

27

PATH wKnows = (x)-[e:knows]->(y)
WHERE NOT ’Google' IN y.employer
COST 1 / (1 + e.nr_messages)

-/p <~wKnows*>/->(

• regular path expressions (flexible Kleene*)

G-CORE+SQL
• allow SELECT clause. You form property expressions (x.prop)

on variables (x) from the binding table.
• allow FROM clause. Columns are single-value properties on the

table variable, rest is NULL.
• allow queries that have both SELECT and FROM.

combine with Cartesian Product, as usual.

Result:
• G-CORE+SQL can query and return both tables and graphs

28

Take-Away
1. G-CORE is a compositional query language for graph data
2. G-CORE can find paths

1+2 = the data model of G-CORE is graphs-with-paths (PPG)

• G-CORE is tractable in data complexity
• G-CORE has many advanced features, e.g.:
– regular path expressions, views, subqueries è read the paper J

• G-CORE+SQL work well together

29

