Darwini: Generating realistic largescale social graphs

Sergey Edunov Facebook

Facebook

Avery Ching Facebook

Dionysios Logothetis

Maja Kabiljo Facebook

Cheng Wang University of Houston

1) Capacity planning

2) Fair evaluation

Benchmark Graphs

Clueweb 09	
witter research	
Friendster	
Yahoo! web	

Benchmark to Social Graphs

Clueweb 09

Twitter research

Friendster

Yahoo! web

2015 Twitter Approx.*

2015 Facebook Approx.*

70x larger than benchmarks!

125000

250000

375000

50000

Existing benchmarks

graph500.org

- Kronecker graph
- Breadth First Search (BFS)

Not applicable @ FB

Algorithms

Friend of Friends counts PageRank Community detection Graph partitioning K-Core decomposition Eigen value decomposition Local clustering coefficient Personalized Page Rank

Importance of fidelity

BTER: http://arxiv.org/abs/1302.6636

BTER Kronecker BTER Kronecker

EIG BP

Known Graph Generation Algorithms

Erdos Renyi

Kronecker

Random Walk

LDBC

Requirements

- 1. Match the graph size. If it doesn't scale, it doesn't work
- 2. Match degree distribution
- 3. Match joint degree and clustering coefficient (ideally dk-3) distribution)
- 4. Match high level application metrics

Existing algorithms vs requirements

Darwini*

- 1. Built on Apache Giraph, scales to hundreds machines
- 2. Capable of generating graphs with trillions of edges
- 3. Generates graphs with specified joint degree-clustering coefficient distribution
- 4. Shows better accuracy in performance benchmarking against the original graph

*Caerostris darwini - is an orb-weaver spider that produces one of the largest known orb webs, web size ranged from 900–28000 square centimeters

Applying Darwin to the real graph

Darwini step by step

Create vertices Assign expected degree and clustering coefficient

Group vertices that expect same number of triangles together

Create random edges within each group

> Create random edges between groups

Darwini: create vertices

Create N vertices and draw degree and clustering coefficient from the joint degreclustering coefficient distribution

Darwini: group vertices into buckets

Limit the size of each bucket, so that we don't exceed expected degree $n \le \min_{i \in B} (d_i) + 1 = n_{B,max}$

Darwini: create triangles

Create random edges between each pair of vertices in each bucket with probability

$$P_e = \sqrt[3]{\frac{c_i d_i (d_i - 1)}{(n - 1)(n - 2)}}$$

After this step, we will have enough triangles to get right clustering coefficient

Darwini: create random edges between buckets

Hard to find counterparts for high degree vertices

For each vertex, that doesn't have enough edges yet, pick random vertex and create an edge if another vertex doesn't have enough edges either.

Adding random edges in Apache Giraph

- 1. Not all information readily available on every machine
- 2. Execution must be parallel
- 3. Exact match is not always necessary
- degree distribution

4. Purely random connection is not enough to make realistic joint

Darwini: create edges for high-degree nodes

1. Group vertices into ever increasing groups.

2. For each pair of vertices within each group, connect them with probability

$$p = \frac{|d[i] - d[j]|}{d[i] + d[j]}$$

Results: graph quality

Average Distance

Average Distance

Results: joint degree distribution

Results: page rank

Results: K-Core decomposition

Original Graph

Darwini

BTER

Kronecker

Darwini performance

Trillion edges graph in 7 hours

Results: fidelity

