LDBC®

The graph & RDF

[DB F e
G-CORE:

A Core for Future Graph Query Languages
LDBC GraphQL task force, including Peter Boncz (CWI)

GCORE is the culmination of 2.5 years of intensive
discussion between LDBC and industry, including:

Capsenta, HP, Huawei, IBM, Neo4j, Oracle, SAP and Sparsity

Where does G-CORE come from??

« This work is the culmination of 2.5 years of intensive discussion between
LDBC and industry, including:
— Capsenta, HP, Huawei, IBM, Neo4; Application Fields
healthcare / pharma | 14

Oracle, SAP and Sparsity. publishing 10

Jsed Feature
graph reachability
graph construction
finance / insurance 6 pattern matching 32
cultural heritage shortest path search § 19
e-commerce graph clustering 14
social media
telecommunications

= ok o O

Figure 1: Graph database usage characteristics derived from
the use-case presentations in LDBC TUC Meetings 2012-
2017 (source: https://github.com/ldbc/tuc_presentations).

« The Graph Query Language Task Force designed this language.
— members combine strong expertise in theory, systems and products
— led by Marcelo Arenas.

ppc® ————————

| DBC Graph Query Language Task Force

 Recommend a query language core that will strengthen future versions of
industrial graph query languages.

« Perform deep academic analysis of the expressiveness and complexity of
evaluation of the query language

« Ensure a powerful yet practical query language

Renzo Angles, Universidad de Talca Alastair Green, Neo4j
Marcelo Arenas, PUC Chile (leader) Tobias Lindaaker, Neo4j

Pablo Barceld, Universidad de Chile Marcus Paradies, SAP (= DLR)
Peter Boncz, CWI Stefan Plantikow, Neo4;
George Fletcher, Eindhoven University of Technology Arnau Prat, Sparsity

Claudio Gutierrez, Universidad de Chile Juan Sequeda, Capsenta
Hannes Voigt, TU Dresden Oskar van Rest, Oracle

LDBC®

Graph Data Model

 directed graph
2\0‘1 * nodes & edges are entities
202 103 * entities can have labels

Example from SNB:

e Person O Place 1 Tag OManager LDBC Social Network Benchmark
Edge Labels
— KNOWS - » isLocatedln =—» haslnterest (See SlGMOD 2015 paper)

LDBC®

Property Graph Data Model

name: Wagner

\ firstName: Celine
201 | lastName: Mayer
\ |employer: {SAP,HPI}

firstName: Peter
lastName: Smith

0 202

206

103
203

firstName: Frank
lastName: Gold
employer: HP

207

name: Houston
...................... 205

since: 1/12/2014

204

Node Labels

O Person (O Place X Tag <>Manager

Edge Labels

firstName: John
lastName: Doe
employer: Google

— KNOWS -] » isLocatedln =¥ haslinterest

LDBC®

directed graph

nodes & edges are entities
entities can have labels
..and (property,value) pairs

CHALLENGE 1: COMPOSABILITY
« Current graph query languages : o
Xisting

are not composable - GOL=s HEE

—In: Graphs

— Qut: Tables, (list of) Nodes, Edges J

« Not: Graph

 Why Is it important? -

—No Views and Sub-queries = 51 e NI

— Diminishes expressive power HEE

the language

LDBC®

CHALLENGE 2: PATHS

« Current graph query languages treat paths as second class
citizens

— Paths that are returned have to be post-processed in the client (a
list of nodes or edges)

 Why Is it important?
— Paths are fundamental to Graphs

— Increase the expressivity of the language; do more within the
anguage

LDBC®

Property Graph Data Model

name: Wagner

\ firstName: Celine

201 | lastName: Mayer
\ |employer: {SAP,HPI}

firstName: Peter
lastName: Smith

firstName: Frank

0 202

206

name: Houston
...................... 205 ...

since: 1/12/2014

Node Labels

lastName: Gold
203 employer: HP

207

........

firstName: John
lastName: Doe
employer: Google

O Person (O Place X Tag <>Manager

Edge Labels

— KNOWS -] » isLocatedln =¥ haslinterest

LDBC®

 directed graph

* nodes & edges are entities
» entities can have labels

« ..and (property,value) pairs

Path Property Graph Data Model

name: Wagner

\ firstName: Celine
201 | lastName: Mayer
\ | employer: {SAP,HPI}

firstName: Peter

l[astName: Smith

firstName: Frank
0 3 lastName: Gold
203 employer: HP

206 @
vy |name: Houston X »

........ 205 105

Stored Paths firstName: John

e 301 lastName: Doe
E O—>0O—>0 | employer: Google
[: :
\John _Peter Celine j1+tryst: 0.95
Node Labels Path Labels

QO Person (OPlace £x Tag < Manager () toWagner
Edge Labels

= KNOWS ----» jsLocatedln =¥ hasinterest

LDBC®

 directed graph

paths, nodes & edges are entities
» entities can have labels

..and (property,value) pairs

a path is a sequence of consecutive
edges In the graph

CHALLENGE 3: TRACTABILITY

« Graph query languages in handling paths can easily define
functionality that is provably intractable. For instance,
— enumerating paths,
— returning paths without cycles (simple paths),
— supporting arbitrary conditions on paths,
— optional pattern matching, etc..

« G-CORE connects the practical work done in industrial proposals
with the foundational research on graph databases

— G-CORE is tractable in data complexity (=can be implemented efficiently)

tppc® ————————————————

Always returning a graph

CONSTRUCT (n)
MATCH (n:Person) ON social graph
WHERE n.employer = ’'Google'’

« CONSTRUCT clause: Every query returns a graph
* New graph with only nodes: those persons who work at Google

« All the labels and properties that these person nodes had in
social graph are preserved in the returned result graph.

Syntax inspired by Neo4j’s Cypher and Oracle’s PGQL

ippc® —m—m————

Multi-Graph Queries and Joins

« Simple data integration query E
0 #Google 105 #John
CONSTRUCT (c)<-[:worksAt]-(n) 1 #HP 104 #Frank
MATCH (c:Company) ON company graph, 2 #SAP 102 #Celine
(n:Person) ON social graph 3 #HP 102 #Celine

WHERE c.name = n.employer
UNION social graph

|
» Load company nodes into company graph il DN
» Create a unified graph (UNION) where i 105 #lohn

. 1 #SAP 104 #Frank
employees and companies are connected , ucoogie 103 HPeter

with an edge labeled worksAt. 3 #HP 102 #Celine

c)-c.name=n.employer

tppc® ———

Multi-Graph Queries and Joins

CONSTRUCT (c)<-[:worksAt]-(n) e ——
0 #Google 105 #John
MATCH (c:Company) ON company graph, S e ——
(n:Person) ON social graph 2 HSAP 102 #Celine
WHERE c.name = n.employer 3 #HP 102 #Celine

UNION social graph firstName: Celine

| lastName: Mayer
employer: {SAP,HPI}

firstName: Peter
lastName: Smith

firstName: Frank
0 202 103 lastName: Gold
203 employer: HP

Node Labels

Person {>Manaaqger firstName: John
Edge Lags © J lastName: Doe

employer: Google
— KNOWS

LDBC®

Multi-Graph Queries and Joins

CONSTRUCT (c)<-[:worksAt]-(n) e ——
0 #Google 105 #John
MATCH (c:Company) ON company graph, S e ——
(n:Person) ON social graph 2 HSAP 102 #Celine
WHERE c.name = n.employer 3 #HP 102 #Celine

UNION social graph firstName: Celine

| lastName: Mayer
employer: {SAP,HPI}

firstName: Peter
lastName: Smith

firstName: Frank
0 202 103 lastName: Gold
203 employer: HP

OO © V)

[name:HPI] [name:SAP | [name: Google|
Node Labels

Person Man r Combpan firstName: John
O {>Manager (O PAY | |astName: Doe
Edge Labels

employer: Google
— KNOWS

tppc® ————

| name:HP |

Multi-Graph Queries and Joins

CONSTRUCT (c)<-[:worksAt]-(n) e ——
0 #Google 105 #John
MATCH (c:Company) ON company graph, S e ——
(n:Person) ON social graph 2 HSAP 102 #Celine
WHERE c.name = n.employer 3 #HP 102 #Celine

UNION social graph firstName: Celine

| lastName: Mayer
employer: {SAP,HPI}

firstName: Peter
lastName: Smith

firstName: Frank
0 202 103 lastName: Gold
203 employer: HP

10 11
B
13
(o) (e 204 ~(3)
[name:HPI] [name:SAP | |name:Goog|e|' |_name:HP |
Node Labels

Person Man r Combpan firstName: John
O {>Manager (O PAY | |astName: Doe
Edge Labels

employer: Google
— KNOWS

tppc® ———

Graph Construction

 Normalize Data, turn property values into nodes

CONSTRUCT social graph,
(n) -[y:worksAt]->(x:Company {name:=n.employert})
MATCH (n:Person) ON social graph

* The unbound destination node x would create a company
node for each match result (tuple in binding table).

* This Is not what we want: we want only one company per
unigue name ... SO ...

tppc® —————————

Graph Construction = Graph Aggregation

CONSTRUCT social graph,
(n) -[y:worksAt]—->(x GROUP e :Company {name=e})
MATCH (n:Person {employer=e}) ON socilal graph

« Graph aggregation: GROUP clause in each graph pattern
element

* Result: One company node for each unigue value of e in the
binding set Is created

ippc® ——————————————

Creating Graphs from Values

CONSTRUCT social graph,
(n) -[y:worksAt]—->(x GROUP e :Company {name=e})
MATCH (n:Person {employer=e}) ON socilal graph

firstName: Celine
| lastName: Mayer
employer: {SAP,HPI}

firstName: Peter

lastName: Smith

firstName: Frank
0 202 103 lastName: Gold
employer: HP

Node Labels

Person {>Manaaqger firstName: John
Edge Labce)|s < J lastName: Doe

employer: Google
— KNOWS

LDBC®

Creating Graphs from Values

CONSTRUCT social graph,
(n) - [y:worksAt]->(x GROUP

MATCH (n:Person {employer=

e :Company {name=e})

firstName: Celine

| lastName: Mayer

employer: {SAP,HPI}

0

®l

firstName: Peter
lastName: Smith

e}) ON social graph

202

D et

103

firstName: Frank
lastName: Gold
employer HP

| name:HPI | [name:SAP | [name: Go | name: HP |
Node Labels
Person {>Manager Ccompan firstName: John
Edge Lab?.s © ger U pany lastName: Doe
? employer: Google
$ =3 KNOWS
LDBC E

Reachabillity over Paths

» Paths are demarcated with slashes -/ /-
* Regular path expression are demarcated with < >

CONSTRUCT (m)

MATCH (n:Person)-/<:knows*>/->(m:Person)

WHERE n.firstName = 'John' AND n.lastName = 'Doe'
AND (n)-[:1slLocatedIn]->()<-[:1sLocatedIn]- (m)

 |f we return just the node (m), the <: knows*> path
expression semantics is a reachability test

LDBC®

20

Existential Subqueries

CONSTRUCT (m)

MATCH (n:Person)-/<:knows*>/->(m:Person)

WHERE n.firstName = 'John' AND n.lastName = 'Doe'
AND (n)-[:islLocatedIn]->()<-[:1sLocatedIn]- (m)

\ J
!

Syntactical shorthand for existential subquery:

WHERE ..
EXISTS (
CONSTRUCT ()
MATCH (n)-[:1sLocatedIn]->()<-[:1sLocatedIn]- (m)

LDBC®

Storing Paths with @p

« Save the three shortest paths from John Doe towards other
person who lives at his location, reachable over knows edges

CONSTRUCT (n)-/@p:localPeople{distance:=c}/-> (m)

MATCH (n)-/3 SHORTEST p <:knows*> COST c/-> (m)

WHERE n.firstName = 'John' AND n.lastName = 'Doe'
AND (n)-[:1sLocatedIn]->()<-[:1sLocatedIn]- (m)

* @ prefix indicates a stored path: query delivers a graph with paths

« paths have label : 1localPeople and cost as property ‘distance’
« Default cost of a path is its hop-count (length)

ippc® ————————————

More G-CORE..

More features: most advanced GQL so far. Read the paper!

GRAPH VIEW social graphl AS (
CONSTRUCT social graph, (n)-[e]->(m)
SET e.nr messages := COUNT (*)
MATCH (n)-[e:knows]—->(m)
WHERE (n:Person) AND (m:Person)
OPTIONAL (n)<-[cl]-(msgl:Post),
(msgl)-[:reply of]-(msg2),
(msg2:Post)-[c2]-> (m)
WHERE (cl:has creator) AND (c2:has creator)

)
PATH wKnows = (x)-[e:knows]->(y)
WHERE NOT ’“Google' IN y.employer
COST 1 / (1 + e.nr messages)
CONSTRUCT social graphl, (n)-/@p:toWagner/->(m)
MATCH (n:Person)-/p <~wKnows*>/->(m:Person) ON social graphl

LDBC®

23

* VIEWS

LDBC®

GRAPH VIEW

More G-CORE..

24

More G-CORE..

e set-clause In construct

CONSTRUCT social graph, (n)-[e]->(m)
SET e.nr messages := COUNT (*)

LDBC®

25

More G-CORE..

« optional match

OPTIONAL

LDBC®

(n)<-[cl]- (msgl:Post),

(msgl)-[:reply of]-(msg2),
(msg2:Post)-[c2]-> (m)

WHERE (cl:has creator) AND (c2:has creator)

26

More G-CORE..

* regular path expressions (flexible Kleene*)

PATH wKnows = (x)-[e:knows]->(y)
WHERE NOT ’Google' IN y.employer
COST 1 / (1 + e.nr messages)

—/p <~wKnows*>/-> (

LDBC

G-CORE+5SQL

« allow SELECT clause. You form property expressions (X.prop)
on variables (x) from the binding table.

 allow FROM clause. Columns are single-value properties on the
table variable, rest is NULL.

* allow queries that have both SELECT and FROM.
combine with Cartesian Product, as usual.

Result:
« G-CORE+SQL can guery and return both tables and graphs

LDBC®

28

Take-Away

1. G-CORE is a compositional query language for graph data

2. G-CORE can find paths
1+2 = the data model of G-CORE is graphs-with-paths (PPG)

« G-CORE is tractable in data complexity

« G-CORE has many advanced features, e.g.:
— reqular path expressions, views, subqueries = read the paper ©

« G-CORE+SQL work well together

tppc® ———————————

