
Introducing GART
Real-Time Online Graph Computation for SQL

Sijie Shen

Institute for Intelligent Computing

Alibaba

2024-08-31

Graph Computation for Relational Datasets

Data usually stored and updated in relational OLTP systems

Inefficient graph operation in relational systems

➢ Rewrite graph queries by relational operations[1]

➢ Join: cost & large intermediate results

2

[1] https://memgraph.com/blog/graph-database-vs-relational-database

Online Graph Computation: Graph data is updating

Requirements of Online Graph Computation

Performance

➢ Comparable to specific graph systems

Freshness

➢ Minimize the time gap between when data is committed and read

Expressiveness

➢ Sufficient graph representation for diverse graph workloads

3

Existing Solution 1/2: Processing on Offline Data

Combine OLTP systems with graph-specific systems

4

Graph
System

ETL
OLTP

System

User behavior

Network events

Transactions

TX

GAP

…

Good GAP
Performance

Expressiveness
Poor

Freshness

Existing Solution 2/2: Processing on Online Data

OLTP systems support graph processing

➢ Graph extension in relational systems (SQL/PGQ, SQL Server)

➢ Graph database (Neo4j, TigerGraph)

5

OLTP
System

User behavior

Network events

Transactions

TX

GAP

SQL Graph @ SQL Server

Good
Freshness

Poor
Performance

Expressiveness

SELECT a, b
FROM GRAPH_TABLE(student_network

MATCH (a IS Person)-[e is knows]->(b is Person)
COLUMNS(a.name as a, b.name as b))

SQL/PGQ

Our Approach: GART

GART: in-memory HTGAP system for dynamic GAP

➢ Relational-Graph Mapping: data model conversion

➢ Dynamic Graph Storage: write (log replay) & read (GAP)

6

TX

Logs

GAP

Topology Property

Relational-Graph
Mapping

Dynamic Graph Storage

Log replayers

Architecture & Workflow

Preprocess (Capture & Parser)

➢ Use transactional logs (e.g., binlog) to capture data changes

Model Convert (RGMapping Converter)

➢ GART not need to rewrite requests

Graph Store (Dynamic GStore)

➢ Support efficient read and write simultaneously

7

Preprocess: Log Capturer

Capture data changes from data sources by logs

➢ e.g., Binlogs in SQL systems

➢ Convert raw logs to TxnLogs with necessary data change information

➢ Now use Debezium (for MySQL, PostgreSQL, ...)

8

{
 "before": null,
 “after”: { “org_id”: “0”, “org_type”: “company”,
 "org_name": "Kam_Air",
 "org_url": "http://dbpedia.org/resource/Kam_Air" },
 "source": { "ts_ms": 1689159703811, "db": "ldbc",
 "table": "organisation" },
 "op": "c"
}

Model Convert

Data manipulation interfaces

➢ User: write requests as if on the specific engines

Graph extraction interfaces

➢ DBA: define data model conversion (only once)

9

RGMapping: Graph Extraction Interfaces

Extract property graph schema from relational schema

➢ Tables → Vertex or edge types

➢ Attributes → Properties

➢ Supported formats: SQL/PGQ, YAML, JSON, …

10

CREATE PROPERTY GRAPH ldbc
 VERTEX TABLES (
 "PERSON"
 KEY ("p_id")
 LABEL "person" PROPERTIES (p_id AS "p_id", name AS "p_name")
)
 EDGE TABLES (
 "TRANSFER"
 SOURCE KEY ("P_ID1") REFERENCES "PERSON"
 DESTINATION KEY ("P_ID2") REFERENCES "PERSON"
 LABEL "transfer" PROPERTIES (t_data AS "t_date")
)

Problems of Dynamic Graph Storage

Topology

➢ CSR (immutable): Good edge locality

➢ Adjacency list: poor edge locality from adjacent vertices

Fine-grained MVCC

➢ Timestamps for each edge

➢ Break spatial and temporal locality

Property

➢ No efficient property storage model for all GAP workloads

11

Key Insights from Online Graph Computation

Required freshness is sufficient for updating compact structure

➢ Time gap between write (OLTP) and read (GAP)

➢ E.g., tens-of-ms freshness

GAP latency much longer than the required freshness

➢ Fine-grained MVCC is not necessary

➢ GAP latency (more than 10x of freshness)

Access pattern of properties is nearly fixed

➢ User can decide how to store different properties

12

Embracing slight freshness trade-offs
opens design optimization opportunities

Graph Storage of GART

Efficient and mutable CSR

➢ Segmented edge store

Coarse-grained MVCC

➢ Use epoch instead of timestamps

Flexible property storage

➢ User-defined property storage model

13

Graph Storage of GART

Efficient and mutable CSR

➢ Segmented edge store

Coarse-grained MVCC

➢ Use epoch instead of timestamps

Flexible property storage

➢ User-defined property storage model

14

Please refer to our USENIX ATC’23 paper for more details.
Bridging the Gap between Relational OLTP and Graph-based OLAP

https://www.usenix.org/conference/atc23/presentation/shen

Evaluation

Testbed

➢ 2x dual-socket machines (OLTP server & GAP server under HTGAP workloads)

Benchmark (extended for Online Graph Computation)

➢ LDBC Social Network Benchmark (SNB)

➢ TPC-C [refer to our paper]

GAP Workloads

➢ Graph analytics (GA): PR (PageRank), CC (Connected Components), SSSP(Single Source Shortest Path)

➢ Graph traversal (GT): LDBC SNB IS-3, BI-2, and BI-3

➢ Graph neural network (GNN): GCN, GSG, and SGC

15

Overall Performance

Comparing targets

➢ Offline: DrTM+H with GraphScope (DH+GS)

➢ Online: Neo4j

➢ Replace storage by LiveGraph: G/LG

16

Workloads
LDBC SNB

GART DH+GS Neo4j G/LG

OLTP ↑ 1837 K 1929 K 3.5 K 1836 K

GA ↓

PR 377 309 5323 1276

CC 362 312 4726 1137

SSSP 513 433 4668 1381

GT ↓

IS-3 17.9 16.9 2.0 18.0

BI-2 235 201 568 828

BI-3 292 266 573 1278

GNN ↓ GCN 1097 940 × 1834

GSG 1774 1443 × 2502

SGC 779 717 × 1237

Freshness ↓ 18 15683 5 25

General-used dynamic graph storage

Graph database
Adjacency-list-based storage

Same OLTP and GAP engines as GART

Overall Performance

OLTP & GAP performance

➢ Comparable with offline solution (DH+GS)

➢ OLTP 525x online solution (Neo4j)

Freshness (18ms)

➢ Comparable with online solution (Neo4j)

➢ 872x improvement with DH+GS

17

Workloads
LDBC SNB

GART DH+GS Neo4j G/LG

OLTP ↑ 1837 K 1929 K 3.5 K 1836 K

GA ↓

PR 377 309 5323 1276

CC 362 312 4726 1137

SSSP 513 433 4668 1381

GT ↓

IS-3 17.9 16.9 2.0 18.0

BI-2 235 201 568 828

BI-3 292 266 573 1278

GNN ↓ GCN 1097 940 × 1834

GSG 1774 1443 × 2502

SGC 779 717 × 1237

Freshness ↓ 18 15683 5 25

Performance Isolation

Increase the number of GAP and OLTP clients

Performance degradation

➢ OLTP: 1%

➢ GAP: 12% (overhead of version checking)

18

Fixed cores for OLTP

Conclusion & Thanks

GART: in-memory HTGAP system for dynamic GAP

➢ Transparent data model conversion by RGMapping

➢ Efficient dynamic graph storage with good locality

Open Source: https://github.com/GraphScope/GART

19

https://github.com/GraphScope/GART

	默认节
	Slide 1: Introducing GART Real-Time Online Graph Computation for SQL
	Slide 2: Graph Computation for Relational Datasets
	Slide 3: Requirements of Online Graph Computation
	Slide 4: Existing Solution 1/2: Processing on Offline Data
	Slide 5: Existing Solution 2/2: Processing on Online Data
	Slide 6: Our Approach: GART
	Slide 7: Architecture & Workflow
	Slide 8: Preprocess: Log Capturer
	Slide 9: Model Convert
	Slide 10: RGMapping: Graph Extraction Interfaces
	Slide 11: Problems of Dynamic Graph Storage
	Slide 12: Key Insights from Online Graph Computation
	Slide 13: Graph Storage of GART
	Slide 14: Graph Storage of GART
	Slide 15: Evaluation
	Slide 16: Overall Performance
	Slide 17: Overall Performance
	Slide 18: Performance Isolation
	Slide 19: Conclusion & Thanks

