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Bl Graph are everywhere

* Soclal Network, Biological Network, Road Network, E-Commerce, Web,
Scientific domains ......

* [nterest In graph analytics continues to increase

* Many different graph processing platforms are proposed, e.g., GraphX,
PowerGraph, Flash, Grape, Pregel+, Ligra, etc.
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Bl Graph Benchmark

* Graph Analytics Benchmarks, like Graph500 and LDBC have played

significant roles In evaluating graph analytics platforms and giving
suggestions on selecting proper ones.

* But, there are still some limitations:

* The core algorithm set lacks diversity, typically selecting only simple algorithms or those
frequently used in research papers.

* Existing graph data generators focus on vertex and edge counts but overlook other
crucial properties like diameter and density.

* Evaluation metrics emphasize objective performance, while neglecting usability from the
users' perspective.



Bl A new graph analytics benchmark

* Select eight algorithms as the core
algorithm set: PageRank, Label
Propagation Algorithm, SSSP, etc.

* A new data generator: Hop Distance
Generator

* LLM-based usability evaluation
framework
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Bl The Core Algorithm Set

In our previous work, we have surveyed and analyzed the main challenges of various graph
algorithms in distributed environments, including parallelism, load balance, communication
overhead, and bandwidth, and categorized them into seven topics based on the challenges

they address.

[ Centrality PageRank, Personalized PageRank, Betweenness Centrality,
Closeness Centrality
[ Community Detection H Louvain, Label Propagation, Connected Components }
[ Similarity H Jaccard Similarity, Cosine Similarity, SimRank ]
[ Cohesive Subgraph H k-Core, k-Truss, Maximal Clique ]
[ Traversal BFS, Single Source Shortest Path, Minimum Spanning Tree,
Cycle Detection, Maximum Flow
[ Pattern Matching Triangle Counting, k-Clique, Subgraph Matching, Subgraph
Mining
[ Covering HMinimum Vertex Covering, Maximum Matching, Graph Coloring J

Lingkai Meng, Yu Shao, Long Yuan, Longbin Lai, Peng Cheng, Xue Li, Wenyuan Yu, Wenjie Zhang, Xuemin Lin, and Jingren Zhou. 2024. A Survey

of Distributed Graph Algorithms on Massive Graphs. arXiv:2404.06037 [cs.DC] https://arxiv. org/abs/2404.06037
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Bl The Core Algorithm Set

We considered the following factors: (1) Topic Diversity and
Coverage; (2) Breadth and Popularity; (3) Computation
Workload and Paradigm.
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PageRank (PR)

Label Propagation Algorithm (LPA)
Single Source Shortest Path (SSSP)
Connected Component (CC)
Betweenness Centrality (BC)

Core Decomposition (CD)

Triangle Counting (TC)

k-Clique (KC)
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Bl Data Generator-Distance Hop Generator

Extract resulting edges directly for avoiding the
Incidence of sampling failure.

Adopt a tuning factor, a, during the sampling step
to foster the creation of closed edges to improve
the efficiency of sparse graph generation.
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Figure: The sampling process resumes from the
point at which the last edge was successfully
sampled.



Bl Data Generator-Distance Hop Generator ]

* Extract resulting edges directly for avoiding the group edges
incidence of sampling failure. v/

* Adopt a tuning factor, a, during the sampling step . T, Y N
to foster the creation of closed edges to improve O—O0 O-O0-O0-000 O0—O
the efficiency of sparse graph generation. \adjacent edges

group /

* Restrict the span of each edge, organize the
vertices into groups, and generate edges within
each group to maintain a consistent average Figure: Generating graphs with adjustable diameters
diameter.



Bl Data Generator-Distance Hop Generator

* Extract resulting edges directly for avoiding the
Incidence of sampling failure.
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* Adopt a tuning factor, a, during the sampling step e
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to foster the creation of closed edges to improve O—O0 O-O0-0O-0 O\G
adjacent edges

the efficiency of sparse graph generation.

group /

* Restrict the span of each edge, organize the
vertices into groups, and generate edges within

each group to maintain a consistent average Figure: Generating graphs with adjustable diameters
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Bl Data Generator-Distance F
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(a) LiveJournal Dataset.

(b) Our Generator.

(c) LDBC Generator.
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| A multi-Dimensional Evaluation Framework

LLM-Based Usability Evaluation Framework

e Step 1: Instruction-Tuning of LLMSs.
e Step 2: Multi-Level Prompts.
* Step 3: Code Evaluation.
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| A multi-Dimensional Evaluation Framework

LLM-Based Usability Evaluation Framework

* Step 1: Instruction-Tuning of LLMs.

®

Preprocess and structure the data for
LLM recognition and processing.

®

Gather data from each platform, including research papers, API
documentation, sample codes, and coding guidelines.
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| A multi-Dimensional Evaluation Framework

LLM-Based Usability Evaluation Framework

* Step 2: Multi-Level Prompts.
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| A multi-Dimensional Evaluation Framework

LLM-Based Usability Evaluation Framework

* Step 3: Code Evaluation.
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| A multi-Dimensional Evaluation Framework

Performance evaluation metrics

Category Metric Description
Upload Time Time required to read, convert, partition, and load graph data into memory.
Timing Running Time Total time required to complete an algorithm execution task.
Makespan Overall time for graph operations, including reading, processing, and writing data.
Edges/sec Number of edges processed per second.
Th hput
ROREREN Edges+Vertices/sec | Combined number of edges and vertices processed per second.
Scalability Speedup Rate of performance improvement with additional computational resources.
Robustness Stress Test Platform’s stability and reliability under high-stress conditions.
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Bl Experiments

Experimental Setup

Platforms: GraphX, PowerGraph, Flash, Grape, Pregel+, Ligra

Hardware Information:

Hardware | Information
Cluster 16 X Machines
CPUs 4 x Intel® Xeon® Platinum 8163 @ 2.50GHz
Cores 4 X 24
Memory 512 GB
Disk 3 TB
Network | 15 Gbps
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Bl Experiments

Experimental Setup

Platforms: GraphX, PowerGraph, Flash, Grape, Pregel+, Ligra

Hardware Information:

Selected Synthetic Datasets:

Datasets n m Density Diameter
S8-Std 3.6M 153M 2.4 X 1072 6
S8-Dense 1.2M 159M 2.2 % 1074 5
S8-Diam 3.6M 155M 2.4 X 1072 101
S9-Std 27.2M 1.42B 3.8 X 107° 6
S9-Dense 9.1M 1.47B 3.6 X 107> 5
S9-Diam 27.2M 1.48B 4.0 X 107° 102
S9.5-Std 77M 4.36B 1.5 % 107° 6
S10-Std 210M 12.62B 5.7 X 1077 6
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Bl Experiments

Experimental Setup

Platforms: GraphX, PowerGraph, Flash, Grape, Pregel+, Ligra

Hardware Information:
Selected Synthetic Datasets:
Experimental Methodology:

Aspects Section Algorithms Datasets #threads #machines
Algo.rlt.hm Impact Section 7.1 All S8-Std, S8-Dense, S8-Diam 32 1
Statistics Impact
. o ) S8-Std, S8-Dense, S8-Diam 1, 2, 4, 8, 16, 32 1
Scalability Sensitivity Section 7.2 | PR, SSSP, TC 59-5td. S9-Dense, S9-Diam 35 12,4816
; S8-Std, S8-Dense, S8-Diam,
Throughput Section 7.3 | PR, SSSP, TC $9-Std, $9-Dense, $9-Diam 32 16
Stress Test Section 7.4 PR S8-Std, S9-Std, S9.5-Std, S10-Std 32 16
Usability Evaluation Section 7.5 All — - -
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Bl Experiments

Algorithm & Statistics Impact
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Bl Experiments

Algorithm & Statistics Impact
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Bl Experiments

Scalability Sensitivity-Varying Number
of Machines

Algo.  Dataset | GraphX PowerG Flash Grape  Pregel+
S9-Std 3.2 2.3 0.8 5.8 5.7
PR S9-Dense 3.8 2.2 1.0 11.5 9:9
S9-Diam 3.0 24 0.8 6.1 7.5
S9-Std 1.8 2.6 1.2 1.7 2.4
SSSP  S9-Dense 22 2i9 1.3 3.3 3.1
S9-Diam — 1.4 2.0 0.5 4.0
S9-Std - — 3.3 3.2 27.6
TC  S9-Dense — = 2.6 4.1 6.5
S9-Diam = — 4.7 3.9 35.4
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| Experiments

Throughput
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Bl Experiments

Stress Test

Platforms S8-Std S9-Std S9.5-Std S10-Std
GraphX v v v
PowerGraph v v
Flash v v v
Grape v v v v
Pregel+ v v v v
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Bl Experiments

Usability Evaluation

GraphX stands out with the highest usability scores across all expertise levels.
PowerGraph and Pregel+ exhibit balanced usability, particularly favoring junior and

intermediate users.

Grape’'s APl has a steep learning curve, receiving low scores from beginners but significantly
Improving In usability for senior and expert users.
Flash and Ligra show a pattern of lower usability for beginners, with scores improving as users

gain more expertise.

Platforms Junior Intermediate Senior Expert
GraphX 71.25 74.00 93.50 98.25
PowerG 69.11 74.33 77.33 35.67

Flash 61.54 66.38 76.38 91.17
Grape 40.87 62.07 74.87 38.27
Pregel+ 70.00 78.33 83.50 91.67
Ligra 61.00 69.17 82.28 91.89
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Bl Summarization & Platform Selection Guide

GraphX:

* An ideal choice for users of all experience levels, provided that performance
and scalability are not their primary concerns.

PowerGraph & Pregel+:
* Recommended for beginners and Iintermediate users due to balanced
performance and usability, especially with large data.

Flash & Ligra:
* Best for users with strong performance needs.
* Flash is preferred for its multi-machine support.
* Some experience required to fully leverage their capabilities.
Grape:
* Best for users demanding top performance and scalability, despite a steeper
learning curve.
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Bl Conclusion

* We select eight representative algorithms and introduce the Distance
Hop Generator that enhances dataset generation efficiency and flexibility
by adjusting scale, density, and diameter.

* we adopt a multi-level usability evaluation framework based on LLMs to
assess APl usabllity. This is the first time usability evaluation metrics have
been introduced In the fleld of graph analytics benchmarks.

* Extensive experiments evaluate both the performance and API usability
of various platforms, providing valuable Insights for developers,
researchers, and practitioners in selecting the appropriate platform.
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