
Revis i t ing Graph Analyt ics Benchmarks:
Unvei l ing the Pract ical i ty of Graph
Analyt ics Plat forms

Long Yuan

Graph are everywhere
• Social Network, Biological Network, Road Network, E-Commerce, Web,

Scientific domains
• Interest in graph analytics continues to increase
• Many different graph processing platforms are proposed, e.g., GraphX,

PowerGraph, Flash, Grape, Pregel+, Ligra, etc.

Social Network Analysis Biological Network Analysis Road Network Routing

2

Graph Benchmark
• Graph Analytics Benchmarks, like Graph500 and LDBC have played

significant roles in evaluating graph analytics platforms and giving
suggestions on selecting proper ones.

• But, there are still some limitations:
• The core algorithm set lacks diversity, typically selecting only simple algorithms or those

frequently used in research papers.
• Existing graph data generators focus on vertex and edge counts but overlook other

crucial properties like diameter and density.
• Evaluation metrics emphasize objective performance, while neglecting usability from the

users’ perspective.

3

A new graph analytics benchmark

• Select eight algorithms as the core
algorithm set: PageRank, Label
Propagation Algorithm, SSSP, etc.

• A new data generator: Hop Distance
Generator

• LLM-based usability evaluation
framework

An overview of our benchmark

4

The Core Algorithm Set

Lingkai Meng, Yu Shao, Long Yuan, Longbin Lai, Peng Cheng, Xue Li, Wenyuan Yu, Wenjie Zhang, Xuemin Lin, and Jingren Zhou. 2024. A Survey
of Distributed Graph Algorithms on Massive Graphs. arXiv:2404.06037 [cs.DC] https://arxiv. org/abs/2404.06037 5

In our previous work, we have surveyed and analyzed the main challenges of various graph
algorithms in distributed environments, including parallelism, load balance, communication
overhead, and bandwidth, and categorized them into seven topics based on the challenges
they address.

The Core Algorithm Set

Lingkai Meng, Yu Shao, Long Yuan, Longbin Lai, Peng Cheng, Xue Li, Wenyuan Yu, Wenjie Zhang, Xuemin Lin, and Jingren Zhou. 2024. A Survey
of Distributed Graph Algorithms on Massive Graphs. arXiv:2404.06037 [cs.DC] https://arxiv. org/abs/2404.06037 6

• PageRank (PR)

• Label Propagation Algorithm (LPA)

• Single Source Shortest Path (SSSP)

• Connected Component (CC)

• Betweenness Centrality (BC)

• Core Decomposition (CD)

• Triangle Counting (TC)

• 𝑘-Clique (KC)

We considered the following factors: (1) Topic Diversity and
Coverage; (2) Breadth and Popularity; (3) Computation
Workload and Paradigm.

• Centrality: PageRank、Personalized PageRank、Betweenness Centrality、Closeness Centrality

• Community Detection: Louvain、Label Propagation、 Connected Components

• Similarity: Jaccard Similarity、Cosine Similarity、SimRank

• Cohesive Subgraph: k-Core、k-Truss、Maximal Clique

• Traversal: BFS、Single Source Shortest Path、Topological Sort、Minimum Spanning Tree、
Cycle Detection、Maximum Flow

• Pattern Matching: Triangle Counting、k-Clique、Subgraph Matching、Subgraph Mining

• Covering:Minimum Vertex Covering、Maximum Matching、Graph Coloring

Data Generator-Distance Hop Generator

7

Figure: The sampling process resumes from the
point at which the last edge was successfully
sampled.

• Extract resulting edges directly for avoiding the
incidence of sampling failure.

• Adopt a tuning factor, 𝛼, during the sampling step
to foster the creation of closed edges to improve
the efficiency of sparse graph generation.

Data Generator-Distance Hop Generator

8

• Extract resulting edges directly for avoiding the
incidence of sampling failure.

• Adopt a tuning factor, 𝛼, during the sampling step
to foster the creation of closed edges to improve
the efficiency of sparse graph generation.

• Restrict the span of each edge, organize the
vertices into groups, and generate edges within
each group to maintain a consistent average
diameter.

Figure: Generating graphs with adjustable diameters

Data Generator-Distance Hop Generator

9

• Extract resulting edges directly for avoiding the
incidence of sampling failure.

• Adopt a tuning factor, 𝛼, during the sampling step
to foster the creation of closed edges to improve
the efficiency of sparse graph generation.

• Restrict the span of each edge, organize the
vertices into groups, and generate edges within
each group to maintain a consistent average
diameter.

Figure: Generating graphs with adjustable diameters

Scale Density Diameter

Data Generator-Distance Hop Generator

10

A multi-Dimensional Evaluation Framework

11

LLM-Based Usability Evaluation Framework

• Step 1: Instruction-Tuning of LLMs.
• Step 2: Multi-Level Prompts.
• Step 3: Code Evaluation.

A multi-Dimensional Evaluation Framework

12

LLM-Based Usability Evaluation Framework

• Step 1: Instruction-Tuning of LLMs.
• Step 2: Multi-Level Prompts.
• Step 3: Code Evaluation. Gather data from each platform, including research papers, API

documentation, sample codes, and coding guidelines.1

Preprocess and structure the data for
LLM recognition and processing.

2

Feed the structured data into LLMs to learn
specific coding styles and conventions.

3

Human evaluators provide feedback
and prompts on generated results.

4

Use feedback to refine the data and
improve the instruction-tuning process.

5

A multi-Dimensional Evaluation Framework

13

LLM-Based Usability Evaluation Framework

• Step 1: Instruction-Tuning of LLMs.
• Step 2: Multi-Level Prompts.
• Step 3: Code Evaluation.

Code Query

int main(int argc, char *argv[]) {
VertexType(float,val,float,next,int,deg);

SetDataset(argv[1], argv[2]);
DefineMapV(init) {v.val = 1.0/n_vertex; v.next =

0.0; v.deg = deg(v);};
DefineMapE(update) {d.next += 0.85*s.val/s.deg;};
DefineMapV(local) {v.val = v.next + 0.15/n_vertex;

v.next = 0;};
vertexMap(All, CTrueV, init);
for(int i = 0; i < 10; ++i) {

print("Round %d\n", i);
edgeMapDense(All, EU, CTrueE, update, CTrueV);

vertexMap(All, CTrueV, local);

Real Code

(1). SIZE(U : vertexSubset) 7→ N
This function returns the size of a vertexSubset, i.e., |U |.
(2). VERTEXMAP(U : vertexSubset, F (v : vertex) 7→ bool,

M (v : vertex) 7→ vertex) 7→ vertexSubset
The VERTEXMAP interface applies the map function M to
each vertex in U that passes the condition checking function F .
The ids of the output vertices form the resulting vertexSubset.
That is to say, we have:
Out = {v.id|v.id ∈ U ∧ F (v) = true}
vnew = M (v), v.id ∈ U ∧ F (v) = true
This function is used to conduct local updates. Specially, the

M function could be omitted for implementing the filter
semantics, with the vertex data unchanged. The execution of

API Function Call

Senior

Intermediate

Expert

Junior

Code Generator

Description of the task

The names of core APIs and parameters

Detailed usage instructions for the relevant APIs and example code

On the basis of the previous prompt, add the pseudocode

A multi-Dimensional Evaluation Framework

14

LLM-Based Usability Evaluation Framework

• Step 1: Instruction-Tuning of LLMs.
• Step 2: Multi-Level Prompts.
• Step 3: Code Evaluation.

Results: A structured view of the data
int main(int argc, char *argv[]) {

VertexType(float,val,float,next,int,deg);

SetDataset(argv[1], argv[2]);
DefineMapV(init) {v.val = 1.0/n_vertex; v.next = 0.0; v.deg =

deg(v);};
DefineMapE(update) {d.next += 0.85*s.val/s.deg;};
DefineMapV(local) {v.val = v.next + 0.15/n_vertex; v.next = 0;};

vertexMap(All, CTrueV, init);
for(int i = 0; i < 10; ++i) {

print("Round %d\n", i);
edgeMapDense(All, EU, CTrueE, update, CTrueV);
vertexMap(All, CTrueV, local);

}

Real Code

Compliance (35%). Checking the adherence to
platform-specific coding standards and best
practices by comparing the generated code with
standard code examples. Compliance ensures that
the code integrates well with existing systems.
Correctness (35%).This metric is for ensuring the
generated code performs the intended task
accurately. This includes verifying the logic of the
code

Metrics Input Input

Output
Prompts

Code Evaluator

Fail
Pass

Code

Generated Code
void pageRank(Graph &graph) {

int numNodes = graph.numVertices();
std::vector<double> rank(numNodes, 1.0 / numNodes);
std::vector<double> newRank(numNodes, 0.0);

for (int iter = 0; iter < MAX_ITER; ++iter) {
// Reset newRank
std::fill(newRank.begin(), newRank.end(), 0.0);

// Compute newRank values
for (int u = 0; u < numNodes; ++u) {

double outDegree = graph.outDegree(u);
if (outDegree > 0) {

double contribution = rank[u] / outDegree;

Output

Input
Compliance (35%)

Correctness (35%)

Readability (30%)

A multi-Dimensional Evaluation Framework

15

Performance evaluation metrics

Experiments

16

Experimental Setup

Platforms: GraphX, PowerGraph, Flash, Grape, Pregel+, Ligra

Hardware Information:

Experiments

17

Experimental Setup

Platforms: GraphX, PowerGraph, Flash, Grape, Pregel+, Ligra

Selected Synthetic Datasets:

Hardware Information:

Experiments

18

Experimental Setup

Platforms: GraphX, PowerGraph, Flash, Grape, Pregel+, Ligra

Hardware Information:

Selected Synthetic Datasets:

Experimental Methodology:

Experiments

19

Algorithm & Statistics Impact

Experiments

20

Algorithm & Statistics Impact

Experiments

21

Scalability Sensitivity-Varying Number
of Threads

Scaling Factor: the best performance over single thread
performance

Running time of PR, SSSP and TC, with three datasets
(Scale = 8), varying #threads

Experiments

22

Scalability Sensitivity-Varying Number
of Machines

Scaling Factor: the best performance over single machine
performance

Running time of PR, SSSP and TC, with three datasets
(Scale = 9), varying #machines

Experiments

23

Throughput

Experiments

24

Stress Test

Experiments

25

Usability Evaluation
• GraphX stands out with the highest usability scores across all expertise levels.
• PowerGraph and Pregel+ exhibit balanced usability, particularly favoring junior and

intermediate users.
• Grape’s API has a steep learning curve, receiving low scores from beginners but significantly

improving in usability for senior and expert users.
• Flash and Ligra show a pattern of lower usability for beginners, with scores improving as users

gain more expertise.

Summarization & Platform Selection Guide

• GraphX:
• An ideal choice for users of all experience levels, provided that performance

and scalability are not their primary concerns.
• PowerGraph & Pregel+:

• Recommended for beginners and intermediate users due to balanced
performance and usability, especially with large data.

• Flash & Ligra:
• Best for users with strong performance needs.
• Flash is preferred for its multi-machine support.
• Some experience required to fully leverage their capabilities.

• Grape:
• Best for users demanding top performance and scalability, despite a steeper

learning curve.

26

Conclusion

• We select eight representative algorithms and introduce the Distance
Hop Generator that enhances dataset generation efficiency and flexibility
by adjusting scale, density, and diameter.

• we adopt a multi-level usability evaluation framework based on LLMs to
assess API usability. This is the first time usability evaluation metrics have
been introduced in the field of graph analytics benchmarks.

• Extensive experiments evaluate both the performance and API usability
of various platforms, providing valuable insights for developers,
researchers, and practitioners in selecting the appropriate platform.

27

Thanks

