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Where does G-CORE come from?
• This work is the culmination of 2.5 years of intensive discussion between 

LDBC and industry, including: 
– Capsenta, HP, Huawei, IBM, Neo4j

Oracle, SAP and Sparsity. 

• The Graph Query Language Task Force designed this language.
– members combine strong expertise in theory, systems and products
– led by Marcelo Arenas.
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LDBC Graph Query Language Task Force
• Recommend a query language core that will strengthen future versions of 

industrial graph query languages. 
• Perform deep academic analysis of the expressiveness and complexity of 

evaluation of the query language
• Ensure a powerful yet practical query language
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Graph Data Model
• directed graph
• nodes & edges are entities
• entities can have labels

Example from SNB: 
LDBC Social Network Benchmark
(see SIGMOD 2015 paper)



Property Graph Data Model
• directed graph
• nodes & edges are entities
• entities can have labels
• ..and (property,value) pairs



CHALLENGE 1: COMPOSABILITY
• Current graph query languages 

are not composable
– In: Graphs
– Out: Tables, (list of) Nodes, Edges
• Not: Graph

• Why is it important?
– No Views and Sub-queries
– Diminishes expressive power  of 

the language
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CHALLENGE 2: PATHS
• Current graph query languages treat paths as second class 

citizens
– Paths that are returned have to be post-processed in the client (a 

list of nodes or edges)

• Why is it important?
– Paths are fundamental to Graphs
– Increase the expressivity of the language; do more within the 

language
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Property Graph Data Model
• directed graph
• nodes & edges are entities
• entities can have labels
• ..and (property,value) pairs



Path Property Graph Data Model
• directed graph
• paths, nodes & edges are entities
• entities can have labels
• ..and (property,value) pairs

a path is a sequence of consecutive 
edges in the graph 



CHALLENGE 3: TRACTABILITY
• Graph query languages in handling paths can easily define 

functionality that is provably intractable. For instance, 
– enumerating paths, 
– returning paths without cycles (simple paths), 
– supporting arbitrary conditions on paths, 
– optional pattern matching, etc..

• G-CORE connects the practical work done in industrial proposals 
with the foundational research on graph databases
– G-CORE is tractable in data complexity (=can be implemented efficiently)
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Always returning a graph

• CONSTRUCT clause: Every query returns a graph
• New graph with only nodes: those persons who work at Google
• All the labels and properties that these person nodes had in 
social_graph are preserved in the returned result graph. 
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CONSTRUCT (n)
MATCH (n:Person) ON social_graph
WHERE n.employer = ’Google' 

Syntax	inspired	by	Neo4j’s	Cypher	and	Oracle’s	PGQL



Multi-Graph Queries and Joins 
• Simple data integration query

• Load company nodes into company_graph
• Create a unified graph (UNION) where 

employees and companies are connected 
with an edge labeled worksAt. 
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CONSTRUCT (c)<-[:worksAt]-(n)
MATCH (c:Company) ON company_graph,

(n:Person) ON social_graph
WHERE c.name = n.employer
UNION social_graph

c n

0	#Google 105	#John

1	#HPI 104	#Frank

2	#SAP 102	#Celine

3	#HP 102	#Celine

c

0	#HPI

1	#SAP

2	#Google

3	#HP

n

105	#John

104	#Frank

103	#Peter

102	#Celine

|
σc.name=n.employer
|
⨉



Multi-Graph Queries and Joins 
CONSTRUCT (c)<-[:worksAt]-(n)
MATCH (c:Company) ON company_graph,

(n:Person) ON social_graph
WHERE c.name = n.employer
UNION social_graph

c n

0	#Google 105	#John

1	#HPI 104	#Frank

2	#SAP 102	#Celine

3	#HP 102	#Celine



Multi-Graph Queries and Joins 
CONSTRUCT (c)<-[:worksAt]-(n)
MATCH (c:Company) ON company_graph,

(n:Person) ON social_graph
WHERE c.name = n.employer
UNION social_graph

c n

0	#Google 105	#John

1	#HPI 104	#Frank

2	#SAP 102	#Celine

3	#HP 102	#Celine
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Multi-Graph Queries and Joins 
CONSTRUCT (c)<-[:worksAt]-(n)
MATCH (c:Company) ON company_graph,

(n:Person) ON social_graph
WHERE c.name = n.employer
UNION social_graph

c n

0	#Google 105	#John

1	#HPI 104	#Frank

2	#SAP 102	#Celine

3	#HP 102	#Celine
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Graph Construction
• Normalize Data, turn property values into nodes

• The unbound destination node x would create a company 
node for each match result (tuple in binding table). 
• This is not what we want: we want only one company per 

unique name ... So ...
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CONSTRUCT social_graph,
(n)-[y:worksAt]->(x:Company {name:=n.employer}) 
MATCH (n:Person) ON social_graph



Graph Construction = Graph Aggregation

• Graph aggregation: GROUP clause in each graph pattern 
element
• Result: One company node for each unique value of e in the 

binding set is created
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CONSTRUCT social_graph,
(n)-[y:worksAt]->(x GROUP e :Company {name=e})
MATCH (n:Person {employer=e}) ON social_graph



Creating Graphs from Values
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CONSTRUCT social_graph,
(n)-[y:worksAt]->(x GROUP e :Company {name=e})
MATCH (n:Person {employer=e}) ON social_graph



Creating Graphs from Values

1919

10 11

12
13

CONSTRUCT social_graph,
(n)-[y:worksAt]->(x GROUP e :Company {name=e})
MATCH (n:Person {employer=e}) ON social_graph



Reachability over Paths
• Paths are demarcated with slashes -/ /-
• Regular path expression are demarcated with < >

• If we return just the node (m), the <:knows*> path 
expression semantics is a reachability test
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CONSTRUCT (m)
MATCH (n:Person)-/<:knows*>/->(m:Person) 
WHERE n.firstName = 'John' AND n.lastName = 'Doe'
AND (n)-[:isLocatedIn]->()<-[:isLocatedIn]-(m) 



Existential Subqueries
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CONSTRUCT (m)
MATCH (n:Person)-/<:knows*>/->(m:Person) 
WHERE n.firstName = 'John' AND n.lastName = 'Doe'
AND (n)-[:isLocatedIn]->()<-[:isLocatedIn]-(m) 

WHERE … 
EXISTS ( 
CONSTRUCT ()
MATCH (n)-[:isLocatedIn]->()<-[:isLocatedIn]-(m) 

) 

Syntactical shorthand for existential subquery:



Storing Paths with @p
• Save the three shortest paths from John Doe towards other 

person who lives at his location, reachable over knows edges

• @ prefix indicates a stored path: query delivers a graph with paths 
• paths have label :localPeople and cost as property ‘distance’ 
• Default cost of a path is its hop-count (length) 
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CONSTRUCT (n)-/@p:localPeople{distance:=c}/->(m)
MATCH (n)-/3 SHORTEST p <:knows*> COST c/->(m)
WHERE n.firstName = 'John' AND n.lastName = 'Doe'
AND (n)-[:isLocatedIn]->()<-[:isLocatedIn]-(m) 



More G-CORE..
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GRAPH VIEW social_graph1 AS ( 
CONSTRUCT social_graph, (n)-[e]->(m) 

SET e.nr_messages := COUNT(*) 
MATCH (n)-[e:knows]->(m) 
WHERE (n:Person) AND (m:Person) 
OPTIONAL (n)<-[c1]-(msg1:Post), 

(msg1)-[:reply_of]-(msg2), 
(msg2:Post)-[c2]->(m) 
WHERE (c1:has_creator) AND (c2:has_creator) 

)
PATH wKnows = (x)-[e:knows]->(y) 

WHERE NOT ’Google' IN y.employer
COST 1 / (1 + e.nr_messages) 

CONSTRUCT social_graph1, (n)-/@p:toWagner/->(m) 
MATCH (n:Person)-/p <~wKnows*>/->(m:Person) ON social_graph1

More features: most advanced GQL so far. Read the paper!



More G-CORE..
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GRAPH VIEW 

• views



More G-CORE..
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CONSTRUCT social_graph, (n)-[e]->(m) 
SET e.nr_messages := COUNT(*) 

• set-clause in construct



More G-CORE..
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OPTIONAL (n)<-[c1]-(msg1:Post), 
(msg1)-[:reply_of]-(msg2), 
(msg2:Post)-[c2]->(m) 
WHERE (c1:has_creator) AND (c2:has_creator) 

• optional match



More G-CORE..
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PATH wKnows = (x)-[e:knows]->(y) 
WHERE NOT ’Google' IN y.employer
COST 1 / (1 + e.nr_messages) 

-/p <~wKnows*>/->(

• regular path expressions (flexible Kleene*)



G-CORE+SQL
• allow SELECT clause. You form property expressions (x.prop) 

on variables (x) from the binding table.
• allow FROM clause. Columns are single-value properties on the 

table variable, rest is NULL.
• allow queries that have both SELECT and FROM.       

combine with Cartesian Product, as usual.

Result:
• G-CORE+SQL can query and return both tables and graphs
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Take-Away
1. G-CORE is a compositional query language for graph data
2. G-CORE can find paths

1+2 = the data model of G-CORE is graphs-with-paths (PPG)

• G-CORE is tractable in data complexity
• G-CORE has many advanced features, e.g.:
– regular path expressions, views, subqueries è read the paper J

• G-CORE+SQL work well together 
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