View-based Explanations for Graph Neural Networks Accepted and Presented at SIGMOD '24

Tingyang Chen^{*}, Dazhuo Qiu⁺, Yinghui Wu[#], Arijit Khan⁺, <u>Xiangyu Ke</u>^{*}, Yunjun Gao^{*}

*Zhejiang University (China),

⁺Aalborg University (Denmark),

[#]Case Western Reserve University (USA)

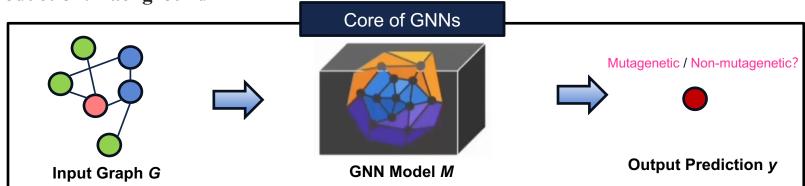
AALBORG Universitet

 $\begin{array}{c}
\text{Case School} \\
\stackrel{\text{OF engineering}}{\underset{U \ N \ V \ V \ R \ S \ I \ T \ Y}} \\
\end{array}$

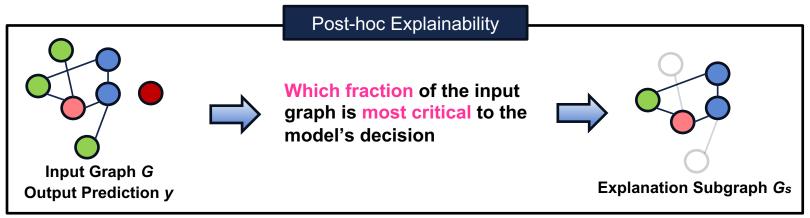
Roadmap

- Introduction
 - Background
 - Motivation
- View-based Explanation
- Generating Explanation Views
 - Explain-and-summarize
 - Incremental generation
- Experiment
- Conclusion

Introduction: Background



"What Knowledge should/does the black model use to make decisions?"



Tingyang Chen, Dazhuo Qiu, Yinghui Wu, Arijit Khan, Xiangyu Ke, Yunjun Gao

Introduction: Motivation

GNNExplainer		GStarX		SubgraphX				GVEX		
							P Of		2 P ₅₅	
Methods	LEARNING	TASK	TARGET	MA	LS	SB	COVERAGE	CONFIG	QUERYABLE	
SubgraphX [68]	×	GC/NC	Subgraph	1	×	X	×	×	×	
GNNExplainer [63]	1	GC/NC	E/NF	1	×	×	×	×	×	
PGExplainer [40]	1	GC/NC	E	×	×	×	×	×	×	
GStarX [73]	×	GC	Subgraph	1	×	×	×	×	×	
GCFExplainer [29]	×	GC	Subgraph	1	1	×	1	×	×	

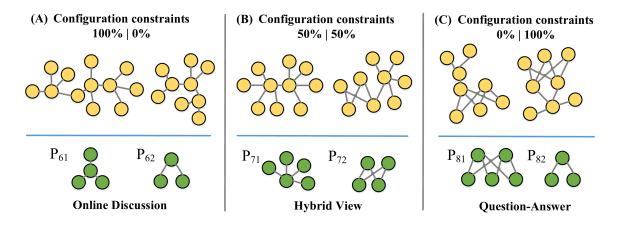
Comparison with state-of-the-art GNN explanation methods. Here "Learning" denotes whether (node/edge mask) learning is required, "Task" means what downstream tasks each method can be applied to (GC/NC: graph/ node classification), "Target" indicates the output format of explanations (E/NF: Edge/Node Features), "Model-agnostic" (MA) means if the method treats GNNs as a black-box during the explanation stage (i.e., the internals of the GNN models are not required), "Label-specific" (LS) means if the explanations can be generated for a specific class label; "Size-bound" (SB) means if the size of explanation is bounded; "Coverage" means if the coverage property is involved, "Config" means if users can configure the method to generate explanations for designated class labels; "Queryable" means if the explanations are directly queryable.

View-based Explanations for Graph Neural Networks

Introduction: Motivation

Challenges with Existing Methods

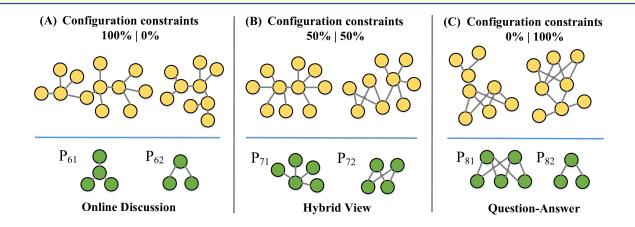
- Oversized explanation: Existing methods generate large explanation subgraphs.
- Lack of meaningful explanations for domain experts: Not easy to access and inspect with domain knowledge. (Not queryable)
- Not configurable explanation based on user setting: Only explaining one class may omit the relevant information between classes. (Not configurable)



Introduction: Motivation

Key Motivations

- "finer-grained" and user-friendly explanation structures for graph classification problem.
- "queryable" hence are easy for human experts to access and inspect with domain knowledge.
- "configurable" to enable users with the flexibility to obtain comprehensive and detailed explanations tailored to their classes of interest.



View-based Explanation

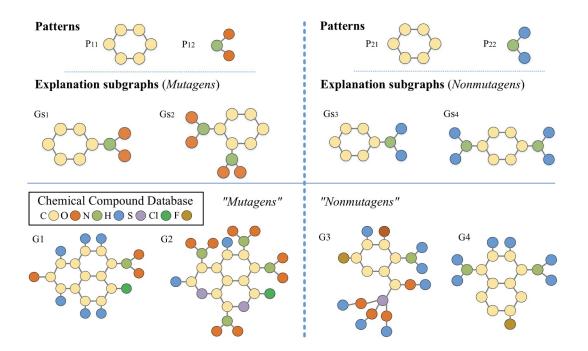
Two-tier Explanation

Lower-tier:

Subgraphs that ensure the same prediction (factual) and its removal changes prediction label (counterfactual).

Higher-tier:

Patterns that summarize the explanation subgraphs with coverage guarantee.

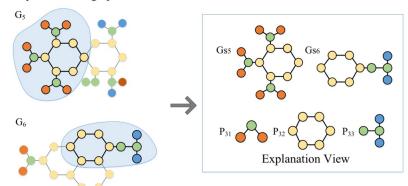


View-based Explanation

An explanation view for a single class label: explanation subgraphs and patterns

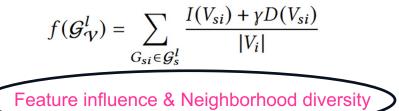
🔴 О 🔘 N 🔵 С 🔵 Н

Explanation subgraphs Gs5 and Gs6



Quality of Explanation Views

Explainability: An explanation view has better explainability if its explanation subgraphs involve more nodes with features that can maximize their influence via a random walk-based message passing process of GNN.



Coverage: Besides "lower-tier" explainability, we also expect the "higher-tier" patterns of an explanation view to cover a desirable amount of nodes for each label group of interests.

View-based Explanation

Problem Formulation

Explanation View Generation Problem (EVG):

Given a graph database \mathcal{G} , a set of interested labels \mathcal{L} s.t. $|\mathcal{L}| = t$, a GNN \mathcal{M} , and a configuration C, the *explanation view generation problem*, denoted as EVG, is to compute a set of graph views $\mathcal{G}_{\mathcal{V}} = \{\mathcal{G}_{\mathcal{V}}^{l_1}, \ldots, \mathcal{G}_{\mathcal{V}}^{l_t}\}$, such that $(i \in [1, t])$:

- Each graph view $G_V^{l_i} = (P^{l_i}, G_s^{l_i}) \in G_V$ is an explanation view of *G* for *M* w.r.t. $l_i \in \mathbb{L}$;
- Each $\mathcal{G}_{\mathcal{V}}^{l_i}$ properly covers the label group \mathcal{G}^{l_i} ; and
- $\mathcal{G}_{\mathcal{V}}$ maximizes an aggregated explainability, i.e.,

$$\mathcal{G}_{\mathcal{V}} = \arg \max \sum_{\mathcal{G}_{\mathcal{V}}^{l_i} \in \mathcal{G}_{\mathcal{V}}} f(\mathcal{G}_{\mathcal{V}}^{l_i})$$

Computational Complexity

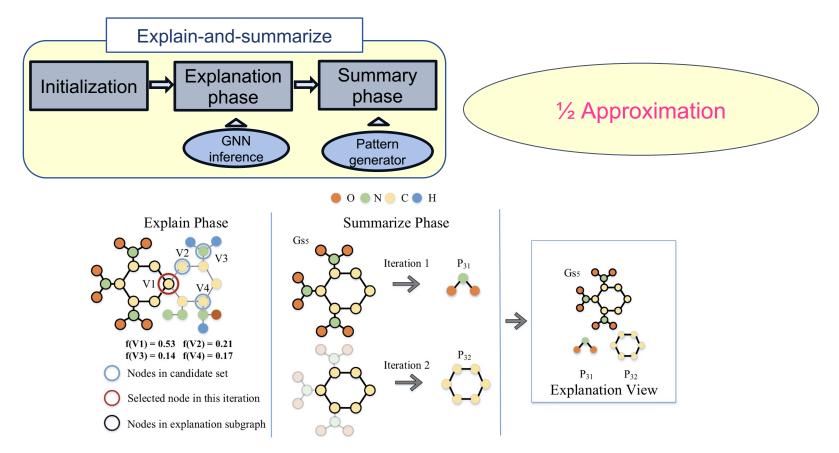
EVG:

For a fixed GNN \mathcal{M} , EVG is Σ_P^2 -complete, and remains NP-hard even when \mathcal{G} has no edges.

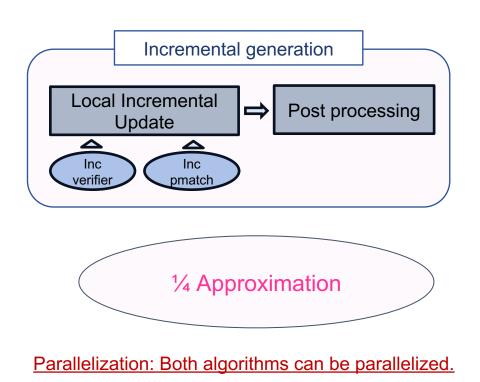
View Verification:

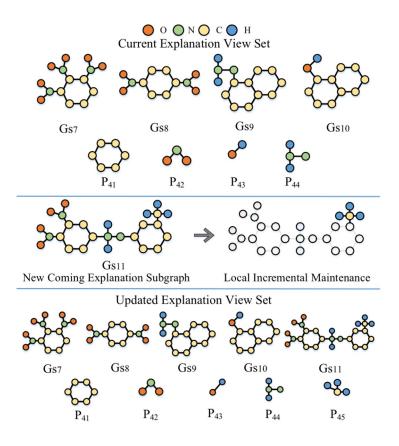
Given a graph database \mathcal{G} , configuration C, and a two-tier structure $(\mathcal{P}, \mathcal{G}_s)$, the view verification problem is **NP-complete** when the GNN \mathcal{M} is fixed.

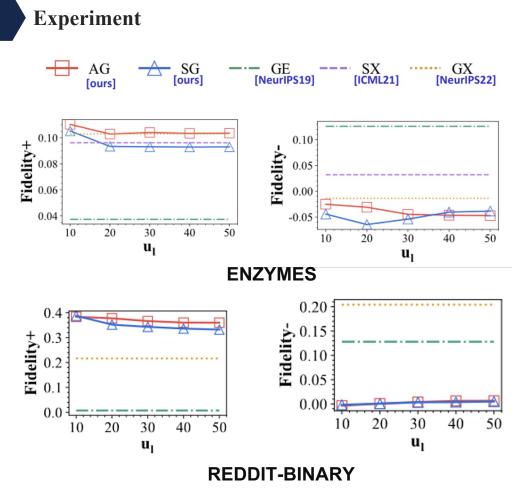
Generating Explanation Views: GVEX



Generating Explanation Views: StreamingGVEX



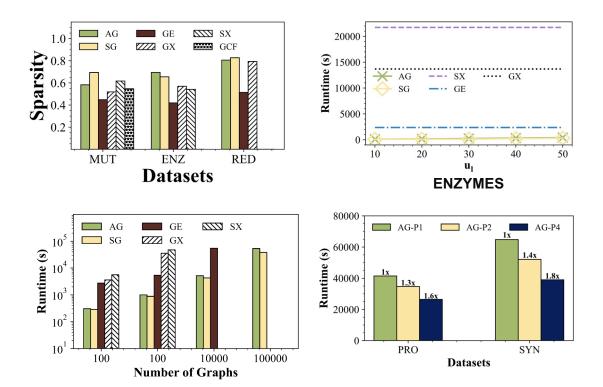




Fidelity+ quantifies the deviations caused by removing the explanation substructure from the input graph. Higher is better.

Fidelity- measures how close the prediction results of the explanation substructures are to the original inputs. Lower is better.

Experiment

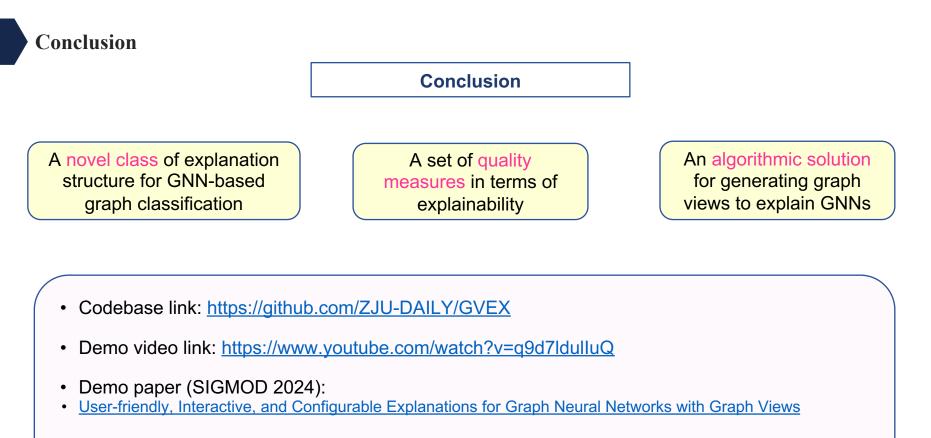


Sparsity quantifies how compact is the explanation. Higher is better.

Efficiency experiment shows superior low time cost over learning-based methods.

Scalability experiment indicates that both algorithms is capable of handling large-scale datasets.

Parallelization of approximate algorithm enable significant speed-up.



• Full paper in SIGMOD24: <u>https://dl.acm.org/doi/10.1145/3639295</u>

THANK YOU !

Acknowledgment: Chen, Ke, and Gao are supported in part by the NSFC under Grants No.(62025206, U23A20296) and Yongjiang Talent Introduction Programme (2022A-237-G). Qiu and Khan are support from the Novo Nordisk Foundation grant NNF22OC0072415. Wu is supported in part by NSF under CNS-1932574, ECCS-1933279, CNS-2028748 and OAC-2104007.

Santiago Chile

SIGMOD PODS 2024