
gMark: Schema-driven data and workload
generation for graph databases

George Fletcher
TU Eindhoven

Joint work with
G. Bagan (Lyon), A. Bonifati (Lyon), R. Ciucanu (Oxford),

A. Lemay (Lille), and N. Advokaat (Eindhoven)

8th LDBC TUC Meeting
Redwood Shores, California

23 June 2016



Synthetic graph and workload generation with gMark

We present gMark, an open-source framework for generation of
synthetic graphs and workloads.

gMark has been designed to tailor diverse graph data management
scenarios, which are often driven by query workloads.

For example
§ multi-query optimization,
§ mapping discovery and query rewriting in data integration
systems,

§ workload-driven graph database physical design,
and, in general, flexible specification and generation of diverse
workloads addressing particular experimental studies.

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Synthetic graph and workload generation with gMark

We present gMark, an open-source framework for generation of
synthetic graphs and workloads.

gMark has been designed to tailor diverse graph data management
scenarios, which are often driven by query workloads.

For example
§ multi-query optimization,
§ mapping discovery and query rewriting in data integration
systems,

§ workload-driven graph database physical design,
and, in general, flexible specification and generation of diverse
workloads addressing particular experimental studies.

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Synthetic graph and workload generation with gMark

Given a graph schema, gMark
§ generates synthetic instances of the schema (of desired size)
§ generates query workloads with targeted structure and runtime
behavior (which holds for all instances of the schema)

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Why gMark?

We adopt successful aspects of the state of the art

For example, like the Waterloo Diversity Benchmark, gMark is
schema-driven,

§ allowing finely tailored graph instances for specific application
domains; and,

§ allowing tightly controlled generation of query workloads.

and, like the LDBC SNB Interactive, gMark supports focused
stress-testing of query optimization choke-points, through fine
control of query parameters such as selectivities.

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Why gMark?

We adopt successful aspects of the state of the art

For example, like the Waterloo Diversity Benchmark, gMark is
schema-driven,

§ allowing finely tailored graph instances for specific application
domains; and,

§ allowing tightly controlled generation of query workloads.

and, like the LDBC SNB Interactive, gMark supports focused
stress-testing of query optimization choke-points, through fine
control of query parameters such as selectivities.

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Why gMark?

New features of gMark include
§ support for flexible generation of query workloads including
recursive path queries, which are fundamental for graph
analytics;

and,

§ query selectivity estimation solution, in a purely
instance-independent schema-driven fashion.

§ hence, more scalable, more predictable, and easier to
explain/understand.

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Why gMark?

New features of gMark include
§ support for flexible generation of query workloads including
recursive path queries, which are fundamental for graph
analytics; and,

§ query selectivity estimation solution, in a purely
instance-independent schema-driven fashion.

§ hence, more scalable, more predictable, and easier to
explain/understand.

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Overview of the gMark workflow

Graph configuration
‚ Size
‚ Node types
‚ Edge predicates
‚ Schema constraints
‚ Degree distributions

Query workload configuration
‚ Size
‚ Selectivity
‚ Recursion
‚ Shape
‚ Arity

gMark
Graph&query generator

Graph instance file
(CSV)

Query workload file
(UCRPQs as XML)

gMark
Query translator

SPARQL

openCypher

PostgreSQL

Datalog

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Graph generation



gMark graph generation

Graph configuration
‚ Size
‚ Node types
‚ Edge predicates
‚ Schema constraints
‚ Degree distributions

Query workload configuration
‚ Size
‚ Selectivity
‚ Recursion
‚ Shape
‚ Arity

gMark
Graph&query generator

Graph instance file
(CSV)

Query workload file
(UCRPQs as XML)

gMark
Query translator

SPARQL

openCypher

PostgreSQL

Datalog

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Graph configurations

The user can specify in the graph configuration (i.e., graph
schema):

‚ Size: # of nodes
‚ Node types: finite set of node labels

e.g., author, citation, journal

‚ Edge predicates: finite set of edge labels
e.g., authoredBy, referencedBy

‚ Schema constraints: proportion of nodes/edges of given type
e.g., 20% of all nodes are authors

‚ Degree distributions: on the in- and out-degree of edge
predicates (uniform, normal, zipfian)

e.g., the out-distribution of citation authoredBy
ÝÝÝÝÝÝÝÝÑ

author is Gaussian
with parameters µ “ 3, σ “ 1

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Graph configurations

The user can specify in the graph configuration (i.e., graph
schema):

‚ Size: # of nodes
‚ Node types: finite set of node labels

e.g., author, citation, journal

‚ Edge predicates: finite set of edge labels
e.g., authoredBy, referencedBy

‚ Schema constraints: proportion of nodes/edges of given type
e.g., 20% of all nodes are authors

‚ Degree distributions: on the in- and out-degree of edge
predicates (uniform, normal, zipfian)

e.g., the out-distribution of citation authoredBy
ÝÝÝÝÝÝÝÝÑ

author is Gaussian
with parameters µ “ 3, σ “ 1

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Graph configurations

The user can specify in the graph configuration (i.e., graph
schema):

‚ Size: # of nodes
‚ Node types: finite set of node labels

e.g., author, citation, journal

‚ Edge predicates: finite set of edge labels
e.g., authoredBy, referencedBy

‚ Schema constraints: proportion of nodes/edges of given type
e.g., 20% of all nodes are authors

‚ Degree distributions: on the in- and out-degree of edge
predicates (uniform, normal, zipfian)

e.g., the out-distribution of citation authoredBy
ÝÝÝÝÝÝÝÝÑ

author is Gaussian
with parameters µ “ 3, σ “ 1

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Graph configurations: Uniprot schema

Node type Constr.
gene 35%
protein 31%
author 20%
citation 10%
organism 1%
. . . . . .

Edge predicate Constr.
authoredBy 64%
encodedOn 6%
referencedBy 3%
occursIn 2%
. . . . . .

Node types Edge predicates

source type predicate
ÝÝÝÝÝÝÑ

target type In-distr. Out-distr.

protein encodedOn
ÝÝÝÝÝÝÝÑ

gene Zipfian Gaussian
protein occursIn

ÝÝÝÝÝÝÑ
organism Zipfian Uniform

protein referencedBy
ÝÝÝÝÝÝÝÝÝÝÑ

citation Zipfian Gaussian

citation authoredBy
ÝÝÝÝÝÝÝÝÑ

author Zipfian Gaussian

. . . . . . . . .
In- and out-degree distributions

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Schema-driven graph generation

We have established the intractability of the generation problem

Theorem
Given a graph configuration G , deciding whether or not there exists
a graph instance satisfying G is NP-complete.

Hence, gMark follows a ‘best-effort’ strategy in instance generation,
i.e., it attempts to achieve the exact values of the input parameters
and relaxes them whenever this is not possible.

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Schema-driven graph generation

We have established the intractability of the generation problem

Theorem
Given a graph configuration G , deciding whether or not there exists
a graph instance satisfying G is NP-complete.

Hence, gMark follows a ‘best-effort’ strategy in instance generation,
i.e., it attempts to achieve the exact values of the input parameters
and relaxes them whenever this is not possible.

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Schema-driven graph generation

We have adapted the scenarios of several popular use cases into
meaningful gMark configurations, while also adding new gMark
features:

§ Bib: our default bibliographical use-case
§ LSN: LDBC social network benchmark
§ WD: WatDiv e-commerce benchmark
§ SP: SP2Bench DBLP benchmark

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Scalability of gMark graph generation

100K 1M 10M 100M
Bib 0m0.057s 0m0.638s 0m8.344s 1m28.725s
LSN 0m0.225s 0m1.451s 0m23.018s 3m11.318s
WD 0m2.163s 0m25.032s 4m10.988s 113m31.078s
SP 0m0.638s 0m7.048s 1m28.831s 15m23.542s

Graph generation times, with varying graph sizes (# nodes)

Generation time depends heavily on density of instances (e.g., WD
has 100x number of edges than Bib)

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Query workload generation



gMark query generation

Graph configuration
‚ Size
‚ Node types
‚ Edge predicates
‚ Schema constraints
‚ Degree distributions

Query workload configuration
‚ Size
‚ Selectivity
‚ Recursion
‚ Shape
‚ Arity

gMark
Graph&query generator

Graph instance file
(CSV)

Query workload file
(UCRPQs as XML)

gMark
Query translator

SPARQL

openCypher

PostgreSQL

Datalog

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


A query language for graphs

UCRPQ: Unions of Conjunctions of Regular Path Queries
– Core constructs of the W3C’s SPARQL 1.1, Oracle’s PGQL, and
and Neo4j’s openCypher
– Well understood theoretical properties (e.g., polynomial data
complexity)

UCRPQ includes recursive queries (via the Kleene star ˚), with
applications in social networks, bioinformatics, etc.

gMark generates UCRPQÑ the first schema-driven tool to support
recursive queries and their generation in concrete syntaxes.

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


A query language for graphs

UCRPQ: Unions of Conjunctions of Regular Path Queries
– Core constructs of the W3C’s SPARQL 1.1, Oracle’s PGQL, and
and Neo4j’s openCypher
– Well understood theoretical properties (e.g., polynomial data
complexity)

UCRPQ includes recursive queries (via the Kleene star ˚), with
applications in social networks, bioinformatics, etc.

gMark generates UCRPQÑ the first schema-driven tool to support
recursive queries and their generation in concrete syntaxes.

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


A query language for graphs

Example of UCRPQ

for each researcher, select all of the biological entities
(i.e., genes and organisms) relevant to proteins studied in
papers authored by people in the researcher’s
coauthorship network

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


A query language for graphs

Example of UCRPQ

for each researcher, select all of the biological entities
(i.e., genes and organisms) relevant to proteins studied in
papers authored by people in the researcher’s
coauthorship network

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


A query language for graphs

Example of UCRPQ

for each researcher, select all of the biological entities
(i.e., genes and organisms) relevant to proteins studied in
papers authored by people in the researcher’s
coauthorship network

p?x , ?zq Ð p?x , pa´ ¨aq˚, ?yq, p?y , pa´ ¨r´ ¨e` a´ ¨r´ ¨oq, ?zq

(a=authoredBy, r=referencedBy, e=encodedOn, o=occursIn)

#rules 1
#conjuncts 2
#disjuncts 1, 2
path lengh 2, 3, 3

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


A query language for graphs

Example of UCRPQ

for each researcher, select all of the biological entities
(i.e., genes and organisms) relevant to proteins studied in
papers authored by people in the researcher’s
coauthorship network

p?x , ?zq Ð p?x , pa´ ¨aq˚, ?yq, p?y , pa´ ¨r´ ¨e` a´ ¨r´ ¨oq, ?zq

(a=authoredBy, r=referencedBy, e=encodedOn, o=occursIn)

#rules 1
#conjuncts 2
#disjuncts 1, 2
path lengh 2, 3, 3

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Schema-driven workload generation

The user can specify in the query workload configuration:

‚ Size: #queries, #conjuncts/#disjuncts/path length per query

‚ Selectivity: constant, linear, quadratic.

‚ Recursion: probability to generate Kleene star above a conjunct.

‚ Shape: chain, star, cycle, star-chain.

‚ Arity: arbitrary (including 0 i.e., Boolean).

The graph configuration is also input to the query generator.

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Schema-driven workload generation

The user can specify in the query workload configuration:

‚ Size: #queries, #conjuncts/#disjuncts/path length per query

‚ Selectivity: constant, linear, quadratic.

‚ Recursion: probability to generate Kleene star above a conjunct.

‚ Shape: chain, star, cycle, star-chain.

‚ Arity: arbitrary (including 0 i.e., Boolean).

The graph configuration is also input to the query generator.

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Schema-driven workload generation

Approach
1. Prepare “schema” and “selectivity” graphs

2. For each query to be generated:
2.1 Generate query skeleton
2.2 Assign selectivity class to each predicate
2.3 Instantiate each predicate

Assigning selectivities required us to develop a non-trivial
infrastructure for instance-independent reasoning over query
behavior, based on a Selectivity Algebra.

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Schema-driven workload generation

Approach
1. Prepare “schema” and “selectivity” graphs
2. For each query to be generated:

2.1 Generate query skeleton
2.2 Assign selectivity class to each predicate
2.3 Instantiate each predicate

Assigning selectivities required us to develop a non-trivial
infrastructure for instance-independent reasoning over query
behavior, based on a Selectivity Algebra.

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Schema-driven workload generation

Approach
1. Prepare “schema” and “selectivity” graphs
2. For each query to be generated:

2.1 Generate query skeleton
2.2 Assign selectivity class to each predicate
2.3 Instantiate each predicate

Assigning selectivities required us to develop a non-trivial
infrastructure for instance-independent reasoning over query
behavior, based on a Selectivity Algebra.

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Selectivity estimation quality of gMark

‚ Given a binary query Q and a graph G , we assume that
|QpG q| “ Op|nodespG q|αq.
‚ α is the selectivity value (0–constant, 1–linear, 2–quadratic).

‚ Experiments confirmed the assumption and the estimation quality.

Constant Linear Quadratic
LSN-Len 0.200˘0.417 1.189˘0.261 2.032˘0.059
LSN-Dis 0.182˘0.364 1.325˘0.318 2.046˘0.074
LSN-Con 0.190˘0.391 1.244˘0.326 2.017˘0.032
LSN-Rec 0.196˘0.409 1.090˘0.492 1.564˘0.889
Bib-Len 0.003˘0.010 0.921˘0.122 1.405˘0.337
Bib-Dis 0.000˘0.000 0.995˘0.012 1.607˘0.261
Bib-Con 0.023˘0.029 0.986˘0.112 1.409˘0.296
Bib-Rec 0.100˘0.316 0.982˘0.073 1.493˘0.335
WD-Len 0.016˘0.044 1.427˘0.392 2.004˘0.022
WD-Dis 0.009˘0.022 1.412˘0.380 1.999˘0.014
WD-Con -0.010˘0.026 1.540˘0.495 1.750˘0.708
WD-Rec 0.587˘0.830 - 1.976˘0.012
SP 0.074˘0.130 1.064˘0.034 2.034˘0.295

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Selectivity estimation quality of gMark

‚ Given a binary query Q and a graph G , we assume that
|QpG q| “ Op|nodespG q|αq.
‚ α is the selectivity value (0–constant, 1–linear, 2–quadratic).
‚ Experiments confirmed the assumption and the estimation quality.

Constant Linear Quadratic
LSN-Len 0.200˘0.417 1.189˘0.261 2.032˘0.059
LSN-Dis 0.182˘0.364 1.325˘0.318 2.046˘0.074
LSN-Con 0.190˘0.391 1.244˘0.326 2.017˘0.032
LSN-Rec 0.196˘0.409 1.090˘0.492 1.564˘0.889
Bib-Len 0.003˘0.010 0.921˘0.122 1.405˘0.337
Bib-Dis 0.000˘0.000 0.995˘0.012 1.607˘0.261
Bib-Con 0.023˘0.029 0.986˘0.112 1.409˘0.296
Bib-Rec 0.100˘0.316 0.982˘0.073 1.493˘0.335
WD-Len 0.016˘0.044 1.427˘0.392 2.004˘0.022
WD-Dis 0.009˘0.022 1.412˘0.380 1.999˘0.014
WD-Con -0.010˘0.026 1.540˘0.495 1.750˘0.708
WD-Rec 0.587˘0.830 - 1.976˘0.012
SP 0.074˘0.130 1.064˘0.034 2.034˘0.295

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


gMark query translator

Graph configuration
‚ Size
‚ Node types
‚ Edge predicates
‚ Schema constraints
‚ Degree distributions

Query workload configuration
‚ Size
‚ Selectivity
‚ Recursion
‚ Shape
‚ Arity

gMark
Graph&query generator

Graph instance file
(CSV)

Query workload file
(UCRPQs as XML)

gMark
Query translator

SPARQL

openCypher

PostgreSQL

Datalog

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Query translation

UCRPQ: p?x , ?zq Ð p?x , pa´ ¨aq˚, ?yq, p?y , pa´ ¨r´ ¨e` a´ ¨r´ ¨oq, ?zq

SPARQL openCypher

PREFIX : <http://example.org/gmark/>
SELECT DISTINCT ?x ?z
WHERE { ?x (^:a/:a)* ?y .
?y ((^:a/^:r/:e)|(^:a/^:r/:o)) ?z .}

MATCH (x)<-[:a]-()-[:a]->(y),
(y)<-[:a]-()<-[:r]-()-[:e]->(z)
RETURN DISTINCT x, z
UNION
MATCH (x)<-[:a]-()-[:a]->(y),
(y)<-[:a]-()<-[:r]-()-[:o]->(z)
RETURN DISTINCT x, z;

Datalog SQL
g0(x,y)<- edge(x1,a,x0),edge(x1,a,x2),

x=x0,y=x2.
g0(x,y)<- g0(x,z),g0(z,y).
g1(x,y)<- edge(x1,a,x0),edge(x2,r,x1),

edge(x2,e,x3),x=x0,y=x3.
g1(x,y)<- edge(x1,a,x0),edge(x2,r,x1),

edge(x2,o,x3),x=x0,y=x3.
query(x,z)<- g0(x,y),g1(y,z).

WITH RECURSIVE c0(src, trg) AS (
SELECT edge.src, edge.src FROM edge
UNION
SELECT edge.trg, edge.trg FROM edge
UNION
SELECT s0.src, s0.trg
FROM (SELECT trg as src, src as trg,

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Query translation

UCRPQ: p?x , ?zq Ð p?x , pa´ ¨aq˚, ?yq, p?y , pa´ ¨r´ ¨e` a´ ¨r´ ¨oq, ?zq

SPARQL openCypher

PREFIX : <http://example.org/gmark/>
SELECT DISTINCT ?x ?z
WHERE { ?x (^:a/:a)* ?y .
?y ((^:a/^:r/:e)|(^:a/^:r/:o)) ?z .}

MATCH (x)<-[:a]-()-[:a]->(y),
(y)<-[:a]-()<-[:r]-()-[:e]->(z)
RETURN DISTINCT x, z
UNION
MATCH (x)<-[:a]-()-[:a]->(y),
(y)<-[:a]-()<-[:r]-()-[:o]->(z)
RETURN DISTINCT x, z;

Datalog SQL
g0(x,y)<- edge(x1,a,x0),edge(x1,a,x2),

x=x0,y=x2.
g0(x,y)<- g0(x,z),g0(z,y).
g1(x,y)<- edge(x1,a,x0),edge(x2,r,x1),

edge(x2,e,x3),x=x0,y=x3.
g1(x,y)<- edge(x1,a,x0),edge(x2,r,x1),

edge(x2,o,x3),x=x0,y=x3.
query(x,z)<- g0(x,y),g1(y,z).

WITH RECURSIVE c0(src, trg) AS (
SELECT edge.src, edge.src FROM edge
UNION
SELECT edge.trg, edge.trg FROM edge
UNION
SELECT s0.src, s0.trg
FROM (SELECT trg as src, src as trg,

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Scalability of gMark workload generation

On my laptop, gMark easily generates workloads of one thousand
queries for Bib in „ 0.3s; LSN and SP in „ 1.5s; and for the richer
WD scenario in „ 10s.

Query translation of the thousand queries into all four supported
syntaxes for each of the four scenarios required „ 0.1s.

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Scalability on recursive query workloads

Example Application. We performed an extensive performance
study of four state-of-the-art systems under the four use-case
schemas.

Our main finding was that performance on queries containing
recursive path navigation (i.e., RPQs) was typically impractical

§ indicates the need for further study of the engineering of this
basic class of graph queries

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Wrap Up



Recap

Novel contributions of gMark

§ schema-driven graph and query-workload generation, featuring
instance-independent selectivity estimation;

§ finely controlled query workload-centered approach
§ versus query-centered approaches – nb. both are valid and
needed!

§ discovery of the performance difficulties of existing graph
DBMS’s on evaluating a basic class of graph queries

§ Regular Path Queries

Come see us at our VLDB 2016 demo!

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Recap

Novel contributions of gMark
§ schema-driven graph and query-workload generation, featuring
instance-independent selectivity estimation;

§ finely controlled query workload-centered approach
§ versus query-centered approaches – nb. both are valid and
needed!

§ discovery of the performance difficulties of existing graph
DBMS’s on evaluating a basic class of graph queries

§ Regular Path Queries

Come see us at our VLDB 2016 demo!

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Recap

Novel contributions of gMark
§ schema-driven graph and query-workload generation, featuring
instance-independent selectivity estimation;

§ finely controlled query workload-centered approach
§ versus query-centered approaches – nb. both are valid and
needed!

§ discovery of the performance difficulties of existing graph
DBMS’s on evaluating a basic class of graph queries

§ Regular Path Queries

Come see us at our VLDB 2016 demo!

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Recap

Novel contributions of gMark
§ schema-driven graph and query-workload generation, featuring
instance-independent selectivity estimation;

§ finely controlled query workload-centered approach
§ versus query-centered approaches – nb. both are valid and
needed!

§ discovery of the performance difficulties of existing graph
DBMS’s on evaluating a basic class of graph queries

§ Regular Path Queries

Come see us at our VLDB 2016 demo!

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Recap

Novel contributions of gMark
§ schema-driven graph and query-workload generation, featuring
instance-independent selectivity estimation;

§ finely controlled query workload-centered approach
§ versus query-centered approaches – nb. both are valid and
needed!

§ discovery of the performance difficulties of existing graph
DBMS’s on evaluating a basic class of graph queries

§ Regular Path Queries

Come see us at our VLDB 2016 demo!

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Looking ahead to gMark v2.0

To-do/wishlist.
§ richer queries

§ support of constants in queries
§ additional query shapes
§ aggregation for BI workloads
§ extensions of selectivity estimation to higher arity queries,

§ richer schemas
§ configuration parameter completion,
§ schema constructs for correlated structure,
§ class hierarchies

§ align our work with LDBC activites?

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Looking ahead to gMark v2.0

To-do/wishlist.
§ richer queries

§ support of constants in queries
§ additional query shapes
§ aggregation for BI workloads
§ extensions of selectivity estimation to higher arity queries,

§ richer schemas
§ configuration parameter completion,
§ schema constructs for correlated structure,
§ class hierarchies

§ align our work with LDBC activites?

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


Looking ahead to gMark v2.0

To-do/wishlist.
§ richer queries

§ support of constants in queries
§ additional query shapes
§ aggregation for BI workloads
§ extensions of selectivity estimation to higher arity queries,

§ richer schemas
§ configuration parameter completion,
§ schema constructs for correlated structure,
§ class hierarchies

§ align our work with LDBC activites?

https://github.com/graphMark/gmark George Fletcher, TU Eindhoven

https://github.com/graphMark/gmark


gMark: Schema-driven data and workload
generation for graph databases

George Fletcher
TU Eindhoven, Netherlands

Joint work with
G. Bagan (Lyon), A. Bonifati (Lyon), R. Ciucanu (Oxford),

A. Lemay (Lille), and N. Advokaat (Eindhoven)

https://github.com/graphMark/gmark

Thank you!

https://github.com/graphMark/gmark

