INnfroducing GART
Real-Time Online Graph Computation for SQL

Sijie Shen

Institute for Intelligent Computing
Alibaba

2024-08-31

Graph Computation for Relational Datasets

Data usually stored and updated in relational OLTP systems

Online Graph Computation: Graph data Is updating

Inefficient graph operation in relational systems

> Rewrite graph queries by relational operations!!!

> Join: cost & large intermediate results

/SQL Cypher b

WITH RECURSIVE descendants AS MATCH path=(n:Person {name: 'Thurimbert'})-[*]->(m)
(RETURN m;

SELECT person

FROM tree

WHERE person='Thurimbert'’

UNION ALL

SELECT t.person

FROM descendants d, tree t

WHERE t.parent=d.person

)

\\sELECT * FROM descendants; 4/

[1] https:.//memgraph.com/blog/graph-database-vs-relational-database

Requirements of Online Graph Computation

Performance

» Comparable 1o specific graph systems

Freshness
» Minimize the fime gap between when data is committed and read

Expressiveness

» Sufficient graph representation for diverse graph workloads

Existing Solution 1/2: Processing on Offline Data

Combine OLTP systems with graph-specific systems

Good GAP
Poor] Performance

Freshness Expressiveness

X
User behavior —>

TRANSACTION

P_ID1 P_ID2 $ HOW
802 | 803 | 100 | Credit P_ID BAL PAY AGE

803 804 | 100 APP 802 50.0 | 20.0 45

807 802 | 100 APP 807 | 20.0 | 70.0 30

Existing Solution 2/2: Processing on Online Data

OLTP systems support graph processing

» Graph extension in relational systems (SQL/PGQ, SQL Server)

» Graph database (Neo4), TigerGraph)

Poor
Performance
Expressiveness Good
Freshness

J

User behavior —>
Network events —} OLTP

X
) AP
Transactions m—p System

SELECT a, b

FROM GRAPH_TABLE(student_network
MATCH (a IS Person)-[e is knows]->(b is Person)
COLUMNS(a.name as a, b.name as b))

SQL/PGQ

SELECT Division.Name, Employee.Name
FROM Division, Employee,
Company Client, Company Merchant
MATCH Division— [Employees] —Employee
—[Clients] —Client,
Employee— [Merchants] —Merchant
WHERE Merchant.Location = ‘Seattle’ AND
Client.Location = ‘New York’

SQL Graph @ SQL Server

Our Approach: GART

GART. iIn-memory HTGAP system for dynamic GAP
> Relational-Graph Mapping: data model conversion
» Dynamic Graph Storage: write (log replay) & read (GAP)

X } Relational-Graph /'GAP
Mapping
3]
] 1 N —
S 3 —
1 —
] ogs Log replayers Topology Property

Dynamic Graph Storage

Architecture & Workflow

Graph Processing
Engine

User-defined
Rules

Y S {' """""""" N

. - \

I‘GART Capturer & | NLOG | pomapping | YnifiedLog | pynamic I
1~ 1—

I Parser Converter Gstore I

I

: Preprocessing Model Converting Graph Store |

I Capture and parse Converting Multi-Version I

\ Binlog relational models to Dynamic Graph]

“ graph data models y

Preprocess (Capture & Parser)
» Use fransactional logs (e.g., binlog) to capture data changes

Model Convert (RGMapping Converter)

» GART not need to rewrite requests

Graph Store (Dynamic GStore)

» Support efficient read and write simultaneously

Preprocess: Log Capturer

Capture data changes from data sources by logs

> e.qg., Binlogs in SQL systems
» Convert raw logs to TxnLogs with necessary data change information

» Now use Debezium (for MySQL, PostgreSQlL, ...)
{

"before”: null,
“aftter”: { “org id”: “©”, “org type”: “company”,
"org name": "Kam Air",
"org url"”: "http://dbpedia.org/resource/Kam_Air" },
"source": { "ts _ms": 1689159703811, "db": "ldbc",
"table": "organisation" },
"op": "c"

Model Convert

Data manipulation interfaces

> User: write requests as if on the specific engines

Graph extraction interfaces

» DBA: define data model conversion (only once)

RUser User R
TRANSFER(P_ID1,P_ID2,HOW, ..): FRAUDDETECTION:

INSERT INTO "TRANSACTION® g.V().has(‘Person’)

VALUES (P_ID1,P_ID2,HOW,..) (O .DBA .findCycle(‘Trans’)
&P

def_vertex(Person, PERSON)
def_edge(Trans,Person,Person,P_ID1,P_ID2)
add_eprop(Trans, how, HOW) Vv

—

Relational %7 Graph-based

RGMapping: Graph Extraction Interfaces

Extract property graph schema from relational schema

» Tables — Vertex or edge types
» Attributes — Properties
» Supported formats: SQL/PGQ, YAML, JSON, ...

CREATE PROPERTY GRAPH 1ldbc
VERTEX TABLES (
"PERSON"
KEY ("p_id")
LABEL "person" PROPERTIES (p_id AS "p_id", name AS "p_name")
)
EDGE TABLES (
"TRANSFER"
SOURCE KEY ("P_ID1") REFERENCES "PERSON"
DESTINATION KEY ("P_ID2") REFERENCES "PERSON"
LABEL "transfer" PROPERTIES (t_data AS "t date")

)

10

Problems of Dynamic Graph Storage

11

VID: 0123 0123
TOpOlogy ’/QD\‘@ Vertex array: 0(2(3|5 . %
» CSR (immutable): Good edge locality ddd*'f cage anay: [1]2]2[1]8[2. (172} [2] [1]3] [2]
F— edge scan >} > > b >

» Adjacency list: poor edge locality from adjacent vertices

Fine-grained MVCC

» Timestamps for each edge v _’
> Break spatial and temporal locality imestams " tmestamy
Property

» No efficient property storage model for all GAP workloads

Key Insights from Online Graph Computation

Embracing slight freshness trade-offs

opens design optimization opportunities

Required freshness is sufficient for updating compact structure
> Time gap between write (OLTP) and read (GAP)
> E.Q., tens-of-ms freshness

GAP latency much longer than the required freshness
» Fine-grained MVCC is not necessary
» GAP latency (more than 10x of freshness)

Access pattern of properties is nearly fixed
» User can decide how 1o store different properties

12

Graph Storage of GART

Efficient and mutable CSR

» Segmented edge store Vertex VID: 0 1 2 3

Array ce slo Block 0

‘<— Property Block ————>

Coarse-grained MVCC W EEEE g

Edge —~— : = epoch

> Use epoch instead of timestamps Seoement | || Tooeaoreet [] TINEKE]

PR | i <—— Edge Segment 1| ———>

hdr [1(2(3 7- hdr [4|6 ee slo Block 0

Flexible property storage S oo B ——

Edge Segment 0

» User-defined property storage model

attributea;p!;sm;é L | AL pav Fﬁq
(f_id,c_id) — {[(0,0) |ii[(1,0) || i[(2,0) || ey i[(0,0)(0,1) | [(2,0)]
: 45 !

26|

ViD: 802 [50.0 |ii[20.0 |:i[45 {[50.0 | 20.0 |! |
803 {[30.0 |ii[55.0 |ii[26 :\colqmn/; 30.0 | 55.0 | !
804 i[25.0 |::[10.0 |} i[27]i family i[25.0 [10.0 |} i[27

Graph Storage of GART

Please refer to our USENIX ATC'23 paper for more detalls.

Bridging the Gap between Relational OLTP and Graph-based OLAP

14

https://www.usenix.org/conference/atc23/presentation/shen

Evaluation

15

Testbed

» 2x dual-socket machines (OLTP server & GAP server under HTGAP workloads)

Benchmark (extended for Online Graph Computation)

» LDBC Social Network Benchmark (SNB)

» TPC-C [refer to our paper]

GAP Workloads

» Graph analytics (GA): PR (PageRank), CC (Connected Components), SSSP(Single Source Shortest Path)
» Graph traversal (GT): LDBC SNB I1S-3, BI-2, and BI-3

» Graph neural network (GNN): GCN, GSG, and SGC

Overall Performance

Comparing targets
Same OLTP and GAP engines as GART
» Offline: DriM+H with GraphScope (DH+GS)

» Online: Neo4j Graph database

Adjacency-list-based storage

» Replace storage by LiveGraph: G/LG

General-used dynamic graph storage

Workloads LDBC SNB
GART DH+GS Neo4] G/LG
OLTP 1 1837 K 1929K 3.5K 1836K
PR 377 309 5323 1276
GA| CC 362 312 4726 1137
SSSP 513 433 4668 1381
1S-3 17.9 16.9 2.0 18.0
GT| BI-2 235 201 568 828
BI-3 292 266 573 1278
GNN | GCN 1097 940 x 1834
GSG 1774 1443 x 2502
SGC 779 717 x 1237
Freshness | 18 15683 5 25

16

Overall Performance

OLTP & GAP performance

» Comparable with offline solution (DH+GS)
» OLTP 525x online solution (Neo4j)
Freshness (18ms)

» Comparable with online solution (Neo4)
» 872x improvement with DH+GS

Workloads LDBC SNB
GART DH+GS Neo4] G/LG
OLTP 1 1837 K 1929K 3.5K 1836K
PR 377 309 5323 1276
GA| CC 362 312 4726 1137
SSSP 513 433 4668 1381
1S-3 17.9 16.9 2.0 18.0
GT| BI-2 235 201 568 828
BI-3 292 266 573 1278
GNN | GCN 1097 940 x 1834
GSG 1774 1443 x 2502
SGC 779 717 x 1237
Freshness | 18 15683 5 25

17

Performance Isolation

Increase the number of GAP and OLTP clients

Performance degradation

» OLTP: 1%

» GAP: 12% (overhead of version checking)

OLTP thpt (K txns/s)

300

200 |

100 ¢

||||||||||||

GART /OLTP &
GART / GAP mm

0 0.0
12345678 9101112

Number of GAP threads

3.0 300 —

12.0 200 |

11.0 100 |

GART /OLTP &
GART / GAP mm

12.0

110

N EBNEEENEENN IR

1. 2:9 4.5 6 78910 -

Number of OLTP clients

- 1)
Fixed cores for OLTP

GAP latency (s

18

Conclusion & Thanks

GART: iIn-memory HTGAP system for dynamic GAP
> Transparent data model conversion by RGMapping

> Efficient dynamic graph storage with good locality

Open Source: https://github.com/GraphScope/GART

Graph Processing
Engine

User-defined
Rules

= N
e) \
| I—— E—h———- N

I Parser Converter Gstore |
| . : '
I Preprocessing Model Converting Graph Store |
I Capture and parse Converting Multi-Version |
\ Binlog relational models to Dynamic Graph |
N graph data models y

https://github.com/GraphScope/GART

	默认节
	Slide 1: Introducing GART Real-Time Online Graph Computation for SQL
	Slide 2: Graph Computation for Relational Datasets
	Slide 3: Requirements of Online Graph Computation
	Slide 4: Existing Solution 1/2: Processing on Offline Data
	Slide 5: Existing Solution 2/2: Processing on Online Data
	Slide 6: Our Approach: GART
	Slide 7: Architecture & Workflow
	Slide 8: Preprocess: Log Capturer
	Slide 9: Model Convert
	Slide 10: RGMapping: Graph Extraction Interfaces
	Slide 11: Problems of Dynamic Graph Storage
	Slide 12: Key Insights from Online Graph Computation
	Slide 13: Graph Storage of GART
	Slide 14: Graph Storage of GART
	Slide 15: Evaluation
	Slide 16: Overall Performance
	Slide 17: Overall Performance
	Slide 18: Performance Isolation
	Slide 19: Conclusion & Thanks

