
Computer Science and Engineering

Lijun Chang

Efficient Subgraph Matching by
Postponing Cartesian Products

Lijun.Chang@unsw.edu.au
The University of New South Wales, Australia

2

Outline
Ø  Introduction & Existing Works

Ø Challenges of Subgraph Matching

Ø Our Approach: CFL-Match

v Core-First based Framework
v Compact Path Index (CPI) based Matching

Ø Experiment

Ø Conclusion

3

Introduction
Ø Subgraph Matching

Given a query q and a large data graph G, the problem is
 to extract all subgraph isomorphic embeddings of q in G.

4

Introduction
Ø Subgraph Matching

Given a query q and a large data graph G, the problem is
 to extract all subgraph isomorphic embeddings of q in G.

5

Introduction
Ø Subgraph Matching

Given a query q and a large data graph G, the problem is
 to extract all subgraph isomorphic embeddings of q in G.

6

Introduction
Ø Subgraph Matching

Given a query q and a large data graph G, the problem is
 to extract all subgraph isomorphic embeddings of q in G.

7

Introduction
Ø Applications

§  Protein interaction network analysis
§  Social network analysis
§  Chemical compound search

8

Hardness Result
Ø  Subgraph Isomorphism Testing

Ø  Decide whether there is a subgraph of G that is isomophic to q
Ø  NP-complete

Ø  Enumerating all subgraph embeddings is harder
Ø  This is the problem we study

9

Existing Work
Ø  Ullmann’s algorithm [J.ACM’76]

§  Iteratively maps query vertices one by one, following the input order of
query vertices.

§  Example: Input order could be (u1, u2, u3, u4, u5, u6)

§  Cartesian Products between vertices’ candidates.

Ø  VF2 [IEEE Trans’04] and QuickSI [VLDB’08]

Ø  TurboISO [SIGMOD’13]

Ø  BoostISO [VLDB’15]

10

Existing Work
Ø  Ullmann’s algorithm [J.ACM’76]
Ø  VF2 [IEEE Trans’04] and QuickSI [VLDB’08]

§  Independently propose to enforce connectivity of the matching order to
reduce Cartesian products caused by disconnected query vertices.

§  QuickSI further removes false-positive candidates by first
 processing infrequent query vertices and edges.

§  Connected order could be (u5, u1, u2, u3, u6, u4)

Ø  TurboISO [SIGMOD’13]

Ø  BoostISO [VLDB’15]

11

Existing Work
Ø  Ullmann’s algorithm [J.ACM’76]

Ø  VF2 [IEEE Trans’04] and QuickSI [VLDB’08]

Ø  TurboISO [SIGMOD’13]
§  Merge together query vertices with the same neighborhood.

§  Reduces Cartesian product caused by similar query vertices
§  Build a data structure online to facilitate the search process.

Ø  BoostISO [VLDB’15]

12

Existing Work
Ø  Ullmann’s algorithm [J.ACM’76]

Ø  VF2 [IEEE Trans’04] and QuickSI [VLDB’08]

Ø  TurboISO [SIGMOD’13]

Ø  BoostISO [VLDB’15]
§  Compress a data graph G by merging together similar vertices in G.

§  Develop query-dependent relationship between vertices in G.

It is still challenging for matching large query graphs.

13

Challenges of Subgraph Matching

Matching order of QuickSI and TurboISO : (u1，u2，u3，u4，u5，u6).

Challenge I: Redundant Cartesian Products by Dissimilar Vertices.

Cartesian products:
Ø  100 mappings (v0，v2， v1000+i， v2100 +i) (3 ≤ i ≤ 102) of (u1，u2，u3，u4)
Ø  1000 mappings (v0, vj) (3 ≤ j ≤ 1002) of (u1，u5)

105 - 100 partial mappings
are redundant.

(u1，u2，u5，u3，u4，u6)

14

Challenges of Subgraph Matching

Our Solution : Postpone Cartesian products.

Ø Decompose q into a dense subgraph and a forest, and
process the dense subgraph first.

Challenge I: Redundant Cartesian Products by Dissimilar Vertices.

15

Challenges of Subgraph Matching
Challenge II: Exponential size of the path-based data structure in
TurboISO.

Ø  TurboISO builds a data structure that materializes all embeddings of
query paths in a data graph

1.  for generating matching order based on estimation of #candidates.
2.  for enumerating subgraph isomorphic embeddings.

Ø Worst-case space complexity: O(|V(G)||v(q)-1|).

16

Challenges of Subgraph Matching
Challenge II: Exponential size of the path-based data structure in
TurboISO.

Our Solution: Polynomial-size data structure, compact path-index (CPI) .

17

Our Approach

Ø CFL-Match

v A Core-First based Framework

v Compact Path-Index (CPI) based Matching

18

CFL-Match
Ø  A Core-First based Framework

§  Core-Forest Decomposition
Compute the minimal connected subgraph containing all non-tree edges of
q regarding any spanning tree.

§  Forest-Leaf Decomposition
 Compute the set of leaf vertices by rooting each tree at its connection vertex.

19

CFL-Match
Ø  A Core-First based Framework

1)  Core-Forest-Leaf Decomposition
2)  CPI Construction
3)  Mapping Extraction

i.  Core-Match
ii.  Forest-Match
iii.  Leaf-Match

•  Categorize leaf nodes according to label
•  Perform combination instead of enumeration among different labels.

20

Auxiliary Data Structure
Ø  Compact Path-Index (CPI)

§  Compactly store candidate embeddings of query spanning trees.
§  Serve for computing an effective matching order.

Ø  CPI Structure
§  Candidate sets

 Each query node u has a candidate set u.C.
§  Edge sets

This is an edge between v ∈ u.C and v’ ∈ u’.C for adjacent query
nodes u and u’ in CPI if and only if (v, v’) exists in G.

21

Auxiliary Data Structure
Ø  Compact Path-Index (CPI)

§  Compactly store candidate embeddings of query spanning trees.
§  Serve for computing an effective matching order.

Ø  CPI Structure
§  Example

22

Auxiliary Data Structure
Ø  Soundness of CPI

 For every query node u in CPI, if there is an embedding of q in G that
maps u to v, then v must be in u.C.

 Given a sound CPI, all embeddings of q in G can be computed by
traversing only the CPI while G is only probed for non-tree edge
checkings.

Ø  It is NP-hard to build a minimum sound CPI.

Ø  Aim to build a small and sound CPI.

Theorem

23

CPI Construction
Ø  General Idea

§  A heuristic approach:
1) u.C is initialized to contain all vertices in G with the same label as u
2) A data vertex v is pruned from u.C ,
 if ∃u’ ∈ Nq(u), such that ∄v’ ∈ NG(v) & v’ ∈ u’.C.

Ø  A two-phase CPI construction process:
§  Top-down construction, bottom-up refinement
§  Exploit the pruning power of both directions of every query edge.
§  Construct CPI of O(|E(G)| X |V(q)|) size in O(|E(G)| X |E(q)|) time

24

CPI-based Match
Ø  Compute path-based matching order using CPI

Ø  Estimate #matches for each root-to-leaf path in CPI
Ø  Add paths to the matching order in increasing order regarding #matches

Ø  Traverse CPI to find mappings for query vertices
Ø  Only probe G for non-tree edge validation

(u0，u1，u4，u3，u2, u5, u6, u7, u8, u9, u10)

25

Experiment
Ø  All algorithms are implemented in C++ and run on a machine with

3.2G CPU and 8G RAM.
Ø  Datasets

§  Real Graphs

§  Synthetic Graphs

§  Randomly generate graphs with 100k vertices with average degree 8 and 50
distinct labels.

Ø  Query Graphs
§  Randomly generate by random walk
§  Two Categories:

S: sparse (average degree ≤ 3). N: non-sparse (average degree > 3).

|V| |E| |∑| Degree
HPRD 9460 37081 307 7.8
Yeast 3112 12519 71 8.1

Human 4674 86282 44 36.9

26

Comparing with Existing Techniques

Varying the size of query graph |V(q)|

CFL-Match: our proposed algorithm

27

Effectiveness of Our New Framework

Evaluating our framework

Ø  Match: subgraph matching algorithm with CPI but no query
decomposition.

Ø  CF-Match: only core-forest decomposition with CPI.
Ø  CFL-Match: our best algorithm.

28

Scalability Testing

29

Conclusion
 Ø  We proposed a core-first framework for subgraph matching by

postponing Cartesian products

Ø  We proposed a new polynomial-size path-based auxiliary data
structure CPI, and proposed efficient and effective technique for
constructing a small CPI

Ø  We proposed efficient algorithms for subgraph matching based on
the core-first framework and the CPI

Ø  Extensive empirical studies on real and synthetic graphs
demonstrate that our technique outperforms the state-of-the-art
algorithms.

30

Thank you!
Questions?

Lijun.Chang@unsw.edu.au

