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Introduction 
Ø Subgraph Matching 

Given a query q and a large data graph G, the problem is  
 to extract all subgraph isomorphic embeddings of  q in G. 
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Introduction 
Ø Applications 

§  Protein interaction network analysis 
§  Social network analysis 
§  Chemical compound search 
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Hardness Result 
Ø  Subgraph Isomorphism Testing 

Ø  Decide whether there is a subgraph of G that is isomophic to q 
Ø  NP-complete  

Ø  Enumerating all subgraph embeddings is harder 
Ø  This is the problem we study 
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Existing Work 
Ø  Ullmann’s algorithm [J.ACM’76]  

§  Iteratively maps query vertices one by one, following the input order of 
query vertices. 

§  Example: Input order could be   (u1, u2, u3, u4, u5, u6) 
 
§  Cartesian Products between vertices’ candidates. 

Ø  VF2 [IEEE Trans’04] and QuickSI [VLDB’08] 

Ø  TurboISO [SIGMOD’13]  

Ø  BoostISO [VLDB’15] 
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Existing Work 
Ø  Ullmann’s algorithm [J.ACM’76]  
Ø  VF2 [IEEE Trans’04] and QuickSI [VLDB’08] 

§  Independently propose to enforce connectivity of the matching order to 
reduce Cartesian products caused by disconnected query vertices. 

§  QuickSI further removes false-positive candidates by first  
     processing infrequent query vertices and edges. 
 

§  Connected order could be (u5, u1, u2, u3, u6, u4) 

Ø  TurboISO [SIGMOD’13]  

Ø  BoostISO [VLDB’15] 
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Existing Work 
Ø  Ullmann’s algorithm [J.ACM’76]  

Ø  VF2 [IEEE Trans’04] and QuickSI [VLDB’08] 

Ø  TurboISO [SIGMOD’13]  
§  Merge together query vertices with the same neighborhood. 

§  Reduces Cartesian product caused by similar query vertices 
§  Build a data structure online to facilitate the search process. 

 
Ø  BoostISO [VLDB’15] 
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Existing Work 
Ø  Ullmann’s algorithm [J.ACM’76]  

Ø  VF2 [IEEE Trans’04] and QuickSI [VLDB’08] 

Ø  TurboISO [SIGMOD’13]  

Ø  BoostISO [VLDB’15] 
§  Compress a data graph G by merging together similar vertices in G. 

§  Develop query-dependent relationship between vertices in G. 

 
  

It is still challenging for matching large query graphs. 
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Challenges of Subgraph Matching 

Matching order of QuickSI and TurboISO : (u1，u2，u3，u4，u5，u6). 

Challenge I: Redundant Cartesian Products by Dissimilar Vertices. 

Cartesian products: 
Ø  100 mappings (v0，v2， v1000+i， v2100 +i) (3 ≤ i ≤ 102) of (u1，u2，u3，u4) 
Ø  1000 mappings (v0, vj) (3 ≤ j ≤ 1002) of (u1，u5) 

105 - 100 partial mappings 
are redundant. 

(u1，u2，u5，u3，u4，u6) 
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Challenges of Subgraph Matching  

Our Solution : Postpone Cartesian products. 

Ø Decompose q into a dense subgraph and a forest, and 
process the dense subgraph first. 

Challenge I: Redundant Cartesian Products by Dissimilar Vertices. 
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Challenges of Subgraph Matching 
Challenge II: Exponential size of the path-based data structure in 
TurboISO. 

Ø  TurboISO  builds a data structure that materializes all embeddings of 
query paths in a data graph 

1.  for generating matching order based on estimation of #candidates. 
2.  for enumerating subgraph isomorphic embeddings. 

Ø Worst-case space complexity: O(|V(G)||v(q)-1|). 
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Challenges of Subgraph Matching 
Challenge II: Exponential size of the path-based data structure in 
TurboISO. 

Our Solution: Polynomial-size data structure, compact path-index (CPI) . 
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Our Approach 
 
Ø CFL-Match 

v A Core-First based Framework 

v Compact Path-Index (CPI) based Matching 
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CFL-Match 
Ø  A Core-First based Framework 

§  Core-Forest Decomposition 
Compute the minimal connected subgraph containing all non-tree edges of 
q regarding any spanning tree. 

§  Forest-Leaf Decomposition 
 Compute the set of leaf vertices by rooting each tree at its connection vertex. 
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CFL-Match 
Ø  A Core-First based Framework 

1)  Core-Forest-Leaf Decomposition 
2)  CPI Construction 
3)  Mapping Extraction 

i.  Core-Match 
ii.  Forest-Match 
iii.  Leaf-Match 

•  Categorize leaf nodes according to label 
•  Perform combination instead of enumeration among different labels. 
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Auxiliary Data Structure 
Ø  Compact Path-Index (CPI) 

§  Compactly store candidate embeddings of query spanning trees. 
§  Serve for computing an effective matching order. 

Ø  CPI Structure 
§  Candidate sets 

 Each query node u has a candidate set u.C. 
§  Edge sets 

This is an edge between v ∈ u.C and v’ ∈ u’.C for adjacent query 
nodes u and u’ in CPI if and only if (v, v’) exists in G. 

 



21 

Auxiliary Data Structure 
Ø  Compact Path-Index (CPI) 

§  Compactly store candidate embeddings of query spanning trees. 
§  Serve for computing an effective matching order. 

Ø  CPI Structure 
§  Example  
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Auxiliary Data Structure 
Ø  Soundness of CPI 

 For every query node u in CPI, if there is an embedding of q in G that 
maps u to v, then v must be in u.C. 

 
      Given a sound CPI, all embeddings of q in G can be computed by 
traversing only the CPI while G is only probed for non-tree edge 
checkings. 
 
Ø  It is NP-hard to build a minimum sound CPI. 

Ø  Aim to build a small and sound CPI. 
 

Theorem 
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CPI Construction 
Ø  General Idea 

§  A heuristic approach: 
1) u.C is initialized to contain all vertices in G with the same label as u 
2) A data vertex v is pruned from u.C ,  
               if ∃u’ ∈ Nq(u), such that ∄v’ ∈ NG(v) & v’ ∈ u’.C. 

 
 

Ø  A two-phase CPI construction process: 
§  Top-down construction, bottom-up refinement 
§  Exploit the pruning power of both directions of every query edge. 
§  Construct CPI of O(|E(G)| X |V(q)|) size in O(|E(G)| X |E(q)|) time 
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CPI-based Match 
Ø  Compute path-based matching order using CPI 

Ø  Estimate #matches for each root-to-leaf path in CPI 
Ø  Add paths to the matching order in increasing order regarding #matches 

Ø  Traverse CPI to find mappings for query vertices 
Ø  Only probe G for non-tree edge validation 

 

(u0，u1，u4，u3，u2, u5, u6, u7, u8, u9, u10) 



25 

Experiment 
Ø  All algorithms are implemented in C++ and run on a machine with 

3.2G CPU and 8G RAM. 
Ø  Datasets 

§  Real Graphs 

 
§  Synthetic Graphs 

§  Randomly generate graphs with 100k vertices with average degree 8 and 50 
distinct labels. 

Ø  Query Graphs 
§  Randomly generate by random walk 
§  Two Categories:  

S: sparse (average degree ≤ 3).  N: non-sparse (average degree > 3). 

|V| |E| |∑| Degree 
HPRD 9460 37081 307 7.8 
Yeast 3112 12519 71 8.1 

Human 4674 86282 44 36.9 
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Comparing with Existing Techniques 

Varying the size of query graph  |V(q)| 

 

CFL-Match: our proposed algorithm 
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Effectiveness of Our New Framework 

Evaluating our framework 

Ø  Match: subgraph matching algorithm with CPI but no query 
decomposition. 

Ø  CF-Match: only core-forest decomposition with CPI. 
Ø  CFL-Match: our best algorithm. 
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Scalability Testing 
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Conclusion 
 Ø  We proposed a core-first framework for subgraph matching by 

postponing Cartesian products 

Ø  We proposed a new polynomial-size path-based auxiliary data 
structure CPI, and proposed efficient and effective technique for 
constructing a small CPI 

Ø  We proposed efficient algorithms for subgraph matching based on 
the core-first framework and the CPI 

Ø  Extensive empirical studies on real and synthetic graphs 
demonstrate that our technique outperforms the state-of-the-art 
algorithms. 



30 

Thank you! 
Questions? 

Lijun.Chang@unsw.edu.au 


