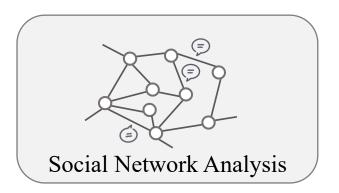
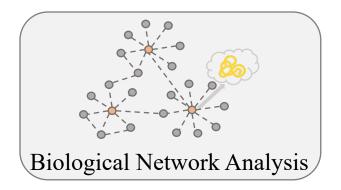
Revisiting Graph Analytics Benchmarks: Unveiling the Practicality of Graph Analytics Platforms

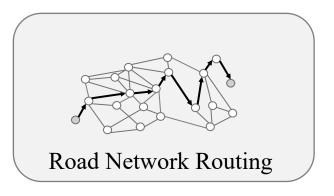
Long Yuan

Graph are everywhere

- Social Network, Biological Network, Road Network, E-Commerce, Web, Scientific domains
- Interest in graph analytics continues to increase
- Many different graph processing platforms are proposed, e.g., GraphX, PowerGraph, Flash, Grape, Pregel+, Ligra, etc.





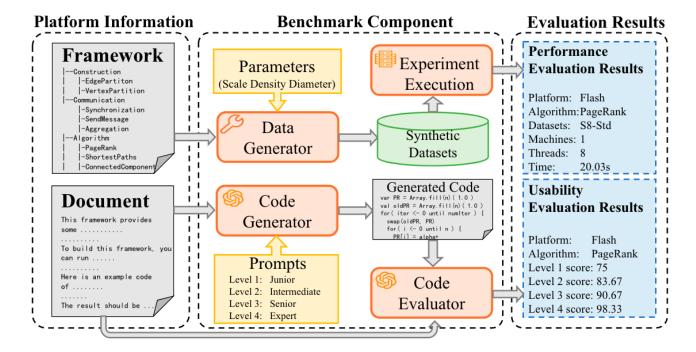


Graph Benchmark

- Graph Analytics Benchmarks, like Graph500 and LDBC have played significant roles in evaluating graph analytics platforms and giving suggestions on selecting proper ones.
- But, there are still some **limitations**:
 - The core algorithm set lacks diversity, typically selecting only simple algorithms or those frequently used in research papers.
 - Existing graph data generators focus on vertex and edge counts but overlook other crucial properties like diameter and density.
 - Evaluation metrics emphasize objective performance, while neglecting usability from the users' perspective.

A new graph analytics benchmark

- Select eight algorithms as the core algorithm set: PageRank, Label Propagation Algorithm, SSSP, etc.
- A new data generator: Hop Distance Generator
- LLM-based usability evaluation framework



An overview of our benchmark

The Core Algorithm Set

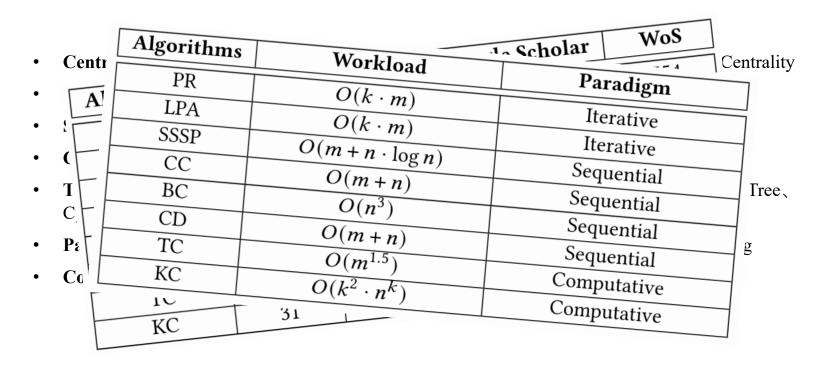
In our previous work, we have surveyed and analyzed the main challenges of various graph algorithms in distributed environments, including **parallelism**, **load balance**, **communication overhead**, **and bandwidth**, and categorized them into seven topics based on the challenges they address.

Centrality	PageRank, Personalized PageRank, Betweenness Centrality, Closeness Centrality
Community Detection	Louvain, Label Propagation, Connected Components
Similarity	Jaccard Similarity, Cosine Similarity, SimRank
Cohesive Subgraph	k-Core, k-Truss, Maximal Clique
Traversal	BFS, Single Source Shortest Path, Minimum Spanning Tree, Cycle Detection, Maximum Flow
Pattern Matching	Triangle Counting, <i>k</i> -Clique, Subgraph Matching, Subgraph Mining
Covering	Minimum Vertex Covering, Maximum Matching, Graph Coloring

Lingkai Meng, Yu Shao, Long Yuan, Longbin Lai, Peng Cheng, Xue Li, Wenyuan Yu, Wenjie Zhang, Xuemin Lin, and Jingren Zhou. 2024. A Survey of Distributed Graph Algorithms on Massive Graphs. arXiv:2404.06037 [cs.DC] https://arxiv.org/abs/2404.06037 5

The Core Algorithm Set

We considered the following factors: (1) Topic Diversity and Coverage; (2) Breadth and Popularity; (3) Computation Workload and Paradigm.



- PageRank (PR)
- Label Propagation Algorithm (LPA)
- Single Source Shortest Path (SSSP)
- Connected Component (CC)
- Betweenness Centrality (BC)
- Core Decomposition (CD)
- Triangle Counting (TC)
- *k*-Clique (KC)

Lingkai Meng, Yu Shao, Long Yuan, Longbin Lai, Peng Cheng, Xue Li, Wenyuan Yu, Wenjie Zhang, Xuemin Lin, and Jingren Zhou. 2024. A Survey of Distributed Graph Algorithms on Massive Graphs. arXiv:2404.06037 [cs.DC] https://arxiv.org/abs/2404.06037 6

- Extract resulting edges directly for avoiding the incidence of sampling failure.
- Adopt a tuning factor, α, during the sampling step to foster the creation of closed edges to improve the efficiency of sparse graph generation.

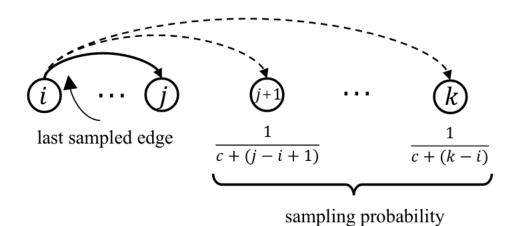


Figure: The sampling process resumes from the point at which the last edge was successfully sampled.

- Extract resulting edges directly for avoiding the incidence of sampling failure.
- Adopt a tuning factor, α, during the sampling step to foster the creation of closed edges to improve the efficiency of sparse graph generation.
- Restrict the span of each edge, organize the vertices into groups, and generate edges within each group to maintain a consistent average diameter.

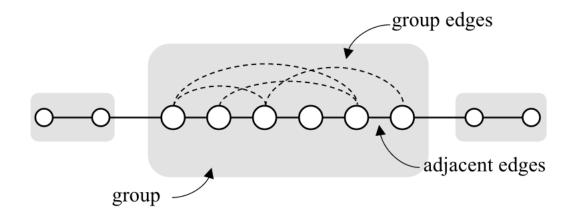


Figure: Generating graphs with adjustable diameters

- Extract resulting edges directly for avoiding the incidence of sampling failure.
- Adopt a tuning factor, α, during the sampling step to foster the creation of closed edges to improve the efficiency of sparse graph generation.
- Restrict the span of each edge, organize the vertices into groups, and generate edges within each group to maintain a consistent average diameter.

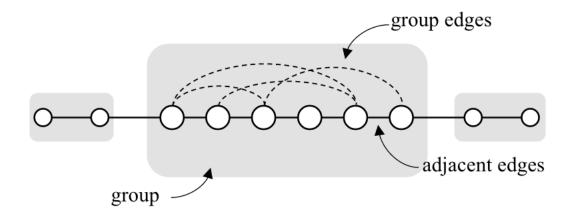
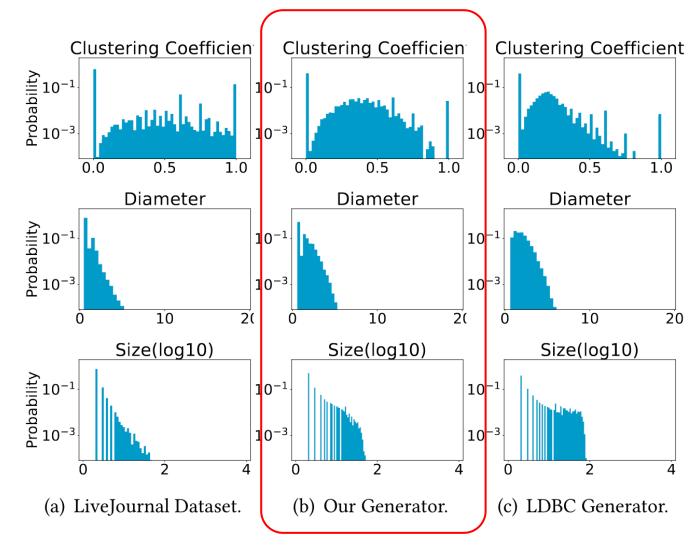


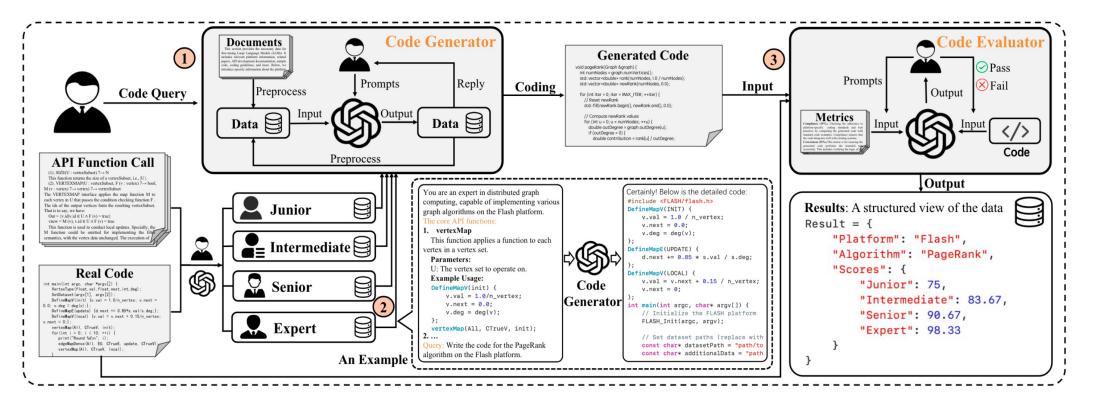
Figure: Generating graphs with adjustable diameters

Scale Density Diameter



LLM-Based Usability Evaluation Framework

- Step 1: Instruction-Tuning of LLMs.
- Step 2: Multi-Level Prompts.
- Step 3: Code Evaluation.



11

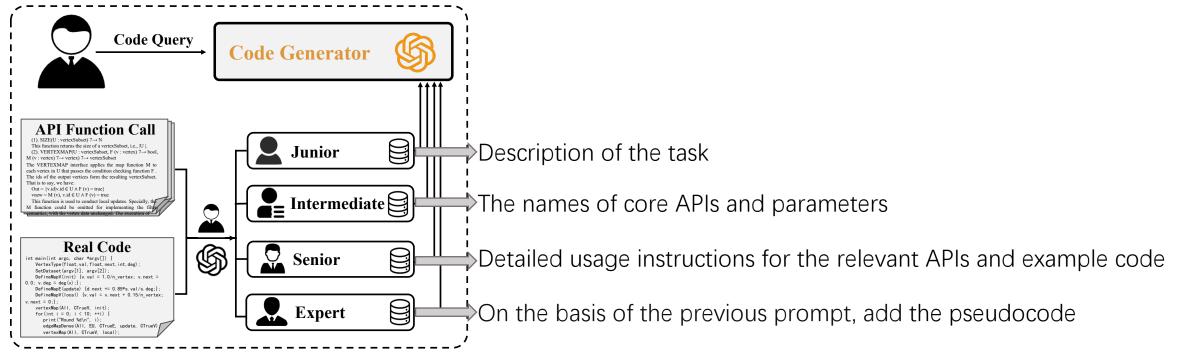
LLM-Based Usability Evaluation Framework

- Step 1: Instruction-Tuning of LLMs.
- Step 2: Multi-Level Prompts.



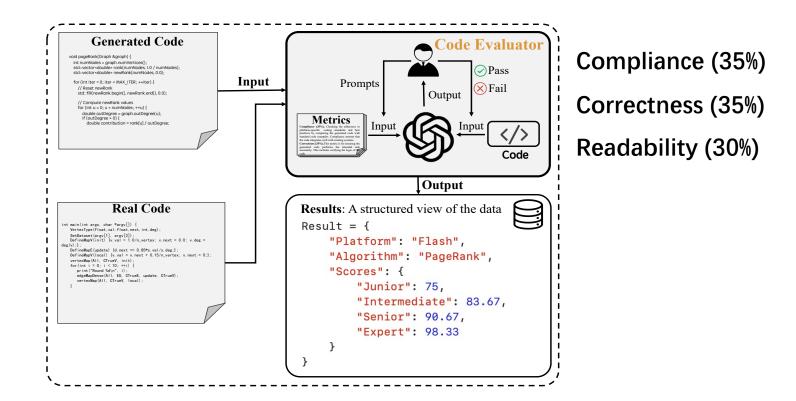
LLM-Based Usability Evaluation Framework

- Step 1: Instruction-Tuning of LLMs.
- Step 2: Multi-Level Prompts.
- Step 3: Code Evaluation.



LLM-Based Usability Evaluation Framework

- Step 1: Instruction-Tuning of LLMs.
- Step 2: Multi-Level Prompts.
- Step 3: Code Evaluation.



Performance evaluation metrics

Category	Metric	Description				
Upload Time		Time required to read, convert, partition, and load graph data into memory.				
Timing	Running Time	Total time required to complete an algorithm execution task.				
	Makespan	Overall time for graph operations, including reading, processing, and writing data.				
Throughput	Edges/sec	Number of edges processed per second.				
Throughput Edges+Vertices/sec		Combined number of edges and vertices processed per second.				
Scalability	Speedup	Rate of performance improvement with additional computational resources.				
Robustness	Stress Test	Platform's stability and reliability under high-stress conditions.				

Experimental Setup

Platforms: GraphX, PowerGraph, Flash, Grape, Pregel+, Ligra

Hardware Information:

Hardware	Information
Cluster	$16 \times Machines$
CPUs	$4 \times \text{Intel}^{\mathbb{R}} \text{ Xeon}^{\mathbb{R}} \text{ Platinum 8163 } @ 2.50 \text{GHz}$
Cores	4×24
Memory	512 GB
Disk	3 TB
Network	15 Gbps

Experimental Setup

Platforms: GraphX, PowerGraph, Flash, Grape, Pregel+, Ligra

Hardware Information:

Selected Synthetic Datasets:

Datasets	n	m	Density	Diameter
S8-Std	3.6M	153M	2.4×10^{-5}	6
S8-Dense	1.2M	159M	2.2×10^{-4}	5
S8-Diam	3.6M	155M	2.4×10^{-5}	101
S9-Std	27.2M	1.42B	3.8×10^{-6}	6
S9-Dense	9.1M	1.47B	3.6×10^{-5}	5
S9-Diam	27.2M	1.48B	4.0×10^{-6}	102
S9.5-Std	77M	4.36B	1.5×10^{-6}	6
S10-Std	210M	12.62B	5.7×10^{-7}	6

Experimental Setup

Platforms: GraphX, PowerGraph, Flash, Grape, Pregel+, Ligra

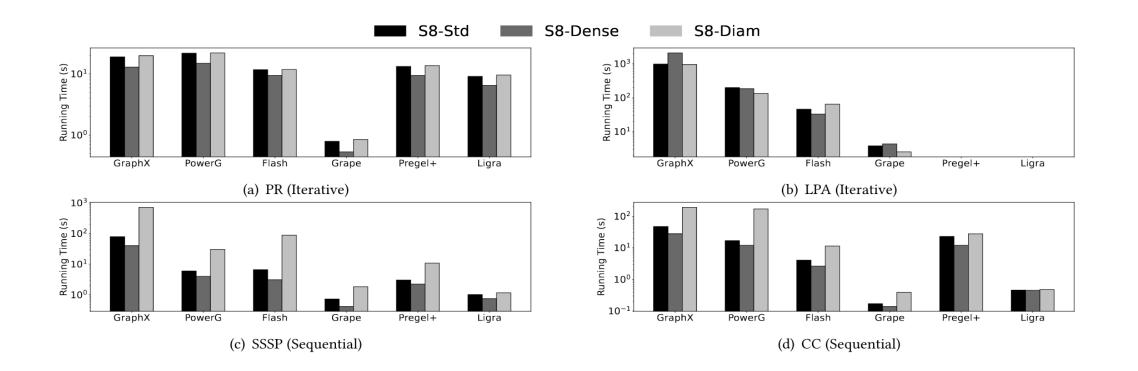
Hardware Information:

Selected Synthetic Datasets:

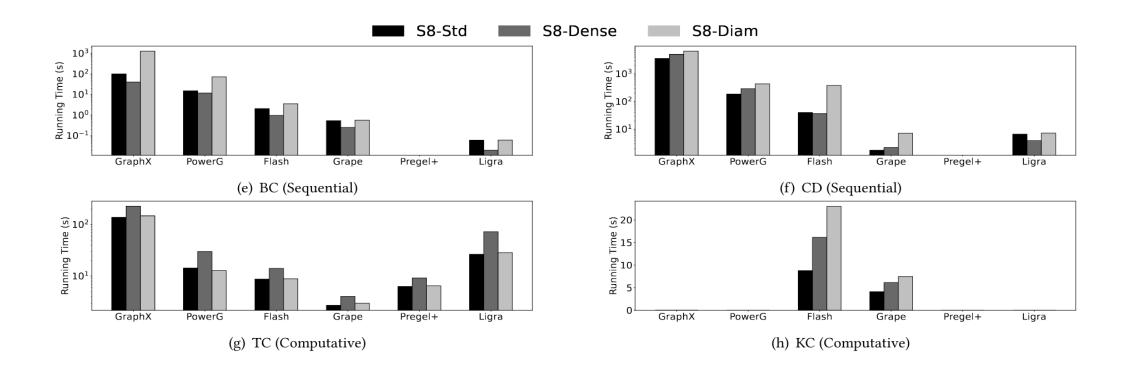
Experimental Methodology:

Aspects	Section	Algorithms	Datasets	#threads	#machines
Algorithm Impact	Section 7.1	All	S8-Std, S8-Dense, S8-Diam	32	1
Statistics Impact		All	38-5tu, 38-Dense, 38-Diam	52	1
Scalability Sensitivity	Section 7.2	PR, SSSP, TC	S8-Std, S8-Dense, S8-Diam	1, 2, 4, 8, 16, 32	1
Scalability Sensitivity			S9-Std, S9-Dense, S9-Diam	32	1, 2, 4, 8, 16
Throughput	Section 7.3	PR, SSSP, TC	S8-Std, S8-Dense, S8-Diam,	32	16
Tinoughput			S9-Std, S9-Dense, S9-Diam	52	10
Stress Test	Section 7.4	PR	S8-Std, S9-Std, S9.5-Std, S10-Std	32	16
Usability Evaluation	Section 7.5	All	—	—	—

Algorithm & Statistics Impact



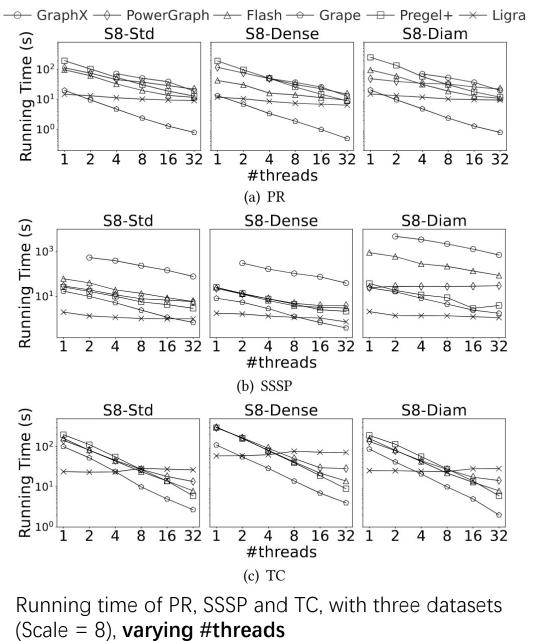
Algorithm & Statistics Impact



Scalability Sensitivity-Varying Number of Threads

Algo.	Dataset	GraphX PowerGFlash		Grape	Pregel+	Ligra	
	S8-Std	3.8	5.1	8.2	25.3	14.6	1.6
PR	S8-Dense	3.8	7.8	4.5	25.2	20.1	1.8
	S8-Diam	3.6	2.2	8.2	24.2	19.5	1.6
	S8-Std	6.9	5.0	9.3	23.5	8.8	2.0
SSSP	S8-Dense	7.8	5.8	8.5	19.7	11.3	2.4
	S8-Diam	6.7	0.9	10.2	13.2	10.1	1.8
	S8-Std	—	10.7	18.7	37.2	32.0	1.1
TC	S8-Dense	_	10.5	22.2	27.5	32.4	0.9
	S8-Diam	_	9.4	18.1	29.6	29.6	1.1

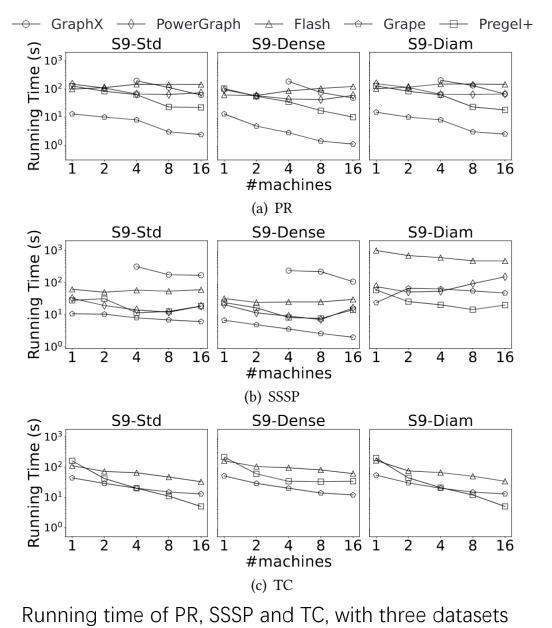
Scaling Factor: the best performance over single **thread** performance



Scalability Sensitivity-Varying Number of Machines

Algo.	Dataset	GraphX	PowerG	Flash	Grape	Pregel+
	S9-Std	3.2	2.3	0.8	5.8	5.7
PR	S9-Dense	3.8	2.2	1.0	11.5	9.9
	S9-Diam	3.0	2.4	0.8	6.1	7.5
	S9-Std	1.8	2.6	1.2	1.7	2.4
SSSP	S9-Dense	2.2	2.9	1.3	3.3	3.1
	S9-Diam	_	1.4	2.0	0.5	4.0
	S9-Std	_	_	3.3	3.2	27.6
TC	S9-Dense	_	_	2.6	4.1	6.5
	S9-Diam	-	—	4.7	3.9	35.4

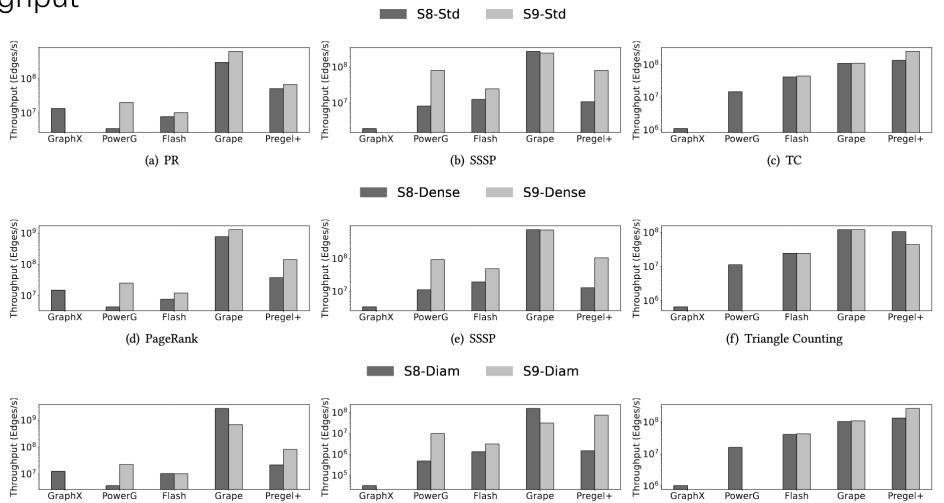
Scaling Factor: the best performance over single **machine** performance



(Scale = 9), varying #**machines**

(g) PageRank

Throughput



(h) SSSP

(i) Triangle Counting

Stress Test

Platforms	S8-Std	S9-Std	S9.5-Std	S10-Std
GraphX	\checkmark	\checkmark	\checkmark	
PowerGraph	\checkmark	\checkmark		
Flash	\checkmark	\checkmark	\checkmark	
Grape	\checkmark	\checkmark	\checkmark	\checkmark
Pregel+	\checkmark	\checkmark	\checkmark	\checkmark

Usability Evaluation

- **GraphX** stands out with the highest usability scores across all expertise levels.
- **PowerGraph** and **Pregel+** exhibit balanced usability, particularly favoring junior and intermediate users.
- **Grape**'s API has a steep learning curve, receiving low scores from beginners but significantly improving in usability for senior and expert users.
- Flash and Ligra show a pattern of lower usability for beginners, with scores improving as users gain more expertise.

Platforms	ms Junior Intermediate Senior		Senior	Expert
GraphX	71.25	74.00	93.50	98.25
PowerG	69.11	74.33	77.33	85.67
Flash	61.54	66.38	76.38	91.17
Grape	40.87	62.07	74.87	88.27
Pregel+	70.00	78.33	83.50	91.67
Ligra	61.00	69.17	82.28	91.89

Summarization & Platform Selection Guide

- GraphX:
 - An ideal choice for users of all experience levels, provided that performance and scalability are not their primary concerns.
- PowerGraph & Pregel+:
 - Recommended for beginners and intermediate users due to balanced performance and usability, especially with large data.
- Flash & Ligra:
 - Best for users with strong performance needs.
 - Flash is preferred for its multi-machine support.
 - Some experience required to fully leverage their capabilities.
- Grape:
 - Best for users demanding top performance and scalability, despite a steeper learning curve.

Conclusion

- We select eight representative algorithms and introduce the Distance Hop Generator that enhances dataset generation efficiency and flexibility by adjusting scale, density, and diameter.
- we adopt a multi-level usability evaluation framework based on LLMs to assess API usability. This is the first time usability evaluation metrics have been introduced in the field of graph analytics benchmarks.
- Extensive experiments evaluate both the performance and API usability of various platforms, providing valuable insights for developers, researchers, and practitioners in selecting the appropriate platform.

Thanks