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Research focuses

« BigDataBench Suite (@ict.ac)
— http://prof.ict.ac.cn

« Benchmarking transaction processing in
NewSQL systems (@ecnu)
— SecKillBench

e Benc
e Benc

nmar

nmar

<ing Big Data systems (@rmu)

s for graph data (@ecnu)

— Social media, knowledge graphs, ...
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Knowledge graphs

lnterest over time v News headlines v/ Forecast
knowledge knowledge
semantic base graph
web
linked data
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. YAGO

Some KG's

10M entities in 350K classes
120M facts for 100 relations
100 languages

95% accuracy .

. DBPedia

4M entities in 250 classes
500M facts for 6000 properties .
live updates

. Kosmix
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6.5M concepts, 6.7M concept
Instances,

165M relationship instances
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Freebase
— 40M entities in 15000 topics
— 1B facts for4000 properties

— core of Google Knowledge
Graph

Google Knowledge Graph
—  600M entities in 15000 topics
— 20B facts

Probase
— 2.7 million+ concepts

And many domain/application-
specific knowledge graphs



A natural question

« Knowledge graph can serve as the backbone
of many Web-scale applications, such as
search engine, question answering, text
understanding etc.

« How to effectively and efficiently manage a
large-scale knowledge graph?

— MySQL, Oracle, Neo4j, TITAN, Trinity, or other
triple stores???
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Social networks vs. Knowledge graphs

« Though there are some benchmarks for social
networks exist
— Facebook LinkBench, LDBC SNB, BSMA, ...
« Knowledge graph is different with social network
— More semantic labels in both entities and relations
— Topic or domain sensitive

— Contains various kinds of knowledge
— Hard to define a unified schema
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Why study their statistical characteristics?

« To better understand knowledge graphs

« To help the selection of seeding data sets in
benchmarks

« To help the development of data generators
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Characteristics of large-scale graphs

« Previous research works on analyzing structural

properties of large scale graphs, e.q.

— [Broder et al. Comput. Netw. 2000] studied the web
structure as a graph via a series of metrics, e.g degree,
diameter, component.

— [Kumar et al. KDD, 2006] studied the dynamic social
network’s structure properties, e.g. degree, hop etc.

— [Boccaletti et al. Phys. Rep. 2006] surveyed the studies of
the structure and dynamics of complex network.
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Real-life knowledge graphs

* YAGO?Z2

— A huge semantic knowledge graph based on WordNet,
Wikipedia and GeoNames

— 10+ million entities, 120+ million facts

« Separate the YAGO2 into three sub-graphs
— YagoTax: Taxonomy tree of YAGO2

— YagoFact: Facts in YAGO2

— YagoWiki: Hyperlink relations in YAGO2 based on
Wikipedia
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Real-life knowledge graphs

e WordNet

— A lexical network for the English language.

— Synonym set as node and semantic relation as edge.
— 98,000 entities, 154,000 relationships

« DBpedia
— A multi-language knowledge base extracted from
Wikipedia info-boxes
— English version of DBPedia
— 4.58 million things and 2,795 different kinds of properties
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Real-life knowledge graphs

« Enterprise Knowledge Graph (EKG)

6/22/2016

Describes an enterprise relationships in Chinese

Extracted from reports from enterprises in Shanghai Stock
Market

Used for credit and risk analysis in financial companies
A domain specific knowledge graph

Seven kinds of relationships between two entities

« Assignment, hold, subcompany, changename, manager,
cooperate, merge

51,853 entities and 430,973 relationships.
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Plus two social networks

« SNRand
— 0.2 million randomly selected users

— 5 million fellowship relations between users
« SNRank
— 0.2 million most active users.
— 36+ million fellowship relations between users
« The raw data is collected from a famous social
media platform named Sina Weibo in China
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Statistical characteristics

Statistics |Description
#Nodes |Number of nodes.
#FEdges |Number of edges.
#Density |The sparsity of a graph, which is formulated as D(G) = Wll%h
#ZIDNodes |Number of nodes with zero in-degree.
#ZODNodes |Number of nodes with zero out-degree.
#BiDirEdges Number of bidirectional edges.
4CTriads Number of closed triangles. A closed triangle is a trio of vertices
each of which is connected to both the other two vertices.
40 Triads Number of open triangles. An open triangle is a trio of vertices
each of which is connected to at least one of the other two vertices.
Average clustering coefficient. The average clustering coefficient
AvgCC e a graph is defined as C = 3";&;’?;;3‘;“ [19].
FMWee |Fraction of nodes in max weakly connected component.
FMScc |Fraction of nodes in max strongly connected component.
AppFdiam |Approximately full diameter.
The 90 percentile effective diameter, measures minimum number
90%EffDiam |of hops in which 90% of all connected pairs of nodes in a graph

are reachable.
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Four kinds of distributions

Distribution of degrees
— In-degree and out-degree

—  Power-law distribution

Distribution of hops

— Reflects the connectivity cost inside a graph

Distribution of connected components

— Strongly and weakly connected components
— Reflects the connectivity of a graph

Distribution of clustering coefficients

— Measures the nodes’ tendency to cluster together
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In-degrees and out-degrees
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In-degree Out-degree

All the in/out-degree distributions exhibit the power-law (or piece-wise power-
law), except for some initial segments that deviate the power-law.
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Size of connected components
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Both the strongly and weakly connected component distributions of knowledge
graphs exhibit the power-law distribution in general. While the social networks
are nearly in a whole strongly connected component.
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 Social networks are

“small worlds”

« Taxonomy's
diameter is large
(tree-alike)
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smaller the diameter
IS

25
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Max hops
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Max hops with the increasing edge scale
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Cluster coefficient

« Taxonomy and social
networks are
different

i« All other KG's are of
power-law
el S distributions
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Cluster coefficient

« Taxonomy and social
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Node degrees of different parts in EKG
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Size of connected components of
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Few connected components are much larger than others
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Different parts in EKG
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Conclusions and discussions

« KG's are differentto SN's
— Taxonomy/ontology + fact

« Following different statistical distributions

— KG's are labeled

« Different subgraphs are of different sizes and characteristics
« Both triple stores and relational databases have reasons to be
used

— The key is to avoid joins over power-law distributed data

Wenliang Cheng, Chengyu Wang, Bing Xiao, Weining Qian, Aoying Zhou:On
Statistical Characteristics of Real-Life Knowledge Graphs. BPOE 2015: 37-49
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Statistical characteristics

Statistics |YagoTax|YagoFact|YagoWiki|DBpedia|WordNet| EKG |SNRand|SNRank
#Nodes [4.49e+5 | 2.14e+6 | 2.85e+6 |4.26e+6 | 9.79e+4 |9.45e+3|2.00e+5 (2.02e+5
#Edges |4.51e+5]| 3.99e+6 | 3.80e+7 | 1.44e+7 | 1.54e+5 [1.21e+4|5.45e+6 |3.68e+7
Density | 2.02e-6 | 1.75e-6 | 9.38e-6 | 1.59e-6 | 3.21e-5 | 2.72e-4 | 2.72e-4 |1.80e-3
%ZIDNs | 0.958 0.706 0.184 0.461 0.056 | 0.240 | 0.128 |0.003
%ZODNs | 5.78¢-5 | 0.215 0.010 0.198 0.492 0.515 | 0.010 [0.011
%BDEdges| 0.000 0.019 2.940 0.129 0.487 | 0.498 | 6.984 |81.29
%CTriads | 0.000 0.365 26.02 2.115 0.043 | 0.093 | 59.92 |2,167
%OTriads | 2,982 93.62 616.9 371.4 30.66 14.82 [5.94e+4|2.26e+5
AvgCC 0.000 0.095 0.331 0.325 0.032 0.029 | 0.105 [0.067
FMWcc | 0.998 0.953 0.999 0.989 0.988 | 0.655 | 1.000 |1.000
FMScc 0.000 0.006 0.778 0.051 0.204 | 0.162 | 0.854 |0.985
AppFdiam| 11.00 15.00 14.00 40.00 25.00 18.00 | 15.00 |7.000
90%EDiam| 6.740 5.340 3.830 5.920 | 10.800 | 6.770 | 5.090 |3.350
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