Hybrid Sampling Algorithms for Dynamic Graph Sampling

Chengying Huan Institute of Software, Chinese Academy of Sciences

Background

- When do we need to use the dynamic graph sampling?
- Temporal Graph Random Walk
 - Dynamic graph sampling caused by time limit
- Evolving Graph Random Walk
 - Dynamic graph sampling caused dynamic edge modification

What's temporal graphs?

Flight map

Social network

Temporal graph: Graph with time instances

Temporal path: Time increasing on paths

Random walks on temporal graphs

Random walk: A temporal path starting from a certain edge by randomly sampling

Candidate edge set: candidate edges for each sampling (satisfy time constraints) Decided by previous arriving time

$$\Gamma_t(u) = \{ (u, v_i, t_i) | (u, v_i, t_i) \in N(u), t_i > t \}$$

Transition probability: probability distribution of edges on each candidate edge set Decide by previous arriving time

$$P((u, v_i, t_i)) = \beta_{(u, v_i)} \cdot \frac{\delta((u, v_i, t_i))}{\sum_{(u, v_j, t_j) \in \Gamma_t(u)} \delta((u, v_j, t_j))}$$

Challenges

 \bigcirc

5

Challenges

 \bigcirc

(4)

5

(1)

 $(\mathbf{6})$

Persistent Alias Table [Eurosys '23]

Х

Sampling on Persistent Alias Table

Sampling on Persistent Alias Table

Sampling on Persistent Alias Table

Х

Hierarchical Persistent Alias Table

Hierarchical Persistent Alias Table

How to rapidly identify the candidate alias tables?

Auxiliary Index for Fast Alias Table Identification

System overview:

Incoming random walk source node s

Output random walk

1. Access auxiliary index of node s;

TEA runtime sampling engine

- 2. Access hierarchical persistent alias table with auxiliary index;
- 3. Perform sampling on the hierarchical persistent alias table;
- 4. Using the newly selected vertex, repeat from 1;

Steps 1 - 4 continue until our random walk meets the required length.

Teavs. the State-of-the-art

GraphWalker [ATC '20]KnightKing [SOSP '19]Our Tea

Tea enjoys higher speedups on bigger graphs!

How to deal with dynamic edge modification?

Incremental HPAT Updating

- Edge Insertion
 - Create new HPATs and merge the new HPATs into old HPATs
- Edge Deletion
 - Delete the corresponding HPATs

Edge Insertion

Edge Deletion

- Remove the trunks containing the deleted edge
- For example:
 - when deleting the edge from vertex 7 to {0,1,2,3}
 - the trunks containing {0,1,2,3} will be directly deleted
 - this is correct because we arrange the edges by time decreasing and each candidate edge set lenght can be binary decomposition
- The time complexity of each edge deletion is O(1)

How to deal with evolving graph without time instances?

Radix-based Bias Factorization

Binary decomposition for edge weight

O(log(log(D))) sampling complexity

Edge insertion

O(log(D)) time complexity

Thank you ~~